

Version: 1.0

TECHNICAL SPECIFICATION

MODEL NO: PW070XUE

The content of this information is subjec	t to be changed without notice.
Please contact PVI or its agent for further	r information.
Customer's Confirmation	
Customer	
Date	
Ву	
PVI's Confirmation	

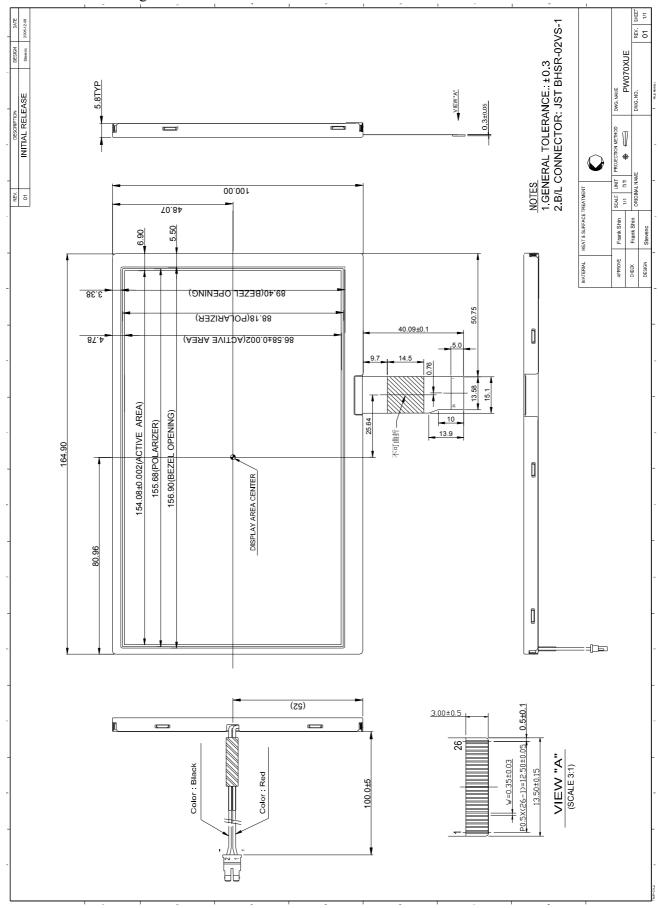
TECHNICAL SPECIFICATION <u>CONTENTS</u>

NO.	ITEM	PAGE
_	Cover	1
-	Contents	2
1	Application	3
2	Features	3
3	Mechanical Specifications	3
4	Mechanical Drawing of TFT-LCD module	4
5	Input / Output Terminals	5
6	Pixel Arrangement	7
7	Absolute Maximum Ratings	8
8	Electrical Characteristics	8
9	Power On Sequence	19
10	Optical Characteristics	19
11	Handling Cautions	23
12	Reliability Test	24
13	Block Diagram	25
14	Packing	26
_	Revision History	27

1. Application

T his technical specification applies to 7.0" color TFT-LCD module, PW070XUE. The applications of the panel are car TV, portable DVD, GPS, multimedia applications and others AV system.

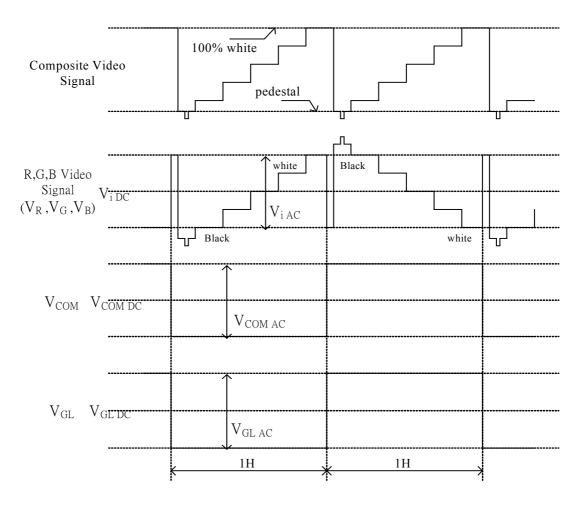
2. Features


- . Amorphous silicon TFT-LCD with LED B/L
- . Pixel in stripe configuration
- . Slim and compact
- . High Brightness
- . Image Reversion: Up/Down and Left/Right
- . Support multi display mode (If you use this mode, you must use PVI-1004D's timing controller (mode by PVI))

3. Mechanical Specifications

Parameter	Specifications	Unit
Screen Size	7.0 (16:9 diagonal)	Inch
Display Format	480 (H) ×(RGB) ×234(V)	dot
Active Area	154.08 (H)×86.58 (V)	mm
Pixel Pitch	0.321(H)×0.370 (V)	mm
Pixel Configuration	Stripe	
Outline Dimension	164.9 (W)×100.0 (H)×5.8(D) (typ.)	mm
Weight	150±15	g
Surface Treatment	Anti-Glare & Wide View	
Back-light	27-LED	
Display mode	Normally White	
Gray scale inversion direction	6 o'clock [ref to Page 19 viewing angle]	

4. Mechanical Drawing of TFT-LCD Module


5.Input / Output Terminals

LCD Module Connector FPC Down Connect, 26 Pins, Pitch: 0.5 mm

Pin No	Symbol	I/O	Description	Remark
1	GND	-	Ground for logic circuit	
2	V _{CC1}	I	Supply voltage of logic control circuit for scan driver	Note 5-4
3	V_{GL}	I	Negative power for scan driver	27 . 5 2
4	V_{GH}	I	Positive power for scan driver	Note 5-3
5	STVD	I/O	Vertical start pulse	N
6	STVU	I/O	Vertical start pulse	Note 5-6
7	CKV	I	Shift clock for scan driver	
8	U/D	I	Up / Down scan control input	Note 5-6
9	OEV	I	Output enable control for scan driver	
10	V_{COM}	I	Common electrode driving signal	Note 5-1
11	V_{COM}	I	Common electrode driving signal	Note 3-1
12	L/R	I	Left / Right scan control input	Note 5-6
13	MOD	I	Sequential sampling and simultaneous sampling setting	Note 5-2
14	OEH	I	Output enable control for data driver	
15	STHL	I/O	Start pulse for horizontal scan line	N
16	STHR	I/O	Start pulse for horizontal scan line	Note 5-6
17	CPH3	I	Sampling and shifting clock for data driver	
18	CPH2	I	Sampling and shifting clock for data driver	
19	CPH1	I	Sampling and shifting clock for data driver	
20	V_{CC2}	I	Supply voltage of logic control circuit for data driver	Note 5-4
21	GND	-	Ground for logic circuit	
22	VR	I	Alternated video signal (Red)	
23	VG	I	Alternated video signal (Green)	Note 5-1
24	VB	I	Alternated video signal (Blue)	
25	AV_{DD}	I	Supply voltage for analog circuit	Note 5-5
26	AV_{SS}	-	Ground for analog circuit	

Note5-1: $V_{COM}(Typ.) = 6.0 V_{PP}$.

Phase of the video signal input and V_{COM} The relation between these values could refer to 8-1 Operating condition

Liquid crystal transmission of the video signal input, V_{COM} and timing

	V	СОМ
	H Level	L Level
Video Signal Input Maximum	Black	White
Video Signal Input Minimum	White	Black

White: maximum transmission / Black: minimum transmission

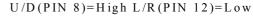
Note 5-2: MOD=H: Simultaneous sampling MOD=L: Sequential sampling

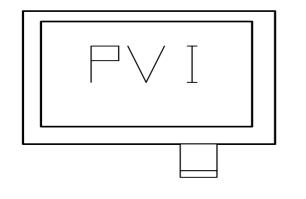
Please set CPH2 and CPH3 to GND when MOD=H

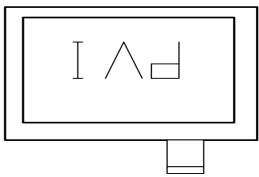
Note 5-3: $V_{GH}(Typ.) = +15V$, $V_{GL}(Typ.) = -12V$

Note 5-4: V_{CC2} (Typ.)=+3.3V, V_{CC1} (Typ.)=+3.3V

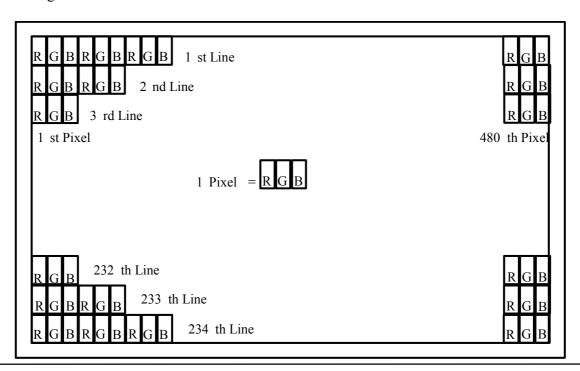
Note 5-5 : $AV_{DD}(Typ.) = +5V$


Note 5-6: STHL, STHR and L/R mode


L/R	STHL	STHR	Remark	
High(V _{CC1})	High(V _{CC1}) Input		Left to Right	
Low(0 Volt.)	Output	Input	Right to Left	


STVD,STVU and U/D mode

U/D	STVD	STVU	Remark	
$High(V_{CC2})$	High(V _{CC2}) Input		Down to Up	
Low(0 Volt.)	Low(0 Volt.) Output		Up to Down	


U/D(PIN 8)=Low L/R(PIN 12)=High

6. Pixel Arrangement

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.

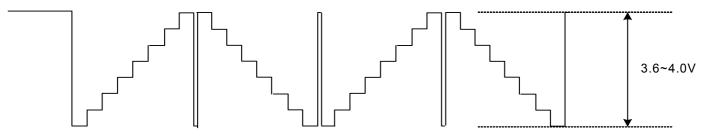
PAGE:7

7. Absolute Maximum Ratings

The followings are maximum values, which if exceeded, may cause faulty operation or damage to the unit.

$$GND = 0V , Ta = 25^{\circ}C$$

Parameter		Symbol	MIN.	MAX.	Unit	Remark
Supply Voltage For Source Driver	AV_{DD}	-0.3	+7.0	V		
Supply Voltage For Source Driver		V_{CC2}	-0.3	+7.0	V	
		V_{CC1}	-0.3	+6.0	V	
Supply Voltage For Gate Driver	H Level	$V_{ m GH}$	-0.3	+40	V	
Supply Voltage For Gate Driver	L Level	V_{GL}	-20	+0.3	V	
		$V_{\rm GH}$ - $V_{\rm GL}$	-0.3	+40.0	V	


8. Electrical Characteristics

8-1) Operating Condition

Parameter		Symbol	MIN.	Тур.	MAX.	Unit	Remark
	Analog	AV_{DD}	+4.8	+5.0	+5.2	V	
Supply Voltage for Source Driver	Logic	17	+3.0	+3.3	+3.6	V	Depend on T/C
	Logic	V_{CC2}	+4.5	+5.0	+5.5	V	signal voltage
	H level	V_{GH}	+14.3	+15	+15.7	V	
	L level	$V_{\text{GL DC}}$	-12.5	-12	-11.5	V	DC component of V_{GL}
Supply Voltage for Gate Driver	Lievei	$V_{\text{GL AC}}$	-	+6.0	-	V_{p-p}	AC component of V_{GL}
	Logic	V _{CC1}	+3.0	+3.3	+3.6	V	Depend on T/C
			+4.5	+5.0	+5.5	V	signal voltage
Viedo signal amplitude	V	iAC	-	+3.6	+4.0	V	Note 8-2
(VR,VG,VB)	V	iDC	-	+2.5	-	V	
Digital input valtage	H level	V_{IH}	0.7VCC	-	VCC	V	
Digital input voltage	L level	$V_{ m IL}$	0	-	0.3 VCC	V	
D: '. 1 1.	H level	V_{OH}	VCC-0.4	-	VCC	V	
Digital output voltage	L level	V_{OL}	0	-	0.4	V	
V _{COM} voltage		V _{COM AC}	-	+6.0	-	V _{p-p}	AC component of V_{COM}
		V _{COM DC}	-	1.5	-	V	DC component of V _{COM} Note8-1

Note 8-1 : PVI strongly suggests that the $V_{\text{COM DC}}$ level shall be adjustable , and the adjustable level range is $1.5V\pm1V$, every module's $V_{\text{COM DC}}$ level shall be carefully adjusted to show a best image performance.

Note 8-2: Both NTSC and PAL system Video Signal input waveform is based on 8 steps gray scale.

8-2)Current Consumption (GND=0V)

$$Ta = 25^{\circ}C$$

Parameter	Symbol	Conditions	TYP.	MAX	Unit	Remark
	I_{GH}	$V_{GH} = +15V$	76.8	96.0	μΑ	
	I_{GL}	$V_{GL} = -12V$	92.4	115.5	μΑ	
Current for driver	AI_{DD}	$AV_{DD} = +5V$	5.0	8.0	mA	
	I_{CC2}	$V_{CC2} = +3.3V$	1.2	3.6	mA	
	I_{CC1}	$V_{CC1} = +3.3V$	1.2	1.5	μΑ	

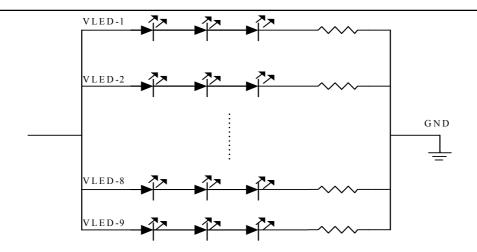
8-3) Backlight driving

Connector type: JST BHSR-02VS-1

Pin No	Symbol	Description	Remark
1	+	Input terminal (Positive electrode side)	Wire color : Red
2	-	Input terminal (Ground side)	Wire Color : Black

8-4) Recommended driving condition for LED back light

$$GND = 0 V$$
, $Ta = 25^{\circ}C$


					01,2	· · · · - ·
Parameter	Symbol	Min	TYP	MAX	Unit	Remark
Supply voltage of LED backlight	$ m V_{LED}$	ı	11.0	11.5	V	$I_L = 20 \text{ mA}$
Supply current of LED backlight	$I_{ m LED}$	-	20	-	mA	Note 7-1
Backlight Power Consumption	P _{LED}	-	1.98	2.07	W	Note 7-2

Note 7-1: The LED driving condition is defined for each LED module. (3 LED Serial)

Note 7-2 : $P_{\text{LED}} = V_{\text{LED-1}} * I_{\text{LED-1}} + V_{\text{LED-2}} * I_{\text{LED-2}} + V_{\text{LED-9}} * I_{\text{LED-9}} * I_{\text{LED-9$

Power Consumption

Ta= 25 °C

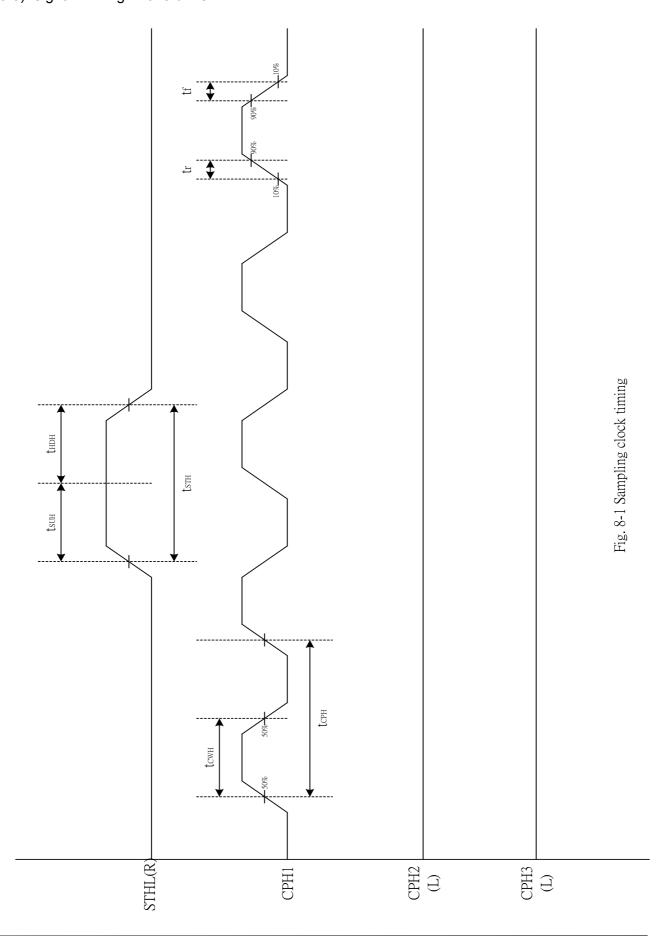
Parameter	Symbol	Conditions	TYP.	Unit	Remark
LCD Panel Power Consumption	-	-	31.22	mW	Note 8-7
LED Backlight Power Consumption	-	-	1.98	W	
Total Power Consumption	-	-	2.02	W	

Note 8-7: The power consumption for backlight is not included.

8-4) Input / Output Connector

A) Backlight Connector JST BHSR-02VS-1,

Pin No.: 2, Pitch: 4 mm



8-4) Timing Characteristics Of Input Signals

6-4) Timing Characteristics Of Inpu						Remark
Characteristics	Symbol	Min.	Тур.	Max.	Unit	IXCIIIAIK
Rising time	t _r	-	-	10	ns	
Falling time	t_f	-	-	10	ns	
High and low level pulse width	t _{CPH}	9.2	9.6	10.0	MHz	CPH1~CPH3
CPH pulse duty	t _{CWH}	30	50	70	%	CPH1~CPH3
STH setup time	t _{SUH}	20	-	-	ns	STHR,STHL
STH hold time	t _{HDH}	20	ı	-	ns	STHR,STHL
STH pulse width	t _{STH}	ı	1	-	t _{CPH}	STHR,STHL
STH period	t _H	61.5	63.5	65.5	μs	STHR,STHL
OEH pulse width	t _{OEH}	-	1.40	-	μs	OEH
Sample and hold disable time	t _{DIS1}	-	7.43	-	μs	
OEV pulse width	t _{OEV}	-	18	-	μs	OEV
CKV pulse width	t _{CKV}	-	31.75	-	μs	CKV
Clean enable time	t _{DIS2}	-	9.0	-	μ s	
Horizontal display timing range	t_DH	ı	480	-	t _{CPH}	
STV setup time	t _{SUV}	400	-	-	ns	STVU,STVD
STV hold time	t_{HDV}	400	-	-	ns	STVU,STVD
STV pulse width	t _{STV}	-	-	1	t _H	STVU,STVD
Horizontal lines per field	t _V	256	262	268	t _H	
Vertical display start	t _{sv}	-	3	-	t _H	
Vertical display timing range	t_{DV}	-	234	-	t _H	
VCOM rising time	t_{rCOM}	-	-	5	μ s	
VCOM falling time	t_{fCOM}	1	-	5	μs	
VCOM delay time	t _{DCOM}	-	-	3	μs	
RGB delay time	t _{DRGB}	-	-	1	μs	

8-5) Signal Timing Waveforms

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.

PAGE:12

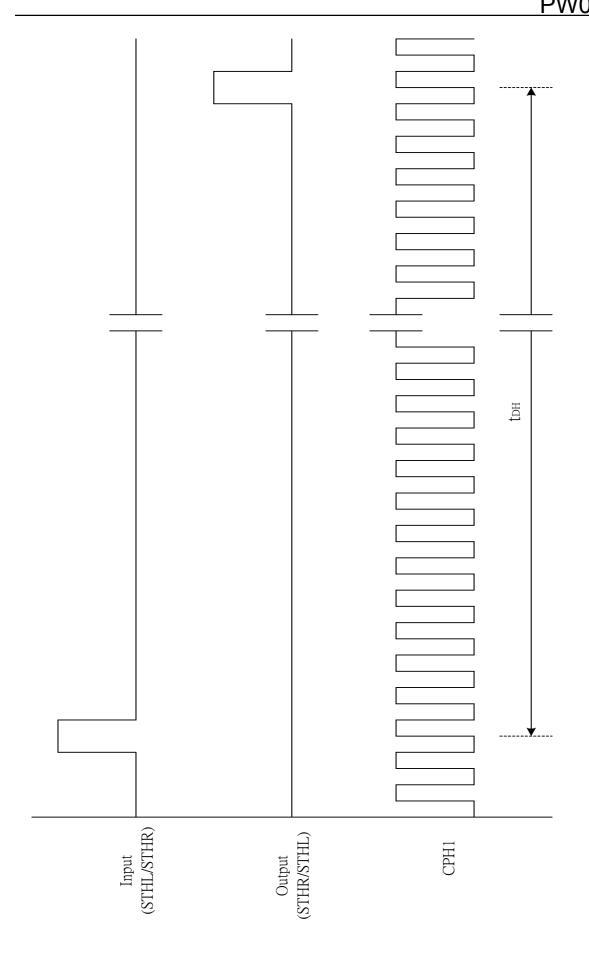


Fig. 8-2 Horizontal display timing range

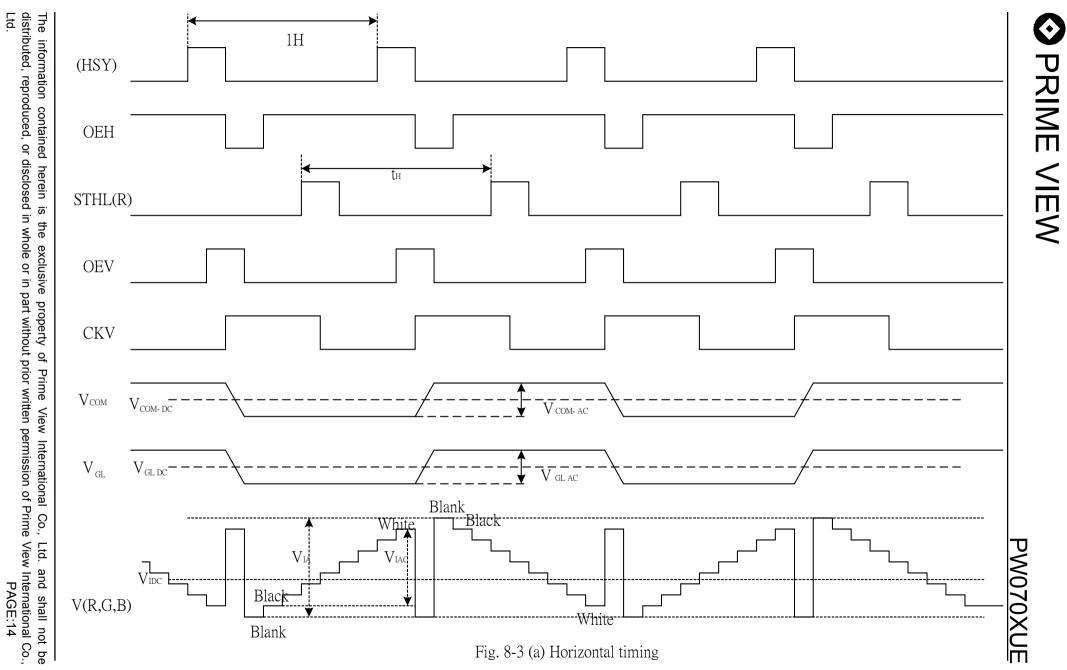
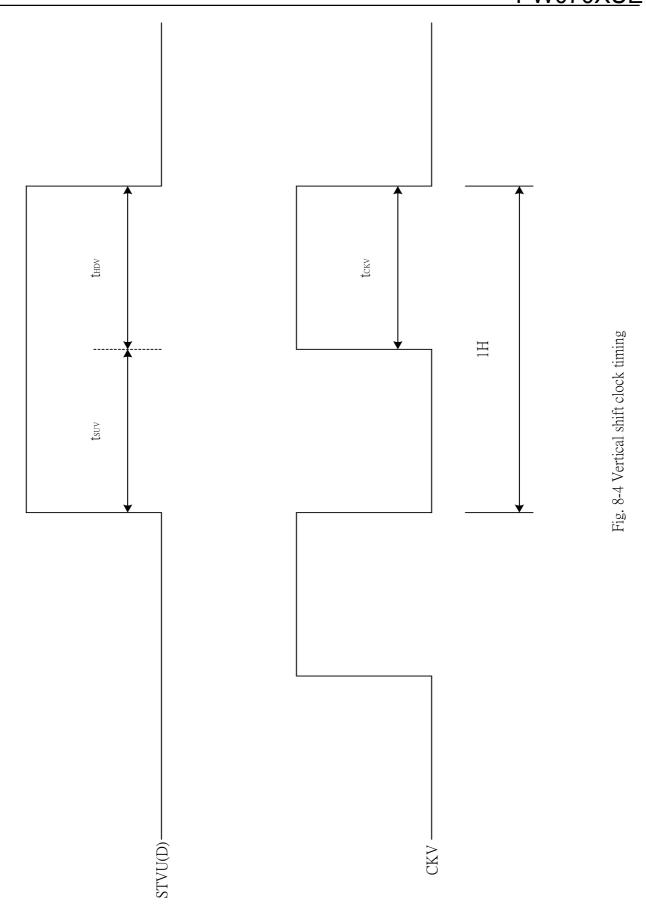
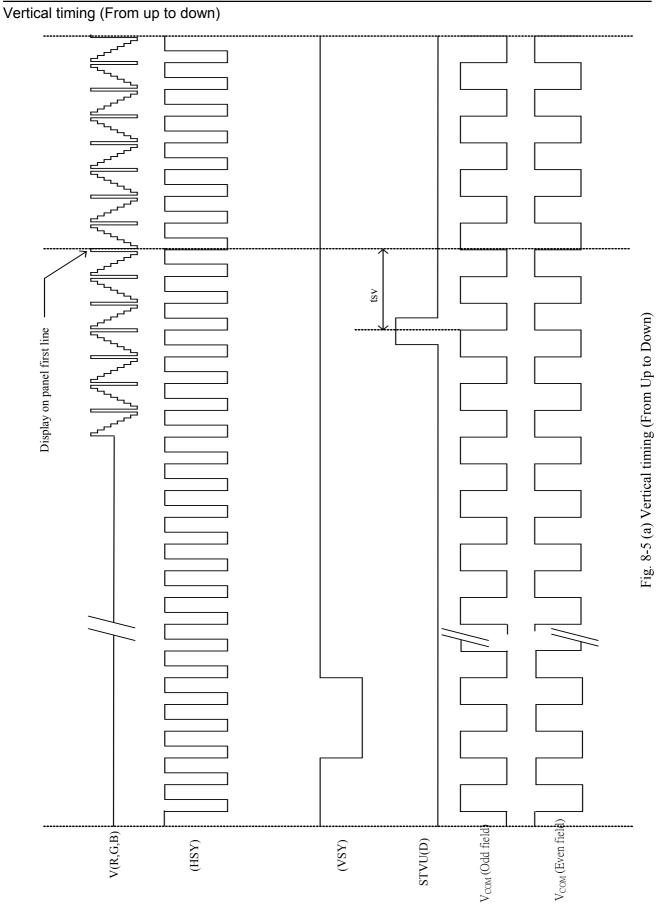
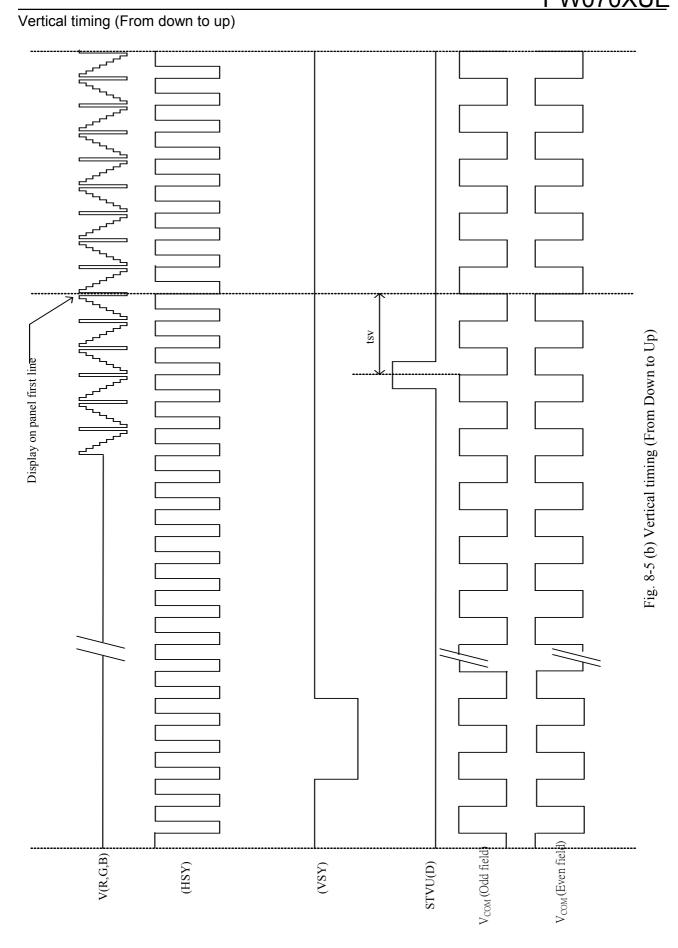
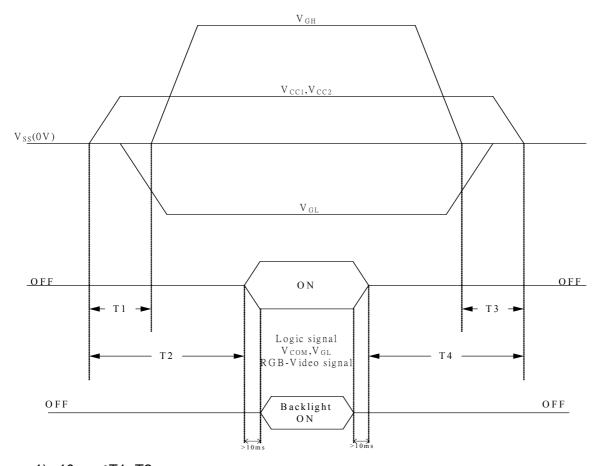




Fig. 8-3 (b) Detail horizontal timing


The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.

PAGE:15



9. Power on Sequence

The Power on Sequence only effect by $V_{\text{CC1}},\,V_{\text{CC2}},V_{\text{SS}}$ and V_{GH} , the others do not care.

- 1) 10ms≦T1<T2
- 2) 0ms<T3≦T4≦10ms

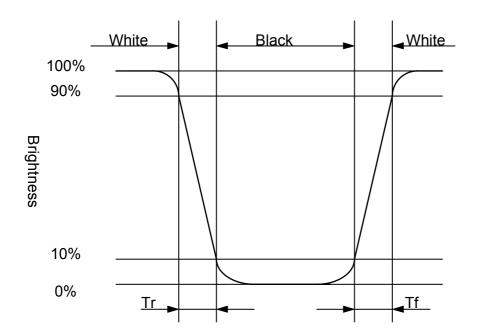
10. Optical Characteristics

10-1) Specification

Ta = 25[°]C

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
Viewing Angle	Horizontal	θ 21, θ 22	CR≧10	55	60	-	deg	Note 10-1
	Vertical	heta 12		30	35	-	deg	
		θ 11		45	50	-	deg	
Contrast Ratio		CR	At optimized Viewing angle	200	350	-	-	Note 10-2
Response time	Rise	Tr	$\theta = 0^{\circ}$	1	10	50	ms	Note 10-4
response time	Fall	Tf	0 =0	ı	20	60	ms	11016 10-4
Brightness		L	Center point	350	400	-	cd/m²	Note 10-3
Uniformity		U	-	70	75	-	%	Note 10-5
White		Х	<i>θ</i> =0°	0.28	0.31	0.34	-	Note 10-3
Chromaticity		у	0 =0	0.31	0.34	0.37	-	11016 10-3
LED Life Time			+25 ℃	20000	30000	-	hr	Note 10-6

Note 10-1: The definitions of viewing angles



Note 10-2 : CR = Luminance when Testing point is White Luminance when Testing point is Black (Testing configuration see 10-2)

Contrast Ratio is measured in optimum common electrode voltage.

Note 10-3: Topcon BM-7(fast) luminance meter 1° field of view is used in the testing (after 10 minutes operation).

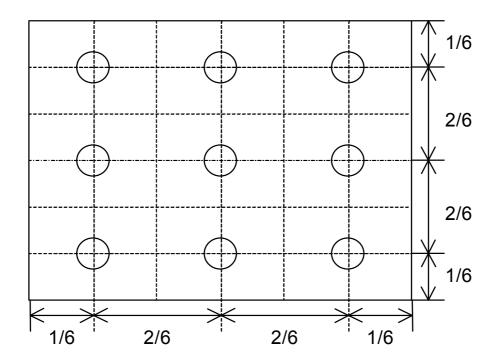
Note 10-4: The definition of response time:

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.

PAGE:20

Note 10-5: The uniformity of LCD is defined as

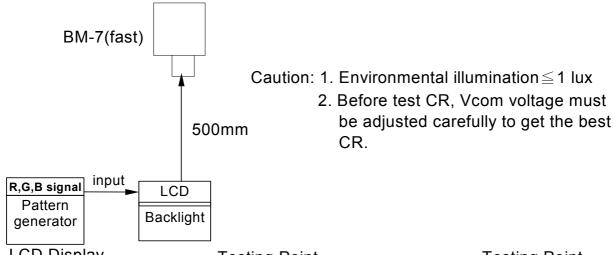
U = The Minimum Brightness of the 9 testing Points
The Maximum Brightness of the 9 testing Points


Luminance meter: BM-5A or BM-7 fast (TOPCON)

Measurement distance: 500 mm +/- 50 mm

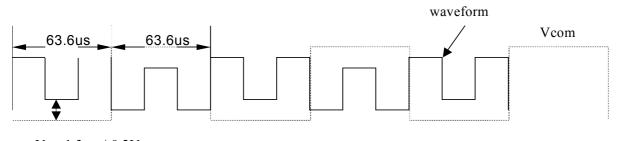
Ambient illumination : < 1 Lux

Measuring direction: Perpendicular to the surface of module


The test pattern is white (Gray Level 63).

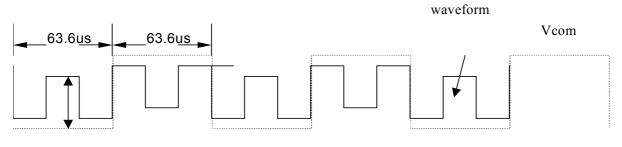
Note 10-6: The "LED Life time " is defined as the module brightness decrease to 50% original Brightness that the ambient temperature is 25° C and I_{LED} =20mA.

10-2) Testing configuration



Pattern A Pattern B

RGB


RGB

• R, G, B Waveform of Pattern A at Testing Point

Vw=1.3v + -0.2V

R, G, B Waveform of Pattern B at Testing Point

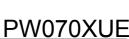
Vb=5.0V + /-0.2V

11. Handling Cautions

11-1) Mounting of module

- a) Please power off the module when you connect the input/output connector.
- b) Please connect the ground pattern of the inverter circuit surely. If the connection is not perfect, some following problems may happen possibly.
- 1. The noise from the backlight unit will increase.
- 2. The output from inverter circuit will be unstable.
- 3.In some cases a part of module will heat.
- c) Polarizer which is made of soft material and susceptible to flaw must be handled carefully.
- d) Protective film (Laminator) is applied on surface to protect it against scratches and dirt. It is recommended to peel off the laminator before use and taking care of static electricity.

11-2) Precautions in mounting


- a) When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth.
- b) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots.
- c) TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
- d) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling.

11-3) Others

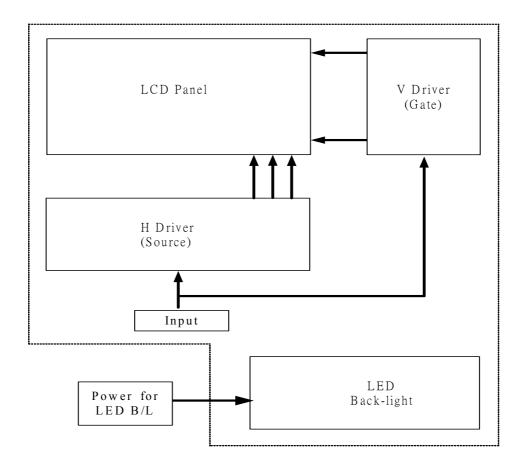
- a) Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours.
- b) Store the module at a room temperature place.
- c) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around.
- d) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel.

 Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet.

 Wash it out immediately with soap.
- e) Observe all other precautionary requirements in handling general electronic components.

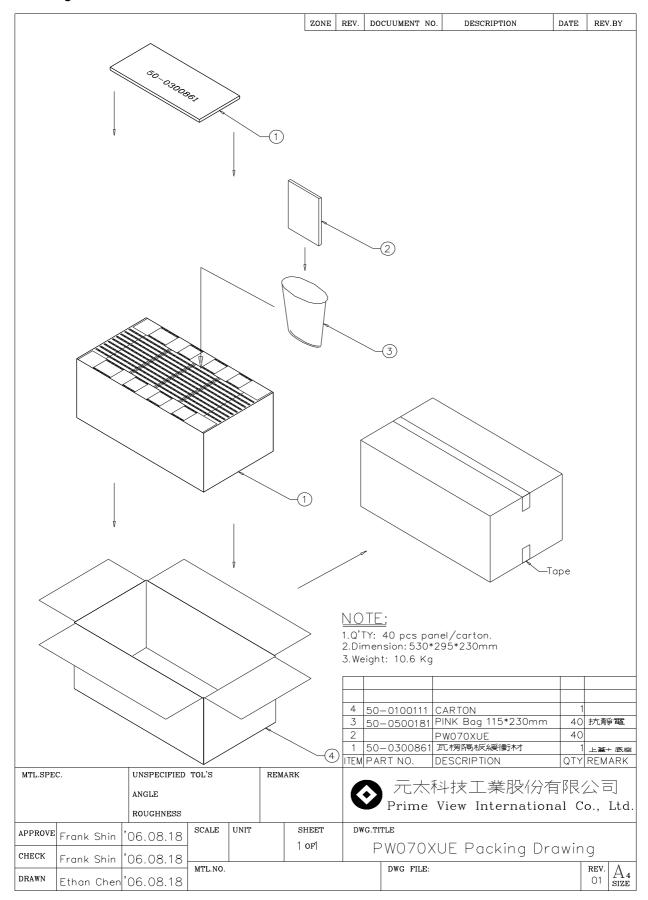
12. Reliability Test

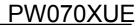
No	Test Item	Test Condition			
1	High Temperature Storage Test	Ta = +85°C,240hrs			
2	Low Temperature Storage Test	Ta = -40°C, 240 hrs			
3	High Temperature Operation Test	Ta = +80°C ,240hrs			
4	Low Temperature Operation Test	Ta = -30℃, 240 hrs			
5	High Temperature & High Humidity Operation Test	Ta = +50℃, 80%RH, 240 hrs			
6	Thermal Cycling Test	-30°C → +80°C, 200 Cycles			
0	(non-operating)	30 min 30 min			
	Vibration Test (non-operating)	Frequency: 10 ~ 55 H _z			
7		Vibration Test Amplitude : 1 mm			
1 ′		Sweep time: 11 mins			
		Test Period: 6 Cycles for each direction of X, Y, Z			
	Shock Test (non-operating)	100G, 6ms			
8		Direction: ±X, ±Y, ±Z			
		Cycle: 3 times			
9	Electrostatic Discharge Test (non-operating)	200 pF , 0 Ω			
		±200V			
		1 time / each terminal			


Ta: ambient temperature

[Criteria]

In the standard conditions, there is not display function NG issue occurred. (including: line defect, no image). All the cosmetic specification is judged before the reliability stress.




13. Block Diagram

14. Packing

Revision History

Rev.	Issued Date	Eng.	Revised Contents
0.1	18.Aug,2006	蔡弘毅	Preliminary Spec.
0.2	20.Sep,2006	蔡弘毅	Modify RA test HTST from +95°C modify to TBD HTOT from +85°C modify to TBD
0.3	26.Sep,2006	蔡弘毅	Page9. 8-2) Recommended driving condition for LED back light Add LED Voltage ,current and power consumption data Page 19. 10. Optical Characteristics 10-1) Specification Add Uniformity and LED life time data
1.0	22.Dec,2006	蔡弘毅	Release version