

Product Specification

()	Product Information
()	Preliminary Specification
(√)	Approval Specification

Any modification of Spec is not allowed without SDC's permission

CUSTOMER	G/A Customers			
DATE OF ISSUE	12/27/2012			

MODEL NO.	LTI550HN06
EXTENSION CODE	-0

Customer Appro	oval & Feedback
	Kana Sana Pac

Approved by	Kang Sang Rae 12/27/2012
Prepared by	12/27/2012

LCD Sales & Marketing Team Samsung Display Co., Ltd

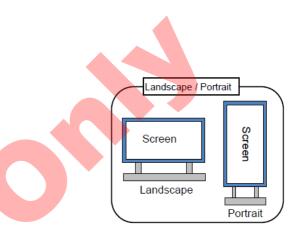
SAMSUNG DISPLAY

Table of Contents

REVISION HISTORY	3
GENERAL DESCRIPTION	4
1. ABSOLUTE MAXIMUM RATINGS	
1.1 ENVIRONMENTAL ABSOLUTE RATINGS	6
1.2 ELECTRICAL ABSOLUTE RATINGS	7
1.3 THE OTHERS ABSOLUTE RATINGS	7
2. APPLICATION INFORMATION FOR DID(DIGITAL INFORMATION DISPLAY)	8
3. OPTICAL CHARATERISTICS	9
4. ELECTRICAL CHARACTERISTICS	
4.1 TFT LCD MODULE	
4.2 BACK LIGHT UNIT	13
4.3 CONDITION & SPECIFICATION OF CONVERTER'S INPUT	13
5. INPUT TERMINAL PIN ASSIGNMENT	
5.1 INPUT SIGNAL & POWER	14
5.2 CONFIGUARATION OF INPUT PIN OF CONVERTER	16
5.3 THE POWER SEQUENCE FOR INPUTTING TO THE CONVERTER	16
5.4 LVDS INTERFACE	17
5.5 INPUT SIGNALS, BASIC DISPLAY COLORS AND GRAY SCALE	18
6. INTERFACE TIMING	
6.1 TIMING PARAMETERS (DE ONLY MODE)	19
6.2 TIMING DIAGRAMS OF INTERFACE SIGNAL (DE ONLY MODE)	20
6.3 CHARACTERISTICS OF INPUT DATA OF LVDS	21
6.4 THE SEQUENCE OF POWER ON AND OFF	23
OUTLINE DIMENSION	24
7. RELIABILITY	26
8. PACKING	27
9. MARKINGS & OTHERS	28
10. GENERAL PRECAUTIONS	29

REVISION HISTORY

Date.	Rev.No.	Page	Revision Description
12/27/2012	000	all	First issued


GENERAL DESCRIPTION

DESCRIPTION

This model uses a liquid crystal display (LCD) that uses amorphous silicon TFT(Thin Film Transistor) as switching components. This model is composed of a TFT LCD panel, a driver circuit, and ass'y KIT of source PBA and BLU(Back light Unit) Ass'y. This 55.0" model has a resolution of 1920 x 1080 pixels (16:9) can display up to 16.7 Million colors with the wide viewing angle of 89° or higher in all directions.

FEATURES

High contrast ratio & aperture ratio with the wide color gamut SVA(Super Vertical Align) mode
Wide viewing angle (±178°)
High speed response
FHD(1920X1080) resolution (16:9)
Edge LED(Light Emitted Diode) BLU
RoHS compliance (Pb-free)
Low power consumption
DE(Data Enable) mode
2 Channel LVDS (Low Voltage Differential Signaling) interface
The interface (2pixel/clock) of LVDS serial interface
Landscape / Portrait type compatible

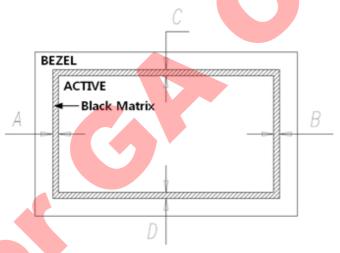
APPLICATIONS

Digital Information Display (DID) High Definition Public Monitor

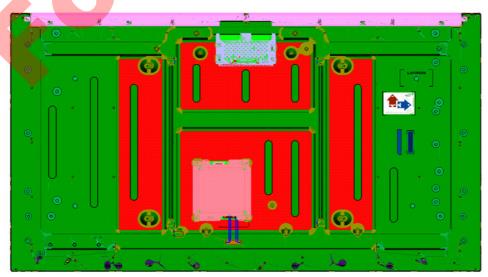
High Tni Liquid Crystal (85°C)

GENERAL INFORMATION

Items	Specification	Unit	Note
Active Display area	1209.6(H) X 680.4(V)	mm	
Switching Components	a-Si TFT active matrix		
Module Size	1242.2(H) x 713.0(V)	mm	Тур
iviodule Size	10.8(D)	mm	Тур
Weight	15,200	g	Тур
Display colors	16.7M (8bits-True)	Color	
Number of pixels	1,920 x 1,080	Pixel	16:9
Pixel Arrangement	RGB Vertical stripe		
Display Mode	Normally Black		
Surface Treatment	Haze 44% / 3H		Anti-Glare
Luminance of White	700(Typ)	cd/m²	



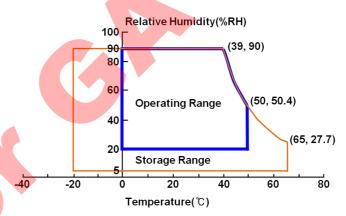
MECHANICAL INFORMATION


	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	1241.2	1242.2	1243.2	mm	
Module Size	Vertical (V)	712.0	713.0	714.0	mm	
0.20	Depth (D)	9.8	10.8	12.8	mm	Minimum Depth (2)
Bezel	Horizontal (H)	-	1216.6	-	mm	
Open	Vertical (V)	-	687.4	-	mm	
Black	Horizontal (H)	-	-	2.0	mm	(1)
Matrix Shift	Vertical (V)	-	-	2.0	mm	(1)
Weight		-	15,200	16,200	g	

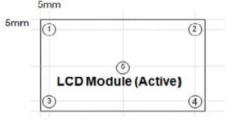
Note (1) Measure the figure for **Black Matrix shift** to be recorded on the spec. with referring to the drawings.

- | A B | ≤ Horizontal Spec
- | C D | ≤ Vertical Spec

Note (2) Measure point of Depth


1. ABSOLUTE MAXIMUM RATINGS

1.1 ENVIRONMENTAL ABSOLUTE RATINGS


Ito	em	Symbol	Min.	Max.	Unit	Note
Storage te	emperature	T _{STG}	-20	65	°	(1)
Operation 1	Temperature	T _{OPR}	0	50	°	(1)
Humidity of storage		H _{SUR}	5	90	%RH	
Operating	g humidity	H _{OPR}	20	90	%RH	
Glass surface	Center	T _{CENTER}	0	50	°C	
Temperature (Operation)	T 1 1 16 14	ΔΤ	-	10	ို	
Shock (non-operating)		Snop(X,Y)	-	30	G	(2) (4)
SHOCK (HOI	i-operating)	Snop(Z)	-	30	9	(2), (4)
Vibration (no	on-operating)	V_{nop}	-	1.5	G	(3), (4)

Note (1) Temperature and relative humidity range are shown in the figure below.

- a. 90 % RH Max. ($Ta \le 39 \, ^{\circ}C$)
- b. Relative Humidity is 90% or less. (Ta > 39 °C)
- c. No condensation

- Note (2) 11ms half sine wave, one time for ±X, ±Y, ±Z axis.
- Note (3) 10-300 Hz, Sweep rate 10min, 30min for X,Y,Z axis.
- Note (4) The fixture for the test of the vibration and shock, which holds the module to be tested shall be hard and rigid in order for the module not to be twisted or bent by the fixture.
- Note (5) Definition of Test point

△T should be less than 10°C (△T = |T_{CENTER} - T_{CORNER}|)

 T_{CENTER} : Temperature of the center of the glass surface (Test point 5) T_{CORNER} : Temperature of each edge of the glass surface (Test point 1~4)

1.2 ELECTRICAL ABSOLUTE RATINGS

(1) TFT LCD MODULE

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage	$V_{ extsf{DD}}$	10.8	-	13.2	V	(1),(2)
Dimming Control	Vdim	0	-	5.25	V	

Note (1) Within Ta (25 \pm 2 °C)

(2) BACKLIGHT UNIT

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Input Supply Voltage / Converter	Vcc	22	24	26	V	

1.3 The Others Absolute Ratings

STATIC ELECTRICITY PRESSURE RSISTANCE

Item	Symbol	Min.
CONTACT DISCHARGE	150pF, 330Ω , \pm 10kV, 200points, 1 time/point	Operating
AIR DISCHARGE	150pF, 330Ω , \pm 20kV, 200points, 1 time/point	Operating

⁽²⁾ The permanent damage or defect to the device may occur if the panel is operated at the figure set, which exceeds a limit of maximum value stated in the former spec. The functional operation should be limited to the conditions described above under normal operating conditions.

2. APPLICATION INFORMATION FOR DID (Digital Information Display)

A DID's screen may display the sudden image such as an image retention.

To extend the lifetime and optimize a function of module, the below-mentioned operating conditions are required.

2.1 Normal operating condition

- a. Temperature: 20 $\pm 15\,^{\circ}$ C
- b. Humidity: 55 ±20 %
- c. Display pattern: Moving image or image, which switches regularly.

 Note) The sudden image on the screen can be displayed after the static image is shown in the long-term.

2.2 The operating conditions when the module is operated under the abnormal condition.

- a. Ambient condition
 - -It is recommended to set the DID up in the well-ventilated place.
- b. The function of power off and screen saver
 - -The function of periodical power-off or a screen saver is needed when the static image is displayed in the long-term.

2.3 Operating conditions to prevent the sudden display resulted from displaying the static image in the long-term.

- a. The proper operating time: Under 20 hours a day.
- b. The moving image shall be inserted between the static displays periodically.
 - -The refresh time for liquid crystal is needed.
- c. The periodic changing of background color and character's color(image)
 - -Use the different color for background and character (image) respectively.
 - -Change colors periodically.
- d. Avoid combining the color for background with the color for character, which has a largely different luminance.
 - Note (1) Abnormal condition means all operating condition except normal operating condition.
 - Note (2) The moving image or black pattern is strongly recommended as a screen saver.

2.4 Only the lifetime of DID stated in this spec is guaranteed if the DID is used under the proper operating conditions.

3. OPTICAL CHARACTERISTICS

The optical characteristics should be measured in a dark room or the space surrounded by the similar ambient setting.

Measuring equipment: TOPCON RD-80S, SR-3, ELDIM EZ-Contrast Ta(25 ± 2 °C)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast F	Ratio	C/R	-	3000	4000	-	-	(1) SR-3	
Response time	G-to-G (AVG)	T _g			8	16	msec	(3) RD-80S	
Luminance of (At the center of		Y _L	-	550	700	-	cd/m ²	(4) SR-3	
	Red	R_X			0.640				
	Neu	R _Y			0.330				
	Green	G_X	Normal		0.300				
Color Chromaticity	Green	G_Y	$\phi = 0$ $\theta = 0$	TYP.	0.605	TYP	_	(5), (6)	
(CIE 1931)	Blue	B _X	Viewing	-0.03	0.150	+0.03	_	SR-3	
	blue	B _Y	Angle		0.060				
	White	W_X			0.280				
	vviiite	W_{Y}			0.290				
Color Ga	mut	-	-	67	70	-	%	(5)	
Color tempe	erature	-	-	-	10000	-	K	SR-3	
	Hor.	θ_{L}		79	89	-			
Viewing	Hol.	θ_{R}	CR ≥ 10	79	89	-	Degree	(6) SR-3	
Angle	Ver.	θυ	CN ≥ 10	79	89	-	Degree	EZ-Contrast	
	ver.	θ_{D}		79	89	-			
Brightness Uniformity (9 Point)		B _{uni}	-	-	-	25.0	%	(2) SR-3	

^{*} Ta = 25 \pm 2 °C, VDD = 3.3V, fv=60Hz, fDCLK = 148.5MHz, IF =100% duty * If =600mA (each String 150mA), VF=126.2 V (4 LED String)

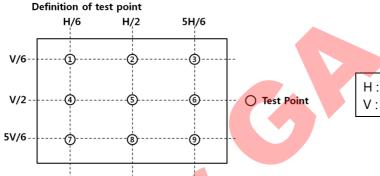
Notice (a) Setup for test equipment

The measurement should be executed in a stable, windless and dark room between 40min and 60min after lighting the backlight at the given temperature for stabilization of the backlight. This should be measured in the center of screen.

The environment condition : Ta = 25 ± 2 °C

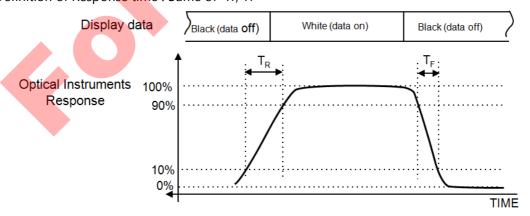
Note (1) Definition of contrast ratio (C/R)

: The Ratio of max. gray (Gmax) & min. gray (Gmin) at the center point ⑤ of the panel.


$$C/R = \frac{G \max}{G \min}$$

Gmax : Luminance in all white pixels Gmin : Luminance in all black pixels.

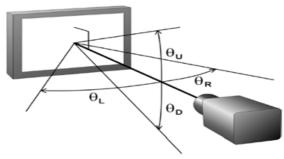
Note (4) Definition of brightness uniformity at 9 points (Test pattern: Full white)


$$Buni = 100* \frac{(B \max - B \min)}{B \max}$$

Bmax : Maximum brightness
Bmin : Minimum brightness

H : Horizontal Length of Active Area V : Vertical height of Active Area

Note (3) Definition of Response time: Sume of Tr, Tf



Note (4) Definition of Luminance of White: Luminance of white at center point (5)

Note (5) Definition of Color Chromaticity (CIE 1931)

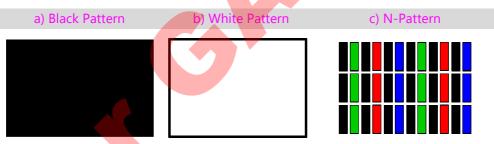
Color coordinate of Red, Green, Blue & White at center point (5)

Note (6) Definition of Viewing Angle : Viewing angle range (C/R ≥ 10)

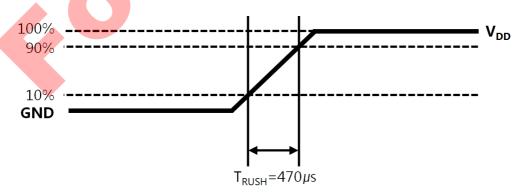
4. ELECTRICAL CHARACTERISTICS

4.1 TFT LCD MODULE

The connector to transmit a display data and a timing signal should be connected.


 $Ta = 25 \pm 2 \,{}^{\circ}C$

	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Voltage o	f Power Supply	V_{DD}	10.8	12.0	13.2	V	(1)
Current of	(a) Black		-	670	820		
Power	(b) White	I _{DD}	-	1630	2005	mA	(2), (3)
Supply	(c) N-Pattern		-	1560	1925		
Vsync	Frequency	f_V	48	60	62	Hz	-
Hsync	Hsync Frequency		54	67.5	69.75	kHz	_
Main Frequency		F _{dclk}	118.8	148.5	153.5	MHz	-
Rus	h Current	I_{RUSH}	-	-	5.0	А	(4)


Note (1) The ripple voltage should be controlled under 10% of V_{DD}.

Note (2) $f_V=60$ Hz, $f_{DCLK}=148.5$ MHz, $V_{DD}=12.0$ V, DC Current.

Note (3) The pattern for checking the power dissipation (LCD module only).

Note (4) Conditions for measurement

The rush current, I_{RUSH} can be measured when T_{RUSH} is 470 μ s.

4.2 BACK LIGHT UNIT

Item	Min.	Тур.	Max.	Unit	Note	
Operating Life Time	-	50,000	-	Hour	(1)	

Note (1) It is defined as the time to take until the brightness reduces to 50% of its original value. [Operating condition : $Ta = 25\pm2^{\circ}C$]

4.3 CONDITION & SPECIFICATION OF CONVERTER'S INPUT

Thomas .	Sumala al	Conditions	Sp	ecificatio	ns	Unit	Note
Items	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Input Voltage	Vin	-	22	24	26	V	Ta=25±2 °C
Inrush Current (*2)	Inrush	Vin = 24.0V dim =Max	-	-	8,5	A	Normal Mode Note (2),(3)
Output Current (*1)	ILED	Vin = 22.0~26.0V dim =Max	143	150	157	mAmean	After 1 hour Warm-up, @1string
Converter		Enable	2.4		5.5		
On/Off Control	ENA	Disable	-0.3	-	0.8	V	-
	V_{A_DIM}	$V_{IN} = 24V$	0	-	3.3	V	-
A_DIM	D _{A_DIM}	$V_{IN} = 24V$ $V_{A_DIM} = 3.3V$	_	-	100	%	
	(Duty)	$V_{IN} = 24V$ $V_{A_DIM} = 0V$	20	-	-	%	

Note (1) All data was approved after running 120 minutes.

- (2) Inrush is measured within BLU on 10ms after leaving the BLU as it is at least 1hr or more at room temperature(25°C)
- (3) Additional Appendix for Input current at room temperature (25°C)

Thomas	Cumbal	Canditions	Spe	ecification	ons	11:4	Note
Items	Symbol	Conditions	Min.	Тур	Max.	Unit	Note
Input Current	Iovershoot	Vin=24V,	4V, - 7.2 7.4 Amean		Amean	Overshoot Current After Turn-on	
(Normal Mode)	Isaturation	Dim=Max	-	6.9	7.1	Amean	Saturation current after 1hr aging

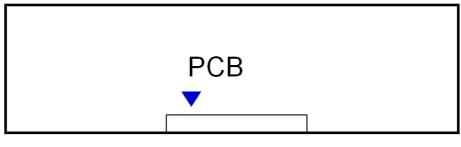
5. INPUT TERMINAL PIN ASSIGNMENT

5.1 INPUT SIGNAL & POWER

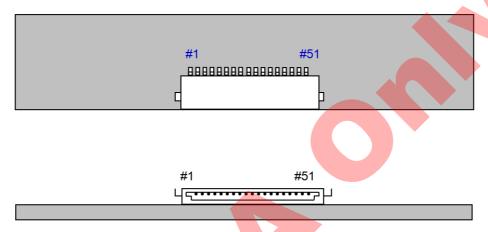
Connector: FI-RE51S-HF-J (JAE)

PIN No.	D	escription	PIN No.	D	Description		
1	,	V _{DD} (12V)	26		Rx2[A	JΡ	
2	,	V _{DD} (12V)	27		Rx2[B]	N	
3	,	V _{DD} (12V)	28	LVDS Signal	IP.		
4	,	V _{DD} (12V)	29		Rx2[C]	N	
5	,	V _{DD} (12V)	30		Rx2[C	ĮΡ	
6	No	Connection	31		GND		
7		GND	32	LVDS	Rx2CLK	_N	
8		GND	33	Clock	Rx2CLk	(_P	
9		GND	34		GND		
10		Rx1[A]N	35	LVDS	Rx2[D]	IN	
11		Rx1[A]P	36	Signal	Rx2[D]P	
12	LVDS	Rx1[B]N	37	No			
13	Signal Rx1[B]P 38			No	Connection		
14		Rx1[C]N	39		GND		
15		Rx1[C]P	40	No Connection			
16		GND	41	No Conr	nection		
17	LVDS	Rx1CLK_N	42	No Conr	nection	Note(1)	
18	Clock	Rx1CLK_P	43	No Conr	nection		
19		GND	44	No Conr	nection		
20		Rx1[D]N	45	LVDS	_SEL	Note(2)	
21		Rx1[D]P	46	No Conr	nection		
22	No	Connection	47	No Conr	nection	•	
23	No	Connection	48	No Connection		Noto(1)	
24		GND	49	No Conr	nection	Note(1)	
25	LVDS Signal	Rx2[A]N	50	No Conr	nection		
			51	No Conr	nection		

Note (1) No Connection: These pins are only used for SAMSUNG internal purpose.


Note (2) LVDS Option : High(3.3V) \rightarrow Normal NS LVDS format Low(GND or N.C) \rightarrow JEIDA LVDS format

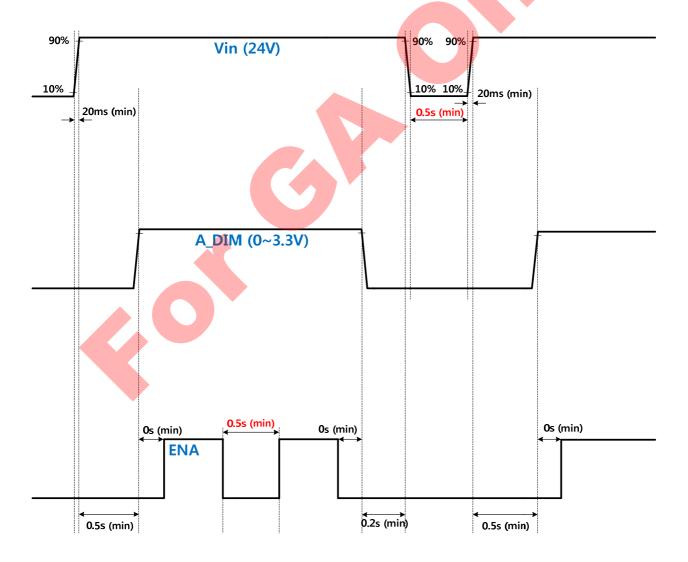
Sequence : On = $V_{DD}(T1) \ge LVDS$ Option $\ge Interface Signal(T2)$


Off = Interface Signal(T3) \geq LVDS Option \geq V_{DD}

Note (3) LVDS Connector

Pin No. 1 Pin No. 51

- a. All GND pins should be connected together and also be connected to the LCD's metal chassis.
- b. All power input pins should be connected together.
- c. All N.C pins should be separated from other signal or power.


5.2 CONFIGUARATION OF INPUT PIN OF CONVERTER

Input Connector Model No.: 22022WR-H14B2 (YEONHO)

Pin No.	SYMBOL	Pin Configuration(FUNCTION)
1, 2, 3, 4, 5	Vin	Power Supply DC 24V
6, 7, 8, 9, 10	GND	Ground
11	NC	No connection
12	ENA	Converter on/off Control signal
13	A_DIM	Analog Dimming Control Signal
14	No Connection	

Note) Pin 14 must be disconnected from signal

5.3 THE POWER SEQUENCE FOR INPUTTING TO THE CONVERTER

SAMSUNG DISPLAY

Default LVDS Option: JEIDA

5.4 LVDS INTERFACE

LVDS Receiver : Tcon(Merged)Data Format (JEIDA & Normal)

LVDS OPTION(input : pin9) : IF THIS PIN : LOW (GND or N/C) → JEIDA LVDS FORMAT

OTHERWISE : HIGH (3.3V) \rightarrow NORMAL NS LVDS FORMAT

	LVDS pin	JEIDA -DATA	VESA -DATA
	TxIN/RxOUT0	R2	R0
	TxIN/RxOUT1	R3	R1
	TxIN/RxOUT2	R4	R2
TxOUT/RxIN0	TxIN/RxOUT3	R5	R3
	TxIN/RxOUT4	R6	R4
	TxIN/RxOUT6	R7	R5
	TxIN/RxOUT7	G2	G0
	TxIN/RxOUT8	G3	G1
	TxIN/RxOUT9	G4	G2
	TxIN/RxOUT12	G5	G3
TxOUT/RxIN1	TxIN/RxOUT13	G6	G4
	TxIN/RxOUT14	G7	G5
	TxIN/RxOUT15	B2	В0
	TxIN/RxOUT18	В3	B1
	TxIN/RxOUT19	B4	B2
	TxIN/RxOUT20	B5	В3
	TxIN/RxOUT21	В6	B4
TxOUT/RxIN2	TxIN/RxOUT22	В7	B5
	TxIN/RxOUT24	HSYNC	HSYNC
	TxIN/RxOUT25	VSYNC	VSYNC
	TxIN/RxOUT26	DEN	DEN
	TxIN/RxOUT27	R0	R6
	TxIN/RxOUT5	R1	R7
	TxIN/RxOUT10	G0	G6
TxOUT/RxIN3	TxIN/RxOUT11	G1	G7
	TxIN/RxOUT16	В0	В6
	TxIN/RxOUT17	B1	В7
	TxIN/RxOUT23	RESERVED	RESERVED

5.5 INPUT SIGNALS, BASIC DISPLAY COLORS AND GRAY SCALE

												D	ATA	SIGN	AL											GRAY
COLOR	DISPLAY (8bit)				RI	ED							GR	EEN							BL	.UE				SCALE LEVEL
	(ODIT)	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G 7	В0	В1	B2	В3	B4	В5	В6	В7	
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
BASIC	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
COLOR	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R0
		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R1
GRAY	DARK	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R2
SCALE	1	:	:	:	:	:	:			:	:	:	:	:	:			1	٠.,	:	:	:	:			R3~
OF RED	1	:	:	:	:	:	:			:	:	:	:	:	:\			:	:	:	:	:	:			R252
	LIGHT	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R253
		0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R254
	RED	1	1	1	1	1	1	1	1	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G0
		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1
	DARK ↑	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G2
GRAY SCALE OF	·	:	:	:	:	:	:			"	;	:	:	:	:			:	:	:	:	:	:			G3~
GREEN	1	:	:	:	:	:	:				:	:	:	:	:			:	:	:	:	:	:			G252
	LIGHT	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G253
		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G254
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	В0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	B1
CDAY	DARK ↑	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	B2
GRAY SCALE OF			:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	:			B3~ B252
BLUE	↓ LIGHT	:	:	:	:	:	:			:	:	:	:	:	:	_		:	:	:	:	:	:	_	_	
	цонт	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	B253
	DI : : =	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	B254
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	B255

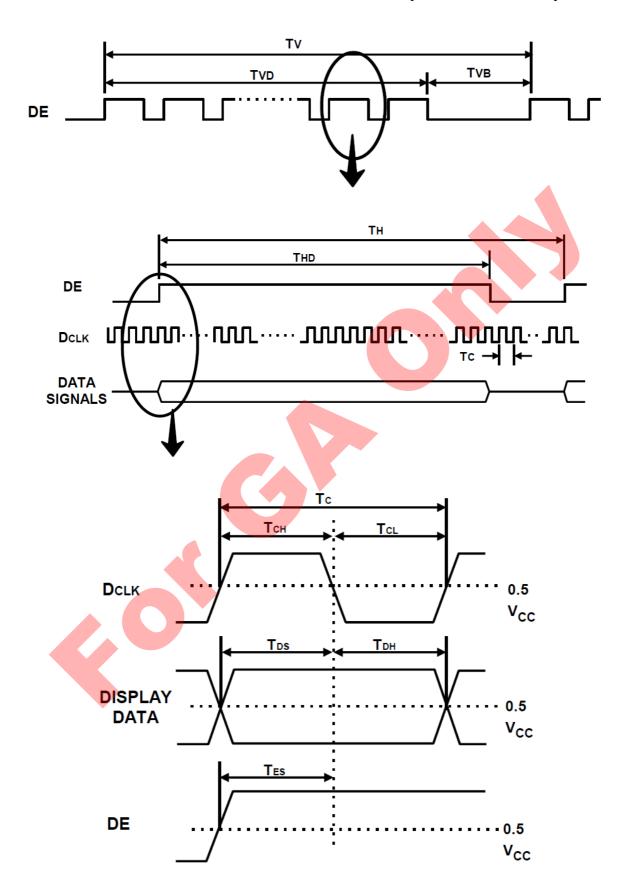
Note) Definition of Gray

Rn : Red Gray, Gn : Green Gray, Bn : Blue Gray(n = Gray Level)

Input Signal : 0 = Low Level Voltage, 1 = High Level Voltage

6. INTERFACE TIMING

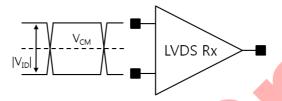
6.1 TIMING PARAMETERS (DE ONLY MODE)


SIGNAL	ITEM	SYMBOL	MIN.	TYP.	MAX.	Unit	NOTE
Clock		1/T _C	118.8	148.5	153.5	MHz	-
Hsync	Frequency	F _H	54	67.5	69.75	KHz	-
Vsync		F_V	48	60	62	Hz	-
Term for the vertical	Active display period	T_VD	-	1080	-	Lines	-
display	Total vertical	T_V	1100	1125	1158	Lines	-
Term for the	Active display period	T_{HD}	-	1920	-	Clocks	-
horizontal display	Total Horizontal	T _H	2090	2200	2350	clocks	-

Note) The signals of Hsync and Vsync must be inputted even though this T-con is operated at DE mode.

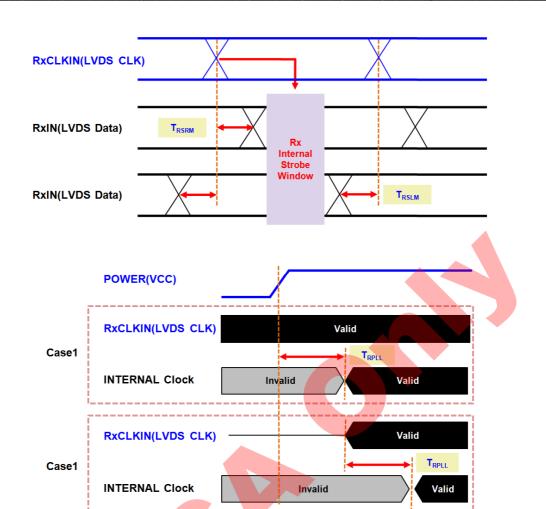
- (1) Test Point: TTL controls signal and CLK at LVDS Tx at the input terminal of system.
- (2) Internal VDD = 3.3V
- (3) The spread spectrum
 - The limit of spread spectrum's range of SET in which the LCD module is assembled should be within \pm 3 %
 - Frequency for modulation: 30~ 300KHz

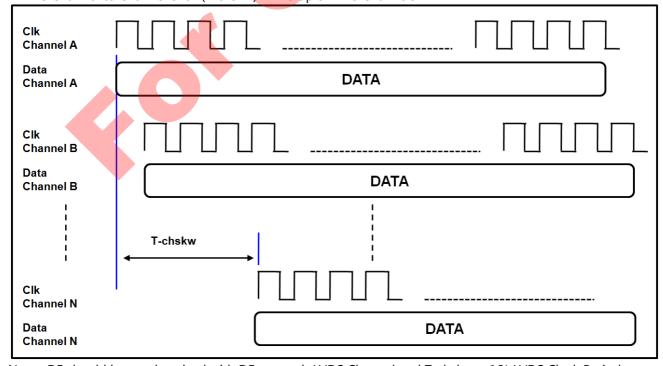
6.2 TIMING DIAGRAMS OF INTERFACE SIGNAL (DE ONLY MODE)



6.3 CHARACTERISTICS OF INPUT DATA OF LVDS

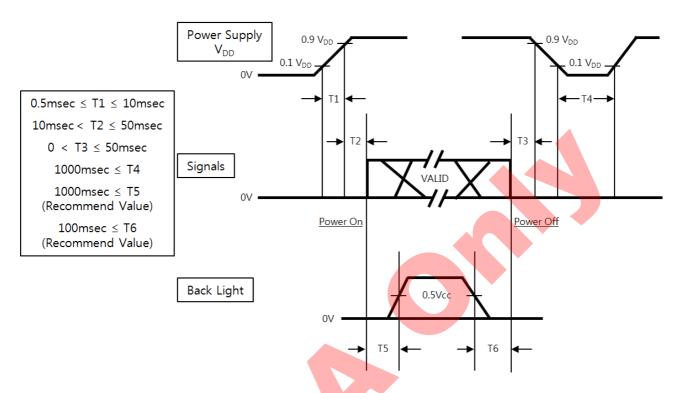
(1) Specification for DC


ITEM	SYMBOL	Min.	Тур.	Max.	UNIT
Supply voltage for IO	VDD33_LVDS	3.0	3.3	3.6	٧
Supply voltage in the core	VDD12_LVDS	1.1	1.2	1.3	٧
Color depth			8		Bit
Input voltage at the common mode	V_{CM}	0.3		1.8	٧
Input voltage for differential	V _{ID}	100	350	600	mV


(2) Specification for AC

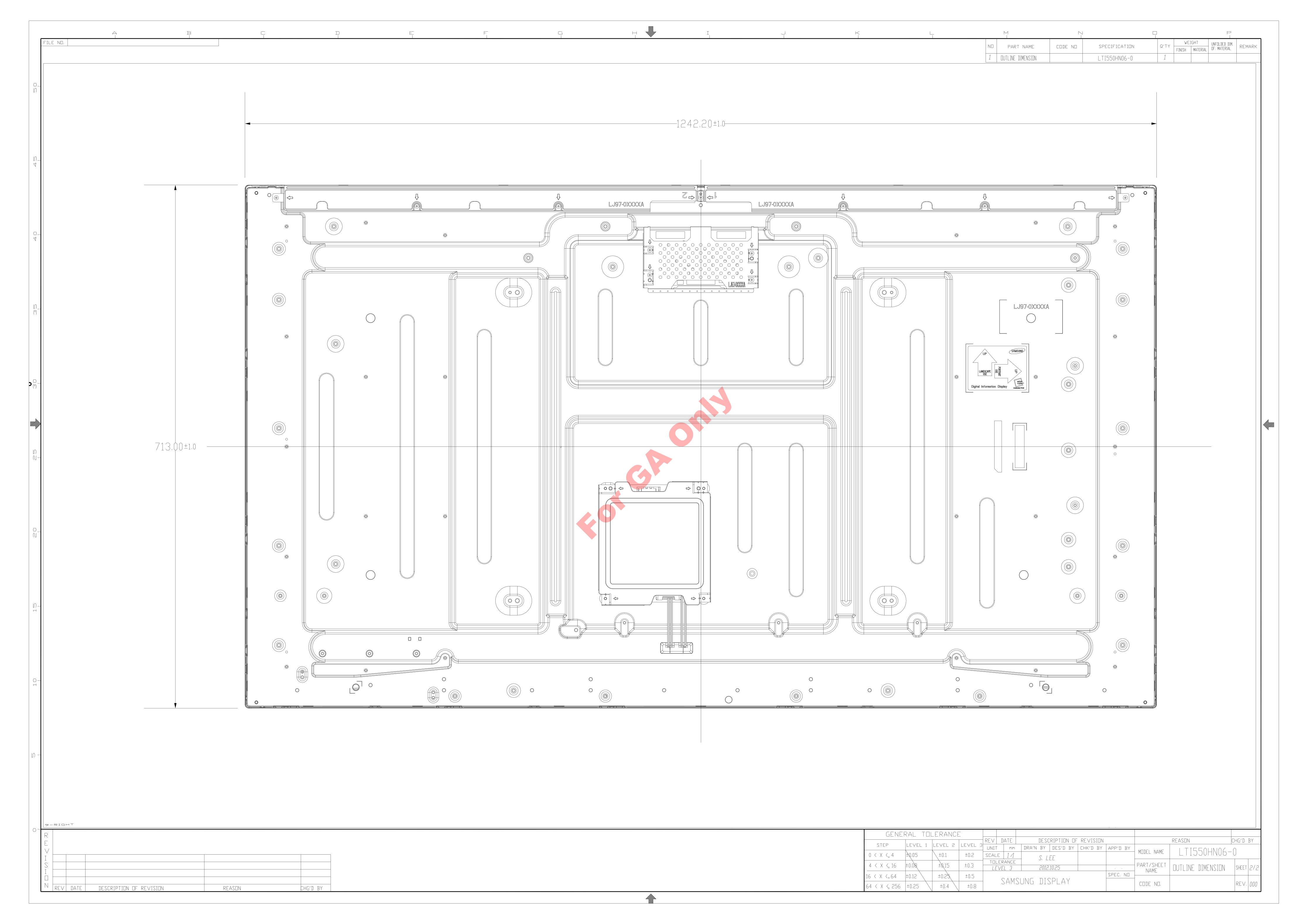
ITEM		SYMBOL	Min.	Тур.	Max.	UNIT
Frequency for input clock (=1/T)		FIN	25	-	90	MHz
Period of output clock		t _{RCP}	11.11	-	40	ns
	FIN=85MHZ		-	-	+400	
Position of input data	FIN=78MHZ	t _{RSRM}	-	-	+450	ps
	FIN=75MHZ		-	-	+500	
Position of input data	FIN=85MHZ		-400	-	-	
	FIN=78MHZ	t _{RSLM}	-450	-	-	ps
	FIN=75MHZ		-500	-	-	
Lock time		t _{RPLL}	-	-	100	usec
Duty ratio of Rx's clock for output		T_{duty}	45	50	55	%

* LVDS Channel to Channel Skew(T-chskw) in Multiple LVDS Channels



Note: DE should be synchronized with DE per each LVDS Channel and T-chskw < 16* LVDS Clock Period

6.4 THE SEQUENCE OF POWER ON AND OFF


To prevent the product from being latched up or the DC in the LCD module from starting an operation, the order to turn the power on and off should be changed to the order as shown in the diagram below.

Timing	Remarks			
T_1	The time, during which the level of V _{DD} is rising from 10% to 90%.			
T ₂	The change for time, during which the V _{DD} starts rising beyond 90% until the valid data of signal started coming in.			
T ₃	The change for time, during which the valid data of signal starts leaving out until the V_{DD} starts falling below 90%.			
T ₄	The time, during which the V_{DD} starts falling below 10% to restart the Windows.			
T ₅	The time, during which the signal of BLU starts rising beyond 50%.			
T ₆	The time, during which the signal of BLU starts falling below 50%.			

- The inputted V_{DD}'s value for supply voltage, BLU, and signal to the external system of the module shall be computed with referring to the former mentioned value.
- The method to apply the voltage to the lamp within the range, which the LCD operates. When the back-light is turned on before the LCD is operated or the power of LCD is turned off before the back-light is turned off, the abnormal display on the screen may be shown momentarily.
- Please keep the level of input signal low or keep the level of impedance high when the value of V_{DD} is below 10%.
- The value shall be measured after the module has been fully discharged between the period, which the power is turned on and the period, which the power is turned off like the T4 timing. The backlight may be flashed if the interface signal remains floated when the above-mentioned signal becomes invalid.

7. RELIABILITY TEST

Item	Test condition	Quantity
HTOL	50℃, 500hr determination	8EA
LTOL	0° C, 500hr determination	4EA
HTS	70℃, 500hr determination	4EA
LTS	-25 $^{\circ}$ C, 500hr determination	4EA
ТНВ	50° / 90% RH, 500 hr determination	10EA
WHTS	60℃ / 75%RH, 500hr determination	4EA
T/S	-20 ∼ 60 $^{\circ}$ C, Dwell time : 30Min, 200cycle	4EA
TSS	-20 ~ 65℃, 220cycle	4EA
Image sticking	50℃, Mosaic pattern (9X10), 12hrs	8EA
Contact ESD	±10 kV, 210Point, 1 time/Point	3EA
Air ESD	±20 kV, 210Point, 1 time/Point	3EA
Input Con. ESD	±15kV, Input Con. Pin, 3 times/Pin	3EA
Dust	5sec spray, 5min sedimentation / 5hr(Portrait 10hr), Power 10min on, 10min off	2EA
Pallet Vibration → Pallet Drop	Pallet vibration: 1.05Grms, 5 ~ 200Hz, 2hr/stack side Pallet Drop: 20cm, bottom side 2 angles, 1side(Bottom)	2Pallet
Altitude	-40~50°C, 0m(0ft) ~ 13,700m(45,000ft), 72.5Hr	4EA

[Criteria on evaluation]

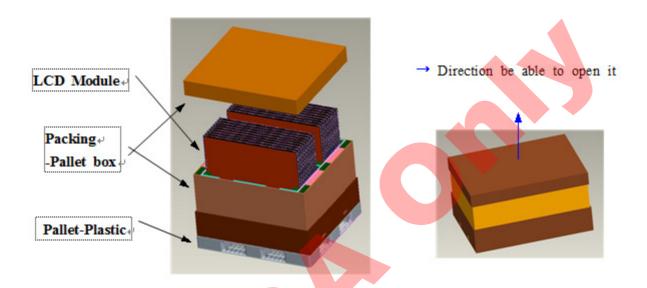
The components of product, which may affect to the function of display shall not be changed when the display quality test is executed under the normal operating condition.

^{*} HTOL / LTOL : The operating at the high and low temperature*

^{*} THB: The slant of temperature and humidity

^{*} HTS / LTS: The storage at the high and low temperature

^{*} WHTS: The storage condition at the high temperature with the high humidity



8. PACKING

8.1 CARTON (INTERNAL PACKAGE)

(1) Packing Form: Paper

(2) Packing Method

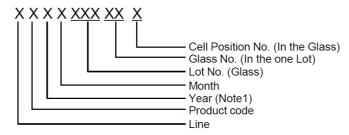
Note(1) Total Weight: Approximately 325.4kg [With Pallet Plastic]

Note(2) Acceptance number of piling: 3 Pallets

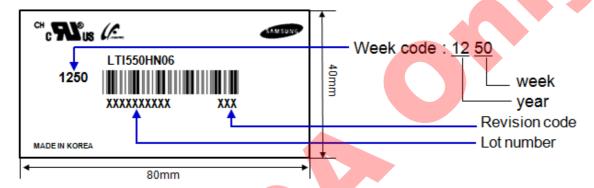
Note(3) Carton size : 1452mm(H) x 1097mm(V) x 769mm(Height) [Without Pallet Plastic] 1475mm(H) x 1150mm(V) x 894mm(Height) [With Pallet Plastic]

(3) Packing Material

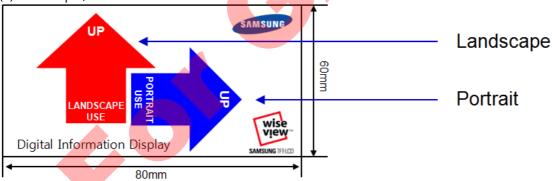
No	Part name	Quantity
1	Packing-Pallet BOX	1 EA
2	Bag-Shielding	18 EA
3	Protector-Panel	18 EA
4	Pallet-Plastic	1 EA

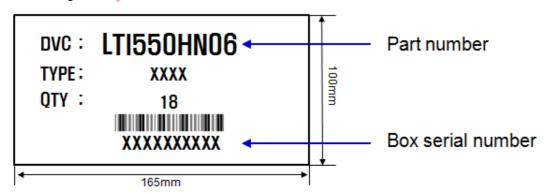

9. MARKINGS & OTHERS

A nameplate bearing followed by is affixed to a shipped product at the specified location on each product.


(1) Parts number: LTI550HN06

(2) Revision code: Three letters


(3) Lot number:


(4) Nameplate Indication

(5) Landscape / Portrait Direction Indication

(6) Packing small box attach

10. GENERAL PRECAUTIONS

10.1 HANDLING

- (a) When the module is assembled, It should be attached to the system firmly using every mounting holes. Be careful not to twist and bend the modules.
- (b) Refrain from strong mechanical shock and / or any force to the module. In addition to damage, this may cause improper operation or damage to the module and CCFT back-light.
- (c) Note that polarizers are very fragile and could be easily damaged. Do not press or scratch the surface harder than a HB pencil lead.
- (d) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, Staining and discoloration may occur.
- (e) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- (f) The desirable cleaners are water, IPA (Isoprophyl Alcohol) or Hexane. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (g) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.
- (h) Protect the module from static. it may cause damage to the C-MOS Gate Array IC.
- (i) Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (j) Do not disassemble the module.
- (k) Do not pull or fold the Lamp wire.
- (I) Do not touch any component which is located on the back side.
- (m) Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- (n) Pins of I/F connector shall not be touched directly with bare hands.

10.2 STORAGE

We highly recommend to comply with the criteria in the table below.

ITEM	Unit	Min.	Max.	
Storage Temperature	(℃)	5	40	
Storage Humidity	(%rH)	35	75	
Storage Life	12 months			
Storage Condition	- The storage room should be equipped with a good ventilation facility, which has a temperature controlling system. - Products should be placed on the pallet, which is away from the wall not on the floor. - Prevent products from being exposed to the direct sunlight, moisture, and water. Be cautious not to pile the products up. - Avoid storing products in the environment, which other hazardous material is placed. - If products are delivered or kept in the storage facility more than 3 months, we recommend you to leave products under the condition including a 20 ℃ temperature and a humidity of 50% for 24 hours. - If you store semi-manufactured products for more than 3 months, bake the products under the condition including the 50 ℃ temp. and the 10% humidity for 24hrs after being used.			

10.3 OPERATION

- (a) Do not connect or disconnect the cable to/ from the module at the "Power On" condition.
- (b) The power shall be always turned on/off by the item 6.5. "Power on/off sequence"
- (c) The module has a circuit with a high frequency. The system manufacturers shall suppress the electromagnetic interference sufficiently. The methods to ground and shield are important to minimize the interference.
- (d) Design the length of cable to connect between the connector for back-light and the inverter as short as possible and the shorter cable shall be connected directly.

The longer cable between that of back-light and that of inverter may cause the luminance of lamp(CCFL) to lower and need a higher startup voltage(Vs).

10.4 OPERATION CONDITION GUIDE

(a) The LCD product should be operated under normal conditions.

Normal condition is defined as below;

- Temperature : 20±15 °C

- Humidity: 55±20%

- Display pattern : continually changing pattern (Not stationary)
- (b) If the product will be used in extreme conditions such as high temperature, humidity, display patterns or operation time etc.., It is strongly recommended to contact SDC for Application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at Airports, Transit Stations, Banks, Stock market, and Controlling systems.

10.5 OTHERS

- (a) Ultra-violet ray filter is necessary for outdoor operation.
- (b) Module should be turned clockwise (regular front view perspective) when used in portrait mode.
- (c) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
- (d) Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on) Otherwise the Module may be damaged.
- (e) If the Module keeps displaying the same pattern for a long period of time, the image may be "sticked" to the screen. To avoid image sticking, it is recommended to use a screen saver.
- (f) This Module has its circuitry PCB's on the rear side and should be handled carefully in order not to be stressed.
- (g) Please contact SDC in advance when you display the same pattern for a long time.

