Version : 1.0

TECHNICAL SPECIFICATION

MODEL NO.: PD064VT5
\square Customer's Confirmation

Customer

Date

By

Confirmed By

Prepared By

This technical specification is subject to change without notice.
Please return 1 copy with your signature on this page for approval.
The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd. Page:1

PD064VT5

TECHNICAL SPECIFICATION

CONTENTS

NO.	ITEM	$\boldsymbol{P A G E}$
-	Cover	1
-	Contents	2
1	Application	3
2	Features	3
3	Mechanical Specifications	3
4	Mechanical Drawing of TFT-LCD module	4
5	Input / Output Terminals	5
6	Absolute Maximum Ratings	7
7	Electrical Characteristics	7
8	Power On Sequence	16
9	Optical Characteristics	17
10	Handling Cautions	19
11	Reliability Test	20
12	Indication of Lot Number Label	20
13	Block Diagram	21
14	Packing	22
-	Revision History	23

PD064VT5

1. Application

This product applies computer peripheral , industrial meter, image communication and multi-media.
2. Features
. Compatible with VGA-480, VGA-400, VGA-350 mode
. Support the DENB mode
. Pixel in stripe configuration
. Slim and compact
. Display Colors : 262,144 colors
. Image Reversion : Up/Down and Left/Right
. Active area / Outline area $=57.02 \%$
.Viewing Direction : 6 o'clock
. Backlight lamps are Replaceable
3. Mechanical Specifications

Parameter	Specifications	Unit
Screen Size	6.4 (diagonal)	inch
Display Format	$640 \times \mathrm{R}, \mathrm{G}, \mathrm{B} \times 480$	dot
Active Area	$129.6(\mathrm{H}) \times 97.4(\mathrm{~V})$	mm
Dot Pitch	$0.0675(\mathrm{H}) \times 0.203(\mathrm{~V})$	mm
Pixel Pitch	$0.2025(\mathrm{H}) \times 0.203(\mathrm{~V})$	mm
Pixel Configuration	Stripe	
Outline Dimension	$175.0(\mathrm{~W}) \times 126.5(\mathrm{H}) \times 12.0(\mathrm{D})($ Typ. $)$	mm
Weight	340 ± 10	g

PD064VT5
4. Mechanical Drawing of TFT-LCD Module

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd. Page:4

PD064VT5

5. Input / Output Terminals

5-1) TFT-LCD Panel Driving LCD module connector (Reference)
DF9A-31P-1V

Pin No.	Symbol	Function	Remark
1	GND	Ground (0V)	
2	CLK	Clock Signal for Sampling Image Digital Data	
3	Hsync	Horizontal Synchronous Signal	Note 5-1
4	Vsync	Vertical Synchronous Signal	
5	GND	Ground (0V)	
6	R0	Red Image Data Signal (LSB)	
7	R1	Red Image Data Signal	
8	R2	Red Image Data Signal	
9	R3	Red Image Data Signal	
10	R4	Red Image Data Signal	
11	R5	Red Image Data Signal (MSB)	
12	GND	Ground (0V)	
13	G0	Green Image Data Signal (LSB)	
14	G1	Green Image Data Signal	
15	G2	Green Image Data Signal	
16	G3	Green Image Data Signal	
17	G4	Green Image Data Signal	
18	G5	Green Image Data Signal (MSB)	
19	GND	Ground (0V)	
20	B0	Blue Image Data Signal (LSB)	
21	B1	Blue Image Data Signal	
22	B2	Blue Image Data Signal	
23	B3	Blue Image Data Signal	
24	B4	Blue Image Data Signal	
25	B5	Blue Image Data Signal (MSB)	
26	GND	Ground (0V)	
27	DENB	Enable	Note 5-1 Note 5-2
28	VCC	DC +5.0V Power Supply	Note 5-3
29	VCC	DC +5.0V Power Supply	
30	R/L	Horizontal Image Shift-direction Select Signal	Note 5-4
31	U/D	Vertical Image Shift-direction Select Signal	Note 5-5

Note 5-1 : The relationship between DENB \& SYNC. mode

1. DENB mode with the top priority.
2. When working with the SYNC. mode, the TFT-LCD module is compatible with three kinds of VGA timing. They are VGA-480, VGA-400 and VGA-350 mode. The polarization of Hsync and Vsync determine the timings.

SYNC. Mode	DENB	VGA-480	VGA-400	VGA-350
Hsync Polarization	Don't care	Negative / Positive	Negative	Positive
Vsync Polarization	Don't care	Negative / Positive	Positive	Negative

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd. Page:5

PD064VT5
Note 5-2 : DENB input signal.
If customer wanted to off the DENB mode, you must keep the DENB (pin 27) always
High or Low.

Note 5-3: V_{CC} TYP. $=+5 \mathrm{~V}$
Note 5-4, 5-5 : The definitions of U/D \& R/L

$$
\mathrm{R} / \mathrm{L}(\operatorname{PIN} 30)=\text { High }, \mathrm{U} / \mathrm{D}(\operatorname{PIN} 31)=\text { Low }
$$

R/L(PIN 30) $=$ Low , U/D(PIN 31) $=$ High

6. Absolute Maximum Ratings :

The followings are maximum values, which if exceeded, may cause faulty operation or damage to the unit.

	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$				
Parameters	Symbol	MIN.	MAX.	Unit	Remark
+5 V Supply Voltage	V_{CC}	-0.3	+7.0	V	
Input Signals Voltage	$\mathrm{V}_{\text {sig }}$	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	Note 6-1
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-30	+70	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\text {opa }}$	-20	+70	${ }^{\circ} \mathrm{C}$	Note 6-2

Note 6-1 : Input signals include CLK, Hsync, Vsync, DENB , R[0:5], G[0:5] and B[0:5].
Note 6-2 : Optical characteristics shown in Table 9-1 are measured under $\mathrm{Ta}=+25^{\circ} \mathrm{C}$.

PD064VT5

7. Electrical Characteristics

7-1) Recommended Operating Condition for TFT-LCD panel :

GND $=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$														
Parameters									Symbol	Min.	Typ.	Max.	Unit	Remark
+5 V	Supply Voltage	V_{CC}	+4.75	+5.0	+5.25	V								
	Supply Input Ripple Voltage	$\mathrm{V}_{\mathrm{CCRP}}$			0.1	$\mathrm{Vp}-\mathrm{p}$	$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$							
Input Signals Voltage (High)	V_{IH}	+2.6			V									
Input Signals Voltage (Low)	V_{IL}			+0.5	V									

7-2) Recommended Operating Condition for backlight :

Item	Symbol	Min.	Typ.	Max.	Unit	Remark
Lamp Current	I_{L}	-	6	-	mA	Note 7-1
Lamp Voltage	V_{L}	-	360	-	Vrms	$\mathrm{I}_{\mathrm{L}}=6 \mathrm{~mA}$
Lamp frequency	P_{L}	-	40	-	KHz	Note 7-2
Kick-off voltage $\left(25^{\circ} \mathrm{C}\right)$	V_{S}	-	790	-	Vrms	Note 7-3

Note 7-1 : In order to satisfy the quality of B / L, no matter use what kind of inverter, the output lamp current must between Min. and Max. to avoid the abnormal display image caused by B/L.

Note 7-2 : The waveform of lamp driving voltage should be as closed to a perfect sine wave as possible.

Note 7-3 : The Kick-off times $\geqq 1$ sec.

Backlight driving connector : JST BHR-03VS-1, Pin No. : 3 , Pitch : 4 mm

Pin No	Symbol	Description	Remark
1	VL1	Input terminal (Hi voltage side)	
2	NC	No Connection	
3	VL2	Input terminal (Low voltage side)	Note 7-4

Note 7-4 : Low voltage side of backlight inverter connects with ground of inverter circuits.

7-3) Power Consumption

Parameters	Symbol	Typ.	Max.	Unit	Remark
$+5 \mathrm{~V} \quad$ Current Dissipation	I_{CC}	100	120	mA	
LCD Panel Power Consumption		0.5	0.6	W	Note 7-5
Backlight Power Consumption		4.32		W	Note 7-6

Note 7-5 : The power consumption of backlight is not included.

Note 7-6 : Backlight lamp power consumption is calculated by $\mathrm{I}_{\mathrm{L}} \times \mathrm{V}_{\mathrm{L}}$.

PD064VT5
7-4) Input / Output signal timing chart

Parameters		Symbol	Format	Min.	Typ.	Max.	Unit	Note
CLK	Frequency	$\mathrm{Fc}=1 / \mathrm{Tc}$	All	-	25.175	-	MHz	Note 7-7
		tc	All	-	40	-	ns	
Hsync	Period	Hp	All	-	31.778	-	us	
				-	800	-	tc	
	Display period	Hd	All	-	640	-	tc	
	Pulse width	Hpw	All	12	96	139	tc	
	Back-porch	Hbp	All	12	48	139	tc	
	Front-porch	Hfp	All	-	16	-	tc	
	Hpw+Hbp		All	136	144	151	tc	
	Hsync-CLK	Hhc	All	10	-	Tc-10	ns	
	Vsync-Hsync	Hvh	All	0	0	200	tc	
Vsync	Period	Vp	480	-	16.8	-	ms	
				515	525	800	Hp	
			400	-	14.3	-	ms	
				446	449	480	Hp	
			350	-	14.3	-	ms	
				447	449	510	Hp	
	Display period	Vdp	480	-	480	-	Hp	
			400	-	400	-		
			350	-	350	-		
	Pulse width	Vpw	All	2	2	35	Hp	
	Back-porch	Vbp	480	2	33	35	Hp	
			400	2	35	38		
			350	2	60	63		
	Front-porch	Vfp	480	1	10	-	Hp	
			400	1	12	-		
			350	1	37	-		
	Vpw+Vbp		480	31	35	38	Hp	
			400	33	37	40		
			350	58	62	65		
Data	CLK-DATA	Dcd	All	10		-	ns	
	DATA-CLK	Ddc	All	10		-	ns	
DENB	Horizontal scanning period	T1	All	780	800	900	tc	
	Horizontal display period	T2	All	-	640	-	tc	
	Vertical display period	T3	All	-	480	-	T1	
	Frame cycling period	T4	All	515	525	800	T1	

Note 7-7 : Tc is the period of sampling clock. In case of low-frequency, the image-flicker may occur.

PD064VT5
7-5) Display Time Range
(1) Vertical Timing :

(2) Horizontal Timing :

(3) DENB Timing :

PD064VT5
(4) Detail of Horizontal Timing :

(a) VGA-480 Mode (Hsync $=$ Positive $/$ Negative Polarization)

Item	Description	Clock Cycles	Time
A	Horizontal Width	96	$3.813 \mu \mathrm{~s}$
B	Horizontal B-Porch	48	$1.907 \mu \mathrm{~s}$
C	Horizontal Display	640	$25.422 \mu \mathrm{~s}$
D	Horizontal F-Porch	16	$0.636 \mu \mathrm{~s}$
E	Horizontal Total	800	$31.778 \mu \mathrm{~s}$

(b) VGA-400 Mode $($ Hsync $=$ Negative Polarization $)$

Item	Description	Clock Cycles	Time
A	Horizontal Width	96	$3.813 \mu \mathrm{~s}$
B	Horizontal B-Porch	48	$1.907 \mu \mathrm{~s}$
C	Horizontal Display	640	$25.422 \mu \mathrm{~s}$
D	Horizontal F-Porch	16	$0.636 \mu \mathrm{~s}$
E	Horizontal Total	800	$31.778 \mu \mathrm{~s}$

(c) VGA-350 Mode (Hsync $=$ Positive Polarization)

Item	Description	Clock Cycles	Time
A	Horizontal Width	96	$3.813 \mu \mathrm{~s}$
B	Horizontal B-Porch	48	$1.907 \mu \mathrm{~s}$
C	Horizontal Display	640	$25.422 \mu \mathrm{~s}$
D	Horizontal F-Porch	16	$0.636 \mu \mathrm{~s}$
E	Horizontal Total	800	$31.778 \mu \mathrm{~s}$

PD064VT5
(5) Detail of Vertical Timing :

(a) VGA-480 Mode (Vsync $=$ Positive $/$ Negative Polarization)

Item	Description	Horizontal Lines	Time
A	Vertical Width	2	$63.5 \mu \mathrm{~s}$
B	Vertical B-Porch	33	1.049 ms
C	Vertical Display	480	15.253 ms
D	Vertical F-Porch	10	$317.8 \mu \mathrm{~s}$
E	Vertical Total	525	16.683 ms

(b) VGA-400 Mode (Vsync $=$ Positive Polarization)

Item	Description	Horizontal Lines	Time
A	Vertical Width	2	$63.5 \mu \mathrm{~s}$
B	Vertical B-Porch	35	1.112 ms
C	Vertical Display	400	12.711 ms
D	Vertical F-Porch	12	$381.0 \mu \mathrm{~s}$
E	Vertical Total	449	14.268 ms

(c) VGA-350 Mode $($ Vsync $=$ Negative Polarization $)$

Item	Description	Horizontal Lines	Time
A	Vertical Width	2	$63.5 \mu \mathrm{~s}$
B	Vertical B-Porch	60	1.907 ms
C	Vertical Display	350	11.122 ms
D	Vertical F-Porch	37	$1.176 \mu \mathrm{~s}$
E	Vertical Total	449	14.268 ms

PD064VT5
7-6) Vertical Display Position

Mode	Hsync	Vsync	V-Start Position	V-Display	Remark
VGA-480	Positive / Negative	Positive / Negative	34	480 lines	
VGA-400	Negative	Positive	17	400 lines	Note 7-8
VGA-350	Positive	Negative	30	350 lines	Note 7-9

Note 7-8 : As the format is VGA-400 (Hsync $=$ Negative, Vsync $=$ Positive $),$ LCD module will adjust the display area to the center of display. At this time, both of the upper and lower display areas have 40 blanking lines (the display color is black). The actual display area is center 400 lines.

Note 7-9 : As the format is VGA-350 (Hsync $=$ Positive, Vsync $=$ Negative) , LCD module will adjust the display area to the center of display. At this time, both of the upper and lower display areas have 65 blanking lines (the display color is black). The actual display area is center 350 lines .

[^0]7-7) Display Color and Gray Scale Reference

PD064VT5
7-8) Control Board Dip Switch Format
SW1

Item	Symbol	Condition	Remark
SW 1-1	-	No connection	Default (OFF)
SW 1-2	HP3	Horizontal Shift (8 Line)	Default (ON)
SW 1-3	HP2	Horizontal Shift (4 Line)	Default (OFF)
SW 1-4	HP1	Horizontal Shift (2 Line)	Default (OFF)
SW 1-5	HP0	Horizontal Shift (1 Line)	Default (ON)
SW 1-6	VP2	Vertical Shift (4 Line)	Default (OFF)
SW 1-7	VP1	Vertical Shift (2 Line)	Default (ON)
SW 1-8	VP0	Vertical Shift (1Line)	Default (ON)

1. The default state is base on SYNC. mode (VGA-480)
2. Total horizontal shift line are 15 lines (HP0~HP3 on)

Total vertical shift line are 7 lines (VP0~VP2 on)
SW2

Item	Symbol	Condition	Remark
SW 2-1	UD	Vertical Image Shift-direction Select	Default (ON)
SW 2-2	RL	Horizontal Image Shift-direction Select	Default (ON)

© PRIME VIEW

PD064VT5
8. Power On Sequence

1. The supply voltage for input signals should be same as V_{cc}.
2. When the power is off, please keep whole signals (Hsync, Vsync, CLK, Data) low level or high impedance

PD064VT5
9. Optical Characteristics

9-1) Specification :
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
Viewing Angle	Horizontal	Ө21, $\theta 22$	CR >10	± 45	± 50	-	deg	Note 9-1
	Vertical	$\theta 12$		10	15	-	deg	
		$\theta 11$		30	35	-	deg	
Contrast Ratio		CR	At optimized Viewing angle	200	400	-	-	Note 9-2
Response time	Rise	Tr	$\theta=0^{\circ}$	-	15	30	ms	Note 9-4
	Fall	Tf		-	25	50	ms	
Brightness			$\theta=0^{\circ}$	350	400	-	$\mathrm{cd} / \mathrm{m}^{2}$	Note 9-3
Transmission Ratio		T	$\theta=0^{\circ}$	6.7	7.2	-	\%	
Uniformity		U		75	80	-	\%	Note 9-5
Cross Talk			$\theta=0^{\circ}$	-	-	3	\%	Note 9-6
White Chromaticity		x	$\theta=0^{\circ}$	0.264	0.294	0.324	-	Note 9-3
		y		0.278	0.308	0.338	-	
Lamp Life Time				-	20,000	-	hr	

Note 9-1 : The definitions of viewing angle diagrams :

Note 9-2:CR $=\frac{\text { Luminance when LCD is White }}{\text { Luminance when LCD is Black }}$
Contrast Ratio is measured in optimum common electrode voltage.
Note 9-3: 1. Topcon BM-7 (fast) luminance meter 2° field of view is used in the testing (after 20~30 minutes operation).
2. Lamp current : 6 mA
3.Inverter model : TDK-347.

Note 9-4 : The definitions of response time

Note 9-5: The uniformity of LCD is defined as
$\mathrm{U}=\frac{\text { The Minimum Brightness of the } 9 \text { testing Points }}{\text { The Maximum Brightness of the } 9 \text { testing Points }}$
Luminance meter : BM-5A or BM-7 fast (TOPCON)
Measurement distance : $500 \mathrm{~mm}+/-50 \mathrm{~mm}$
Ambient illumination : <1 Lux
Measuring direction : Perpendicular to the surface of module

The test pattern is white (Gray Level 63).

Note 9-6: Cross Talk (CTK) $=\frac{|\mathrm{YA}-\mathrm{YB}|}{\text { YA }} \times 100 \%$

YA: Brightness of Pattern A
YB: Brightness of Pattern B Pattern A
(Gray Level 31)

Pattern B
(Gray Level 31, central black box exclusive)

(Gray Level 0)

10. Handling Cautions

10-1) Mounting of module
a) Please power off the module when you connect the input/output connector.
b) Please connect the ground pattern of the inverter circuit surely. If the connection is not perfect, some following problems may happen possibly.
1.The noise from the backlight unit will increase.
2.The output from inverter circuit will be unstable.
3.In some cases a part of module will heat.
c) Polarizer which is made of soft material and susceptible to flaw must be handled carefully.
d) Protective film (Laminator) is applied on surface to protect it against scratches and dirts. It is recommended to peel off the laminator before use and taking care of static electricity.
10-2) Precautions in mounting
a) When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth.
b) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots.
c) TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
d) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling.
10-3) Adjusting module
a) Adjusting volumes on the rear face of the module have been set optimally before shipment.
b) Therefore, do not change any adjusted values. If adjusted values are changed, the specifications described may not be satisfied.
10-4) Others
a) Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours.
b) Store the module at a room temperature place.
c) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around.
d) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel. Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet. Wash it out immediately with soap.
e) Observe all other precautionary requirements in handling general electronic components.
f) Please adjust the voltage of common electrode as material of attachment by 1 module.

PD064VT5

11. Reliability Test

No	Test Item	Test Condition
1	Low Temperature Storage Test	$\mathrm{Ta}=-30{ }^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
2	High Temperature Operation Test	$\mathrm{Ta}=+70{ }^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
3	Low Temperature Operation Test	$\mathrm{Ta}=-20{ }^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
4	High Temperature \& High Humidity Operation Test	$\mathrm{Ta}=+60{ }^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, 240 \mathrm{hrs}$
5	Thermal Cycling Test (non-operating)	$\begin{aligned} & -25^{\circ} \mathrm{C} \rightarrow+70^{\circ} \mathrm{C}, 200 \text { Cycles } \\ & 30 \mathrm{~min} \quad 30 \mathrm{~min} \end{aligned}$
6	Vibration Test (non-operating)	Frequency : $10 \sim 57 \mathrm{H}_{\mathrm{Z}} /$ Vibration Width : 0.075 mm $58-500 \mathrm{H} /$ / Gravity : $9.8 \mathrm{~m} / \mathrm{s}$ Sweep time: 11 minutes Test period: 3 hrs for each direction of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
7	Shock Test (non-operating)	Gravity : 490m/s Direction: $\pm \mathrm{X}, \pm \mathrm{Y}, \pm \mathrm{Z}$ Pulse Width : 11 ms , half sine wave
8	Electrostatic Discharge Test (non-operating)	$150 \mathrm{pF}, 330 \Omega_{2}$ Air: $\pm 15 \mathrm{KV} ;$ Contact : $\pm 8 \mathrm{KV}$ 10 times/point, 9 points/panel face

Ta: ambient temperature

[Judgement Criteria]

Under the display quality test conditions with normal operation state , there should be no change which may affect practical display function.
12. Indication of Lot Number Label
a) Indicated contents of the label

Contents of lot number : 1st ~ 3 rd-The OEM product
5th—Production year : $1999 \Rightarrow 9,2000 \Rightarrow A, 2001 \Rightarrow B \ldots \ldots$.
6th-Production month : 1, 2, 3,....9, A, B, C
7th \sim 8th—Production size : $6.4 " \Rightarrow 64$
9th~10th—Serial numbers : 01~99

PD064VT5
13. Block Diagram

PD064VT5
Revision History

Rev.	Issued \quad Date	Revised Contents	
1.0	May 12, 2004	NEW	

[^0]: The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd. Page:12

