Version : 1.1 # **TECHNICAL SPECIFICATION** MODEL NO.: PD104SL6 | Customer's Confirmation | | | |-------------------------|---|---------------------| | Customer Name | | | | Date | _ | | | Ву | _ | | | | | ☐PVI's Confirmation | | | | Confirmed By | | | | | | | | | Date: May.03, 2002 This technical specification is subject to change without notice. Please contact with PVI for more detail information about this specification sheet. # TECHNICAL SPECIFICATION # **CONTENTS** | NO. | ITEM | PAGE | |-----|--------------------------------------|-------------| | - | Cover | 1 | | - | Contents | 2 | | 1 | Application | 3 | | 2 | Features | 3 | | 3 | Mechanical Specifications | 3 | | 4 | Mechanical Drawing of TFT-LCD module | 4 | | 5 | Input / Output Terminals | 5 | | 6 | Absolute Maximum Ratings | 7 | | 7 | Electrical Characteristics | 7 | | 8 | Power On Sequence | 13 | | 9 | Optical Characteristics | 14 | | 10 | Handling Cautions | 17 | | 11 | Reliability Test | 18 | | 12 | Block Diagram | 19 | | 13 | Packing | 20 | | - | Revision History | 21 | #### 1.) Application This data sheet applies to a color TFT LCD module, PD104SL6. PD104SL6 module applies to notebook PC, sub-note-book PC and other OA product, which require high quality flat panel display. This module is not designed for aerospace, avionics, medical, F/A, transportation, car or any other products, which require extreme level of reliability. Prime View assume no responsibility for any damage resulting from the use of the device which dose not comply with the instructions and the precautions in these specification sheet. #### 2. Features - . Amorphous silicon TFT LCD panel with back-light unit - . Pixel in stripe configuration - . Slim and compact, designed for O/A application - . Display Colors : 262,144 colors - . Optimum Viewing Direction: 12 o'clock - . 3.3V LVDS interface standard: DS90CF364 as receiver - . +3.3V DC supply voltage for TFT LCD panel driving - . Backlight driving DC/AC inverter not included in this module - . Wide Viewing Angle #### 3. Mechanical Specifications | Parameter | Specifications | Unit | |---------------------|------------------------------------|------| | Screen Size | 26.4(diagonal) | cm | | | 10.4 (diagonal) | inch | | Display Format | 800× (R, G, B)× 600 | dot | | Display Colors | 262,144 | | | Active Area | 211.2(H)× 158.4 (V) | mm | | Pixel Pitch | 0.264 (H)× 0.264 (V) | mm | | Pixel Configuration | Stripe | | | Outline Dimension | 238.6 (w)× 171.0(H)× 6.0(typ.) (D) | mm | | Weight | 310(typ.),320(max.) | g | | Back-light | Single CCFL, side-light type | | | Surface treatment | Anti-glare and hard-coating | | | Display mode | Normally white | | # 5.Input Terminals # 5-1) TFT-LCD Panel Driving Connector type: Molex 55177-1491 | Pin No. | Symbol | Function | Remark | |---------|--------|---|--------| | 1 | VDD | Power supply: +3.3V | | | 2 | VDD | Power supply: +3.3V | | | 3 | GND | | | | 4 | GND | | | | 5 | INO- | Pixel data Transmission pair 0 (negative -) | | | 6 | IN0+ | Pixel data Transmission pair 0 (positive +) | | | 7 | IN1- | Pixel data Transmission pair 1 (negative -) | | | 8 | IN1+ | Pixel data Transmission pair 1 (positive +) | | | 9 | IN2- | Pixel data Transmission pair 2 (negative -) | | | 10 | IN2+ | Pixel data Transmission pair 2 (positive +) | | | 11 | CLK- | Sampling Clock (negative -) | | | 12 | CLK+ | Sampling Clock (positive +) | | | 13 | GND | | | | 14 | GND | | | Recommended Transmitter (DS90C*363 of National Semiconductor) to PD104SL6 interface Assignment: | Input terminal of DS 90C*363 | | | Graphic controller output signal | Output signal symbol | To PD104SL6
interface
terminal(Symbol) | |------------------------------|-----|--------|----------------------------------|------------------------|--| | Symbol | No. | Symbol | Function | | | | TIN0 | 44 | R0 | Red pixel data (LSB) | 7 | | | TIN1 | 45 | R1 | Red pixel data | | | | TIN2 | 47 | R2 | Red pixel data | Tout0- | — No.5 : IN0- | | TIN3 | 48 | R3 | Red pixel data | > | | | TIN4 | 1 | R4 | Red pixel data | Tout0+ | ─No.6 : IN0+ | | TIN5 | 3 | R5 | Red pixel data(MSB) | | | | TIN6 | 4 | G | Green pixel data (LSB) | 7 | | | TIN7 | 6 | G1 | Green pixel data | 7 | | | TIN8 | 7 | G2 | Green pixel data | | | | TIN9 | 9 | G3 | Green pixel data | Tout1- — | — No.7 : IN1- | | TIN10 | 10 | G4 | Green pixel data | > | | | TIN11 | 12 | G5 | Green pixel data(MSB) | Tout1+ | ─No.8 : IN1+ | | TIN12 | 13 | В0 | Blue pixel data(LSB) | | | | TIN13 | 15 | B1 | Blue pixel data | / | | | TIN14 | 16 | B2 | Blue pixel data | 7 | | | TIN15 | 18 | В3 | Blue pixel data | | | | TIN16 | 19 | B4 | Blue pixel data | Tout2- — | — No.9 : IN2- | | TIN17 | 20 | B5 | Blue pixel data(MSB) | > | | | TIN18 | 22 | NC | No connection | Tout2+ — | ─N0.10 : IN2+ | | TIN19 | 23 | NC | No connection | | | | TIN20 | 25 | ENAB | Compound Synchronization signal | 7 | | | CLK in | 26 | NCLK | Data sampling clock | TCLK out-
TCLK out+ | No.11 : CLK IN-
No.12 : CLK IN+ | #### Data stream of IN0-/+, IN1-/+ and IN2-/+ for PD104SL6 #### LVDS Interface Block Diagram ### 5-2) Backlight driving Connector type: "BHR-02VS-1" of Japan Solderless Terminal MFG Co. LTD | PIN NO. | Symbol | Description | Remark | |---------|--------|---------------------|--------| | 1 | VL1 | Input Voltage(High) | | | 2 | VL2 | Input Voltage(Low) | | # 6. Absolute Maximum Ratings: GND=0V, Ta=25°C | Parameters | Symbol | MIN. | MAX. | Unit | Remark | |-----------------------------|-----------------|------|---------|-------------------------|----------| | Supply Voltage | VDD | -0.3 | +4.0 | V | | | Input Signals Voltage | V_{IN} | -0.3 | VDD+0.3 | V | Note 6-1 | | Backlight Driving Voltage | V_L | ı | 2000 | V | | | Backlight Driving Frequency | F_L | 0 | 100 | KHz | | | Storage Temperature | T _{ST} | -20 | +70 | $^{\circ}\! \mathbb{C}$ | | | Operating Temperature | T _{OP} | 0 | +60 | $^{\circ}\! \mathbb{C}$ | | Note 6-1: LVDS signal #### 7. Electrical Characteristics 7-1) Recommended Operating Conditions: GND = 0V, Ta = $25^{\circ}C$ | 1-1) Necommended Operating Condition | 110. | | | | CIVD C | 7V | |---|-----------------|------|------|------|--------|------------| | Item | Symbol | Min. | Тур. | Max. | Unit | Remark | | Supply Voltage | VDD | 3.0 | 3.3 | 3.6 | V | | | Current Dissipation | I _{DD} | - | 350 | 450 | mA | Note 7-1 | | LVDS Differential input high threshold | VTH | - | - | 100 | mV | Note 7-2 | | LVDS Differential input low threshold | VTL | -100 | - | - | | | | Lamp Current | I _{FL} | 3.0 | 7.0 | - | mA | | | | | | | | | Note 7-3 | | | | | | | | Note 7-5 | | Lamp Voltage | V_L | 500 | 550 | 600 | Vrms | Note 7-3 | | Lamp Initial Voltage | V_{SFL} | ı | 1200 | - | Vrms | at Ta=25°C | | | | 1000 | | | | at Ta=0°C | | Lamp Driving Frequency | F_L | - | 45 | - | KHz | | | Total power consumption (at I _{FL} =7mA) | | - | 5.01 | - | W | Note 7-4 | | | | | | | | | Note 7-1: To test the current dissipation of VDD, using the "color bars" testing pattern shown as below | | | 0 00.0 | | | | | | |---|---|--------|---|---|---|---|---| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Idd current dissipation testing pattern - 1. White - 2. Yellow 3. Cyan 4. Green 5. Magenta 6. Red - 7. Blue - 8. Black Note 7-2 : Please refers to DS90CF364 specification by National Semiconductor Corporation. This LCD module conforms to LVDS standard. Note 7-3: The back-light driving waveform should be as closed to sine-wave as possible. In order to satisfy the quality of B/L, no matter use what kind of inverter, the output lamp current must between Min. and Max. to avoid the abnormal display image caused by B/L. Note 7-4: Not including the efficiency of backlight DC/AC inverter Note 7-5: Lamp current is measured with current meter for high frequency as shown below Lamp current dissipation testing configuration 7-2) Input / Output signal timing chart (A) Vertical Timing Duty (a,b): $50 \pm 10\%$ D) Timing Specifications | Item | Symbol | Min. | Тур. | Max. | Unit | Remark | |---------------------------|--------|----------|-----------|-----------|---------|--------| | Frame Cycling | t1 | 604 X t3 | 628X t3 | 660 X t3 | - | | | | | - | 16.58 | 17.86 | ms | | | Vertical Display Period | t2 | 600 X t3 | 600 X t3 | 600 X t3 | - | | | Horizontal Scanning Time | t3 | 844 X t5 | 1056 X t5 | 1064 X t5 | - | | | | | 26.3 | 26.4 | - | μ s | | | Horizontal Display Period | t4 | - | 800 X t5 | - | - | | | Clock Cycle | t5 | 24.0 | 25.0 | - | ns | | | Clock High Level Time | t6 | 9.0 | - | - | ns | | | Clock Low Level Time | t7 | 9.0 | - | - | ns | | | Hold time | t8 | 4.0 | - | - | ns | | | Set-up time | t9 | 5.0 | - | | ns | | # 7-3) Display Color and Gray Scale Reference | | | | | | | | | In | put | Co | lor | Da | ta | | | | | | | |--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Color | | | | Re | ed | | | | | Gre | en | | | | | BI | ue | | | | | | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | В4 | B 3 | B2 | B1 | B0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue (63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Colors | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Red (00) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (01) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (02) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Darker | Red | \downarrow | | Brighter | Red (61) | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (62) | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red (63) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (00) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (01) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (02) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Darker | Green | \downarrow | | Brighter | Green (61) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (62) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green (63) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue (00) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue (01) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Blue (02) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | | Darker | Blue | \downarrow ↓ | ↓ | \downarrow | \downarrow | \downarrow | | | Brighter | Blue (61) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | | | Blue (62) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue (63) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | # 7-4) Pixel Arrangement The LCD module pixel arrangement is the stripe. #### 8.)Power On Sequence - 1.) The supply voltage for input signals should be same as $V_{\text{CC.}}$ - 2. When the power is off , please keep whole signals (Hsync, Vsync, CLK, Data) low level or high impedance #### 9.) Optical Characteristics #### 9-1) Specification: Ta = 25°C | Parame | eter | Symbol | Condition | MIN. | TYP. | MAX. | Unit | Remarks | |------------------|----------------|--------------------------|-----------------------------|-------|-------|-------|------------|--------------------------------| | | Horizontal | θ | | ± 55 | ± 60 | - | deg | | | Viewing Angle | Vertical | θ (to 12 o'clock) | CR≥10 | 50 | 55 | ı | deg | Note 9-1 | | | vertical | θ (to 6 o'clock) | | 35 | 40 | ı | deg | | | Contrast Ratio | | CR | Optimum direction | 100 | 180 | - | - Note 9-2 | | | Response time | Rise | Tr | $\theta = 0^{\circ}$ | - | 15 | 30 | ms | Note 9-4 | | Response time | Fall | Tf | φ =0 $^{\circ}$ | - | 25 | 50 | ms | Note 9-4 | | Luminance | | L | θ =0°/ φ =0° | 200 | 220 | - | cd/m² | I _{FL} =7mA, Note 9-3 | | Luminance Unifo | ormity | U | | 55 | 80 | - | % | Note 9-5 | | | | Х | | 0.266 | 0.316 | 0.366 | ı | | | White Chromatic | city | У | | 0.293 | 0.343 | 0.393 | ı | | | | | Тс | | 6400 | 6600 | 6800 | K | | | Lamp Life Time | Lamp Life Time | | | 10000 | - | - | hr | I _{FL} =7mA | | Cross Talk Ratio |) | CTK | | - | - | 3.5 | % | Note 9-6 | All the optical measurement shall be executed 30 minutes after backlight being turn-on. The optical characteristics shall be measured in dark room (ambient illumination on panel surface less than 1 Lux). The measuring configuration shows as following figure. Optical characteristics measuring configuration Note 9-1: The definitions of viewing angles are as follows. Note 9-2 : The definition of contrast ratio $CR = \frac{Luminance at gray level 63}{Luminance at gray level 0}$ Note 9-3: Topcon BM-5A luminance meter 2° field of view is used in the testing (after 30 minutes' operation). The typical luminance value is measured at lamp current 7.0 mA. Note 9-4: Definition of Response Time T_r and T_f: Note 9-5: The uniformity of LCD is defined as U = The Minimum Brightness of the 9 testing Points The Maximum Brightness of the 9 testing Points Luminance meter: BM-5A or BM-7 fast(TOPCON) Measurement distance: 500 mm +/- 50 mm Ambient illumination : < 1 Lux Measuring direction: Perpendicular to the surface of module The test pattern is white (Gray Level 63). Note 9-6: Cross Talk (CTK) = $$\frac{|YA-YB|}{YA} \times 100\%$$ YA: Brightness of Pattern A YB: Brightness of Pattern B Luminance meter: BM 5A (TOPCON) Measurement distance: 500 mm +/- 50 mm Ambient illumination: < 1 Lux Measuring direction: Perpendicular to the surface of module ### 10. Handling Cautions #### 10-1) Mounting of module - 1.) Please power off the module when you connect the input/output connector. - b) Please connect the ground pattern of the inverter circuit surely. If the connection is not perfect, some following problems may happen possibly. - 1.) The noise from the backlight unit will increase. - 2. The output from inverter circuit will be unstable. - 3.In some cases a part of module will heat. - c) Polarizer which is made of soft material and susceptible to flaw must be handled carefully. - d) Protective film (Laminator) is applied on surface to protect it against scratches and dirts. It is recommended to peel off the laminator before use and taking care of static electricity. # 10-2) Precautions in mounting - a) When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth. - b) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots. - c) TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care. - d) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling. #### 10-3) Adjusting module - a) Adjusting volumes on the rear face of the module have been set optimally before shipment. - b) Therefore, do not change any adjusted values. If adjusted values are changed, the specifications described may not be satisfied. ### 10-4) Others - a) Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours - b) Store the module at a room temperature place. - c) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around. - d) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel. Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet. Wash it out immediately with soap. - e) Observe all other precautionary requirements in handling general electronic components. - f) Please adjust the voltage of common electrode as material of attachment by 1 module. # 11. Reliability Test | No | Test Item | Test Condition | Remark | | |----|--|--|--------|--| | 1 | High Temperature Storage Test | Ta = +70°C, 240 hrs | | | | 2 | Low Temperature Storage Test Ta = -20°ℂ, 240 hrs | | | | | 3 | Low Temperature Operation Test | Ta = 0°ℂ, 240 hrs | | | | 4 | High Temperature & High Humidity | Ta = +60℃, 80%RH, 240 hrs | | | | | Operation Test | (No Condensation) | | | | 5 | Thermal Cycling Test | 0°C ←→+25°C ←→+60°C, 50 Cycles | | | | | (non-operating) | 1Hr 0.5Hr 1Hr | | | | 6 | Vibration Test | Frequency: $10 \sim 57 \text{ H}_{Z}$, Amplitude: 0.15 mm $58 \sim 500 \text{Hz}$, 1G Sweep time: 11 min | | | | | (non-operating) | Test Period: 3 hrs (1 hr for each direction of X, | | | | | | Y, Z) | | | | 7 | Shock Test | 80G, 6ms, X,Y, Z | | | | | (non-operating) | 1 times for each direction | | | | 8 | | C=150pF,R=330 Ω | | | | | Electron Static Discharge | Contact=±8KV | | | | | Discharge | Air=±15KV | | | | | | 10 times/terminal | | | Ta: ambient temperature # [Judgement Criteria] Under the display quality test conditions with normal operation state , there should be no change which may affect practical display function. # 12.)Block Diagram #### 13.)Packing # **Revision History** | Rev. | Issued Date | Revised Content | | |------|--------------|--|--| | 1.0 | Dec 05, 2001 | New | | | 1.1 | May 03, 2002 | Change: | | | | | Add page 18 reliability test ESD test item. | | | | | Modify Brightness from 230 to 220Nit. | |