

LIQUID CRYSTAL DISPLAY GRAPHIC MODULES

APPLICATION NOTES

Seiko Instruments is a worldwide leader in advanced LCD technology. We have been manufacturing LCDs since 1973, and we were the first to offer supertwist technology on all of our catalog products. We are committed to incorporate our latest technical developments into our standard products to keep our customers on the leading edge of LCD performance.

Here are some examples of recent LCD technology developments that we have incorporated into the graphic LCD modules in this catalog:

- Built-in controller with graphics & text overlay capability
- Razor sharp black & white images with film supertwist
- Bright CFL edgelight for high contrast
- Wide operating temperature from 20°C to + 70°C
- 0.3 mm dot pitch for high resolution in small packages
- LED edgelighting for industry's thinnest profile (8.9mm)
- Small size & low power consumption for portable applications

Typical Applications Include:

- Portable hand held products
- Instrumentation & test equipment
- Medical
- Industrial & process control
- Office automation
- Point of sale terminals
- Telecom

Our LCD products incorporate the latest technical features to keep your company on top in today's competitive market. For example, our built-in controller was carefully selected to offer you state-of-the-art information display capabilities:

- Eight bit parallel interface for fast updates of information
- Built-in character generator
- Improved resolution & custom fonts with external CG RAM
- Overlayed graphics & text planes
- Vertical scrolling, horizontal scrolling, & paging
- Underline, block & blink cursor
- Independent plane blinking

We are ready to provide the latest in technology and Seiko renowned quality for your LCD application!

Opto/Electrical Characteristics

Item	Symbol	Min.	Max.	Unit
	V _{DD}	-0.3	+7.0	٧
Power supply voltage	V _{LC}	V _{DD} -30.0	V _{DD} +0.3	V
	V _o	V _{DD} -30.0	V _{DD} +0.3	V
Input voltage	V _{IN}	0	V _{DD} +0.3	V
Operating temperature	T _{op} ,	0	+50	°C
Storage temperature	T _{stq}	-20	+60	°C

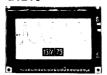
Absolute Maximum R	atings (For	WTSTN Graphi	c Modules)	
Item	Symbol	Min.	Max.	Unit
	V _{DD}	-0.3	+7.0	V
Power supply voltage	V _{LC}	V _{DD} -19.0	V _D ,+0.3	V
	V _o	-0.3	V _D ,+0.3	V
Input voltage	V _{IN}	0	V _D ,+0.3	V
Operating temperature	T _{opr}	-20	70	°C
Storage temperature	T _{stg}	-30	80	°C

Optical Characteristics (For all STN, FSTN & WTSTN Graphic Modules) T _a = 25°C ■ Frame Frequency = 70Hz															
Item	Unit										G321D	G321E	G324E	G648D	G649D
Contrast (typ.)	_	8	6	6	6	6	6	6	6	6	6	8	6	5	10
Viewing angle (min.)	deg.	60	60	60	50	40	60	50	70	50	55	70	55	55	55
Response time (rise)	ms	160	80	40	150	180	75	180	250	250	250	230	250	130	250
Response time (fall)	ms	130	100	100	110	150	125	250	180	180	180	150	180	250	150

$\underline{Product\ Selection\ Guide\ (H=Horizontal,\ V=Vertical,\ T=Th.\ ckness)}$

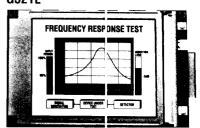
Reflective Modul	es						
Part Number	Dot Format (H x V)	LCD Fluid Type	Module Size (H x V x T,mm)	Viewing Area (H x V,mm)	Dot Size (H x V,mm)	Dot Pitch (H x V,mm)	Duty Cycle, Bias
F10160A	100 x 64	STN	140 x 110 x 14.3	100 x 68	0.85 x 0.85	0.90 x 0.90	1/32, 1/6
G121300N000	128 x 32	WTSTN	75 x 42 x 6.8	60 x 21	0.40 x 0.48	0.43 x 0.51	1/64, 1/9
G121600N000	128 x 64	WTSTN	75 x 53 x 6.8	60 x 33	0.40 x 0.40	0.43 x 0.43	1/64, 1/9
G121C00P000	128 x 128	WTSTN	86 x 95 x 7.0	67 x 67	0.46 x 0.46	0.49 x 0.49	1/128, 1/10
G121C00P00C	128 x 128	WTSTN	86 x 95 x 7.0	67 x 67	0.46 x 0.46	0.49 x 0.49	1/128, 1/10
G191C00R0A0	192 x 128	FSTN	98 x 86 x 13.4	78 x 54	0.33 x 0.33	0.37 x 0.37	1/128, 1/12
G191D00P000	192 x 192	WTSTN	86 x 95 x 7.0	67 x 67	0.30 x 0.30	0.33 x 0.33	1/192, 1/12
G243600J000	240 x 64	STN	180 x 75 x 11.3	134 x 41	0.49 x 0.49	0.53 x 0.53	1/64, 1/9
G648D00R000	640 x 200	FSTN	270 x 150 x 12.0	239 x 104	0.32 x 0.46	0.35 x 0.49	1/200, 1/15

EL/LED Backlight Mod	dules						
G1213B1N000** (LED)	128 x 32	WTSTN	75 x 42 x 8.9	60 x 21	0.40 x 0.48	0.43 x 0.51	1/64, 1/9
G1216B1N000** (LED)	128 x 64	WTSTN	75 x 53 x 8.9	60 x 33	0.40 x 0.40	0.43 x 0.43	1/64, 1/9
G121CB1P000** (LED)	128 x 128	WTSTN	86 x 95 x 9.0	67 x 67	0.46 x 0.46	0.49 x 0.49	1/128, 1/10
G121CB1P00C** (LED)	128 x 128	WTSTN	86 x 95 x 9.0	67 x 67	0.46 x 0.46	0.49 x 0.49	1/128, 1/10
G191C21R0A0** (EL)	192 x 128	FSTN	98 x 86 x 13.4	78 x 54	0.33 x 0.33	0.37 x 0.37	1/128, 1/12
G191DB1P000** (LED)	192 x 192	WTSTN	86 x 95 x 9.0	67 x 67	0.30×0.30	0.33 x 0.33	1/192, 1/12
G243621A000** (EL)	240 x 64	STN	180 x 75 x 11.3	134 x 41	0.49 x 0.49	0.53 x 0.53	1/64, 1/9
G648D21B000** (EL)	640 x 200	STN	270 x 150 x 12.0	239 x 104	0.32 x 0.46	0.35 x 0.49	1/200, 1/15


CFL Blacklight Modu	ıles						
G2446X1R1AC**	240 x 64	FSTN	191 x 79 x 15.1	134 x 41	0.49 x 0.49	0.53 x 0.53	1/64, 1/9
G2446X5R1A0	240 x 64	FSTN	191 x 79 x 15.1	134 x 41	0.49 x 0.49	0.53 x 0.53	1/64, 1/9
G2446X5R1AC	240 x 64	FSTN	191 x 79 x 15.1	134 x 41	0.49 x 0.49	0.53 x 0.53	1/64, 1/9
G2446X5E1AC	240 x 64	WTSTN	191 x 79 x 15.1	134 x 41	0.49 x 0.49	0.53 x 0.53	1/64, 1/9
G242CX1R1AC**	240 x 128	FSTN	180 x 110 x 15.1	134 x 76	0.47 x 0.47	0.51 x 0.51	1/128, 1/12
G242CX5R1A0	240 x 128	FSTN	180 x 110 x 15.1	134 x 76	0.47 x 0.47	0.51 x 0.51	1/128, 1/12
G242CX5R1AC	240 x 128	FSTN	180 x 110 x 15.1	134 x 76	0.47 x 0.47	0.51 x 0.51	1/128, 1/12
G242CX5E1AC	240 x 128	WTSTN	180 x 110 x 15.1	134 x 76	0.47 x 0.47	0.51 x 0.51	1/128, 1/12
G321DX1R1AC**	320 x 200	FSTN	166 x 134 x 15.1	128 x 110	0.34 x 0.48	0.38 x 0.52	1/200, 1/15
G321DX5R1A0	320 x 200	FSTN	166 x 134 x 15.1	128 x 110	0.34 x 0.48	0.38 x 0.52	1/200, 1/15
G321DX5R1AC	320 x 200	FSTN	166 x 134 x 15.1	128 x 110	0.34 x 0.48	0.38 x 0.52	1/200, 1/15
G321EX1R000**	320 x 240	FSTN	150 x 96 x 14.0	103 x 80	0.27 x 0.27	0.30 x 0.30	1/240, 1/13
G321EX5R000	320 x 240	FSTN	150 x 96 x 14.0	103 x 80	0.27 x 0.27	0.30 x 0.30	1/240, 1/13
G324EX5R1A0	320 x 240	FSTN	166 x 134 x 15.1	128 x 110	0.32×0.39	0.36 x 0.43	1/240, 1/13
G324EX5R1AC	320 x 240	FSTN	166 x 134 x 15.1	128 x 110	0.32 x 0.39	0.36 x 0.43	1/240, 1/13
G694DX1R010**	640 x 200	FSTN	260 x 122 x 15.7	216 x 83	0.30 x 0.36	0.33 x 0.39	1/200, 1/15
G649DX5R010	640 x 200	FSTN	260 x 122 x 15.7	216 x 83	0.30 x 0.36	0.33 x 0.39	1/200, 1/15

(Unit: mm) *A built-in DC-DC converter eliminates the need for Vic ** These models are transflective positive viewing mode for direct sunlight applications. All other EL and CFL versions are transmissive negative. WISTN = Wide temperature super twisted nematic fluid. STN = Super twisted nematic fluid.

G1213


G1216

G191C

G321E

NOTE:

Modules shown are approximately one-third of actual size, scale is 1mm = 3mm.

Power Requirements							
V _{DD} (V _{DD} x mA)	V _{LC} V _{LC} x mA)	Backlight† (V _{DD} x mA)	Weight (g)	Suitable Controller	Controller Board	Inverter	Part Number
+5v @ 3.5	-5v @ 3.0	-	150	Built-in Data RAM	(Built-in RAM)	-	F10160A
+5v @ 2.0	-8v @ 1.5	-	40	Built-in Data RAM	(Built-in RAM)	-	G12:1300N000
+5v @ 2.0	-8v @ 1.5	-	40	Built-in Data RAM	(Built-in RAM)		G121600N000
+5v @ 4.3	-15v @ 4.1	-	75	MSM6255GS	LCDC-1330-32A		G12:1C00P000
+5v @ 6.5	-15v @ 4.1	_	75	Built-In SED1335	(Built-in)		G12'1C00P00C
+5v @ 3.1	-12.4v @ 2.9	-	100	MSM6255GS	LCDC-1330-32A		G191C00R0A0
+5v @ 6.5	-18v @ 6.0	-	75	MSM6255GS	LCDC-1330-32A	-	G191D00P000
+5v @ 8.0	*	-	140	MSM6255GS	LCDC-1330-32A	-	G243600J000
+5v @ 11.0	-24v @ 9.0	-	450	MSM6255GS	LCDC-1330-32A		G648D00R000

+5v @ 2.0	-8v @ 1.5	+4.1v @ 50	45	Built-in Data RAM	(Built-in RAM)	-	G1213B1N000 (LED)
+5v @ 2.0	-8v @ 1.5	+4.1v @ 100	45	Built-in Data RAM	(Built-in RAM)	-	G1216B1N000 (LED)
+5v @ 6.5	-18v @ 6.0	+4.1v @ 120	100	MSM625565	LCDC-1330-32A	-	G121CB1P000 (LED)
+5v @ 6.5	-18v @ 6.0	+4.1v @ 120	100	Built-in SED1335	(Built-in)	-	G121CB1P00C (LED)
+5v @ 3.1	-12.4v @ 2.9	+5v @ 120	100	MSM6255GS	LCDC-1330-32A	SKI-050-05H	G191C21R0A0** (EL)
+5v @ 6.5	-18v @ 6.0	+4.1v @ 120	100	MSM6255GS	LCDC-1330-32A	~	G191DB1P000 (LED)
+5v @ 8.0	*	+5v @ 75	140	MSM6255GS	LCDC-1330-32A	NEL-D32-49	G243621A000**(EL)
+5v @ 11.0	-24v @ 9.0	+12v @ 115	450	MSM6255GS	LCDC-1330-32A	NEL-D5-006	G648D21B000**(EL)

+5v @ 12.0	*	+5v @ 250	200	Built-in SED1330	(Built-in)	ILP-325-INV	G2446X1R1AC**
+5v @ 10.0	*	+5v @ 250	200	MSM6255GS	LCDC-1330-32A	ILP-325-INV	G2446X5R1A0
+5v @ 12.0	*	+5v @ 250	200	Built-in SED1330	(Built-in)	ILP-325-INV	G2446X5R1AC
+5v @ 12.0	*	+5v @ 250	200	Built-in SED1330	(Built-in)	ILP-325-INV	G2446X5E1AC
+5v @ 40.0	*	+5v @ 300	280	Built-in SED1330	(Built-in)	ILP-324-INV	G242CX1R1AC**
+5v @ 30.0	*	+5v @ 300	280	MSM6255GS	LCDC-1330-32A	ILP-324-INV	G242CX5R1A0
+5v @ 40.0	*	+5v @ 300	280	Built-in SED1330	(Built-in)	ILP-324-INV	G242CX5R1AC
+5v @ 40.0	*	+5v @ 300	200	Built-in SED1330	(Built-in)	ILP-324-INV	G242CX5E1AC
+5v @ 23.0	-24v @ 6	+5v @ 300	300	Built-in SED1330	(Built-in)	ILP-323-INV	G321DX1R1AC**
+5v @ 7.0	-24v @ 6	+5v @ 300	300	MSM6255GS	LCDC-1330-32A	ILP-323-INV	G321DX5R1A0
+5v @ 23.0	-24v @ 6	+5v @ 300	300	Built-in SED1330	(Built-in)	ILP-323-INV	G321DX5R1AC
+5v @ 6.4	-22v @ 5.7	+24v @ 80	195	MSM6255GS	LCDC-1330-32A	12902A	G321EX1R000**
+5v @ 6.4	-22v @ 5.7	+24v @ 80	195	MSM6255GS	LCDC-1330-32A	12902A	G32:1EX5R000
+5v @ 7.0	-24v @ 6	+5v @ 300	300	MSM6255GS	LCDC-1330-32A	ILP-323-INV	G324EX5R1A0
+5v @ 23.0	-24v @ 6	+5v @ 300	300	Built-in SED1330	(Built-in)	ILP-323-INV	G324EX5R1AC
+5v @ 11.0	-24v @ 9	+12v @ 350	420	MSM6255GS	LCDC-1330-32A	HIU-168	G649 DX1R010**
+5v @ 11.0	-24v @ 9	+12v @ 350	420	MSM6255GS	LCDC-1330-32A	HIU-168	G649DX5R010

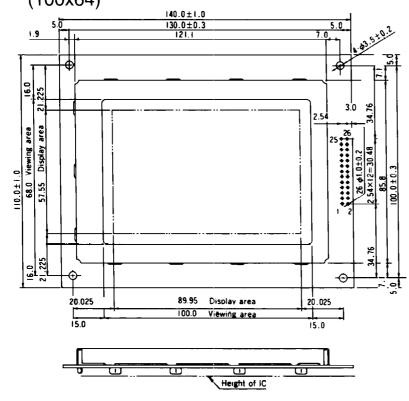
†Power consumption is typical and includes the backlight. For the EL and CFL versions it includes inverter losses.

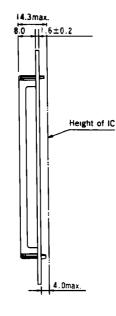
(Unit:mm)

G2446

Since our policy is one of continuous improvements, we reserve the right to change the specifications of the products in the catalog without notice.

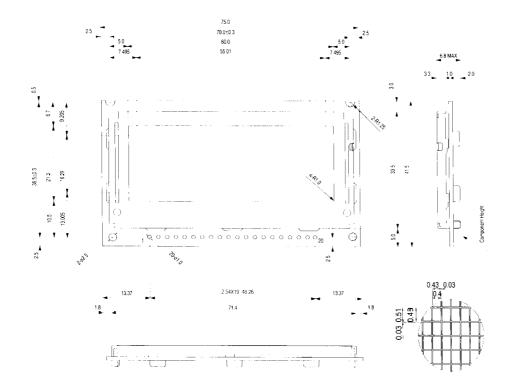
G242C




G321D

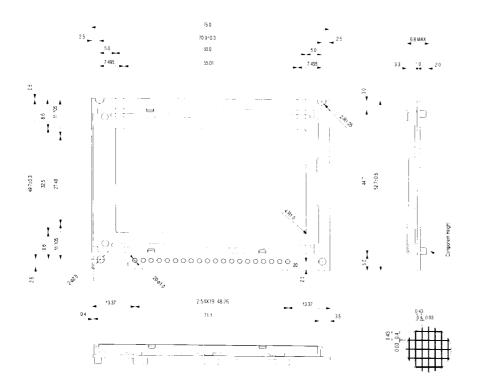
Module Outline Drawings

■ F1016 Unit: mm General tolerance: ± 0.5 mm (100x64)



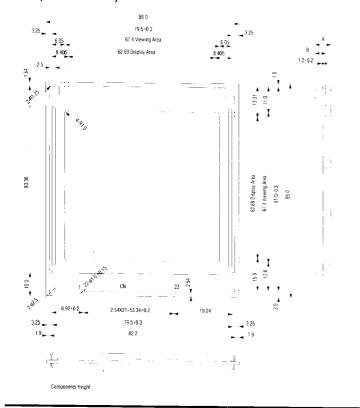
No.	Symbol	No.	Symbol
1	DB_7	14	CS11
2	DB ₆ 15		CS21
3	DB₅	16	CS12
4	DB₄	17	CS22
5	DB₃	18	CS13
6	DB ₂	19	CS23
7	DB,	20	CS14
8	DB ₀	21	CS24
9	E	22	NC
10	R/W	23	NC
11	D/I	24	V _{LC}
12	NC	25	V _{DD}
13	RST	26	V _{ss}

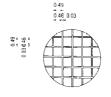
CN1 F1016


■ **G1213** Unit: mm General tolerance: ± 0.5 mm (128x32)

	CI11	G1213	
No.	Symbol	No.	Symbol
1	V _{DD}	11	DB ₇
2	V _{ss}	12	CS1
3	V _{LC}	13	RST
4	DB,	14	R/W
5	DB	15	D/I
6	DB.	16	E
7	DB.	17	F _{GND}
8	DB.	18	NC
9	DB.	19*	LED (+)
10	DB	20*	LED (-)

^{*} No connection to pins 19 & 20 for reflective part G121300N000).


■ **G1216** Unit: mm General tolerance: ± 0.5 mm (128x64)

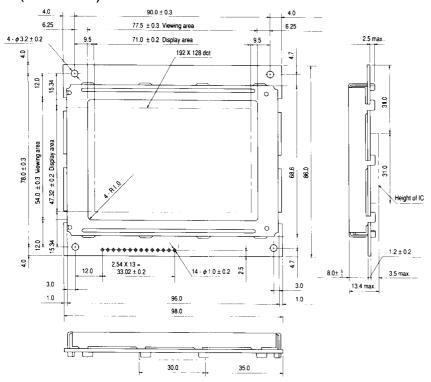


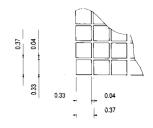
	CN1	G121 6	
No.	Symbol	No.	Symbol
1	V _{DD}	11	DB,
2	V_{ss}	12	CS1
3	V _{LC}	13	CS2
4	DB _o	14	RST
5	DB,	15	R/W
6	DB ₂	16	D/I
7	DB_3	17	E
8	DB ₄	18	F _{GND}
9	DB _s	19*	LED (+)
10	DB_6	20*	LED (-)

^{*} No connection to pins 19 & 20 for reflective part (G121600N000).

■ **G121C** Unit: mm General tolerance: ± 0.5 mm (128x128)

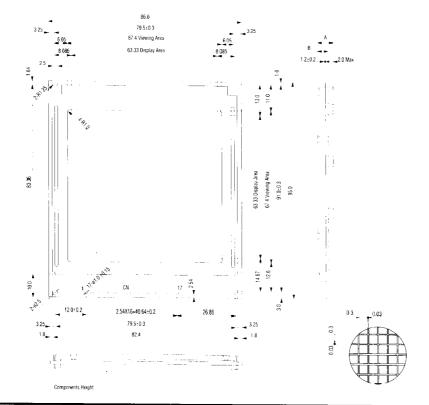
CN	CN1 With Controller G121C					
No.	Symbol	No.	Symbol			
1	/RES	12	D ₄			
2	/RD	13	D _s			
3	/WR	14	D_{ϵ}			
4	SEL2	15	D,			
5	SEL1	16	V _{DD}			
6	/CS	17	V _{ss}			
7	A0	18	Vu			
8	D{o}	19	V _{LC}			
9	D,	20	INH			
10	D ₂	21*	LED (+)			
11	D ₃	22*	LED (-)			


^{*} No connection to pins 21 & 22 for reflective part (G121C00P00C).

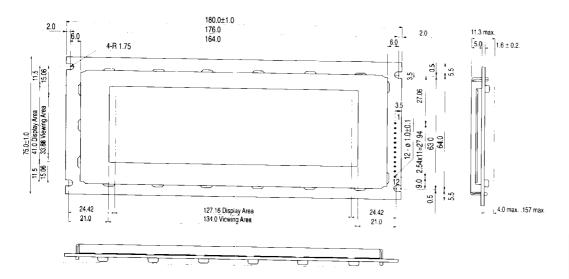

CN1 Without Controller G121C				
No.	Symbol	No.	Symbol	
1	V _{DD}	10	D,	
2	F _{GND}	11	$D_{\scriptscriptstyle 2}$	
3	CL2	12	D ₃	
4	INH	13	VLC	
5	FLM	14	V _o	
6	CL1	15	V _{ss}	
7	V _{ss}	16*	LED (+)	
8	М	17*	LED (-)	
9	D _o			

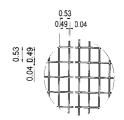
^{*} No connection to pins 16 & 17 for reflective part (G121C00P000).

Module Outline Drawings (Continued)


■ **G191C** Unit: mm General tolerance: ± 0.5 mm (192x128)

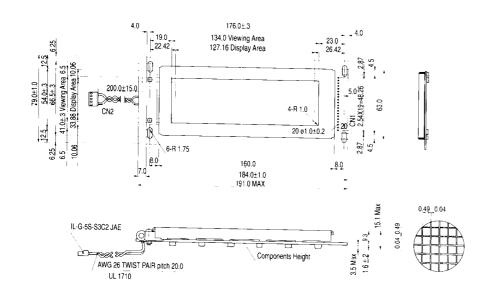
	CN1 G191C				
No.	No. Symbol		Symbol		
1	D_3	8	D _o		
2	D ₂	9	V _{DD}		
3	FLM	10	V_{ss}		
4	M	11	VLC		
5	CL1	12	F _{GND}		
6	CL2	13	V _{EL}		
7	D,	14	V _{ELG}		


■ **G191D** Unit: mm General tolerance: ± 0.5 mm (192x192)



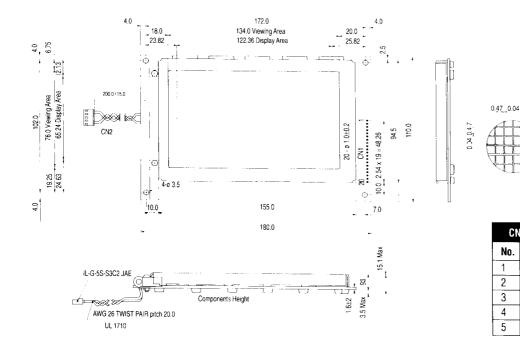
	CN1 G191D				
No.	Symbol	No.	Symbol		
1	V _{DD}	10	D,		
2	F _{GND}	11	D_2		
3	CL2	12	D_3		
4	INH	13	V _{LC}		
5	FLM	14	V _o		
6	CL1	15	V _{ss}		
7	V_{ss}	16*	LED (+)		
8	М	17*	LED (-)		
9	D ₀				

^{*} No connection to pins 16 & 17 for reflective part (G191D00P000).


■ G2436 Unit: mm General tolerance: ± 0.5 mm (240x64)

CN1 G2436					
No.	Symbol	No.	Symbol		
1_	D3	7	CL1		
2	D2	8	CL2		
3	D1	9	V _{DD}		
4	D0	10	$V_{\rm ss}$		
5_	FLM	11	V _D		
6	M	12	V _{LC}		

■ G2446 Unit: mm General tolerance: ± 0.5 mm (240x64)

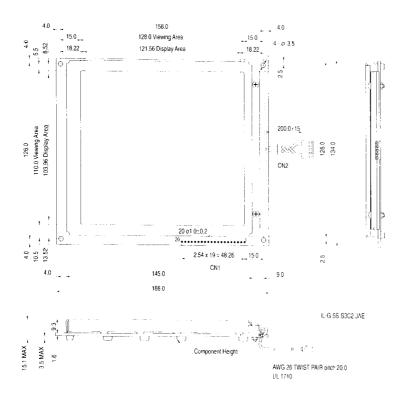

CN1 With Controller G2446				
No.	Symbol	No.	Symbol	
1	/RES	11	D_3	
2	/RD	12	D,	
3	/WR	13	D ₅	
4	SEL2	14	D ₆	
5	SEL1	15	D,	
6	/CS	16	V _{DD}	
7	A0	17	V _{ss}	
8	D _o	18	V _o	
9	D,	19	V _{LC}	
10	D ₂	20	F _{GND}	

CN2 CFL			
No.	Symbol		
_1	AC IN		
2	NC		
3	NC		
4	NC		
5	AC IN		

CN1 Without Controller G2446				
No.	Symbol	No.	Symbol	
1	NC	11	$\overline{D_3}$	
2	NC	12	FLM	
3	NC	13	М	
4	NC	14	CL2	
5	NC	15	CL1	
6	NC	16	V_{DD}	
_7	INHX	17	V _{ss}	
8	$D_{\scriptscriptstyle{0}}$	18	Vo	
9	D,	9	V _{LC}	
10	$D_{\scriptscriptstyle 2}$	2:0	F _{GND}	

Module Outline Drawings (Continued)

■ **G242C** Unit: mm General tolerance: ± 0.5 mm (240x128)

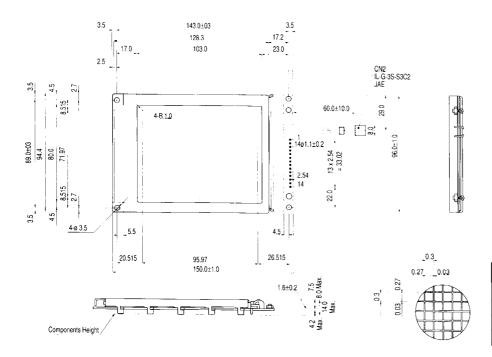


CN	1 With Co	ntrolle	r G242C
No.	Symbol	No.	Symbol
1	/RES	11	D_3
2	/RD	12	D ₄
3	/WR	13	$D_{\scriptscriptstyle{5}}$
4	SEL2	14	$D_{\mathfrak{s}}$
5	SEL1	15	\mathbf{D}_{i}
6	/CS	16	V _{op}
7	A0	17	$V_{\rm ss}$
8	$D_{\scriptscriptstyle{0}}$	18	V _o
9	D,	19	Vic
10	$\overline{D_2}$	20	F _{GND}

CN1 Without Controller G242C

I	V	No.	Symbol	No.	Symbol
		1	NC	11	D_3
		2	NC	12	Fl M
		3	NC	13	M
11	2 CFL	4	NC	14	CL2
	Symbol	5	NC	15	CL1
	AC IN	6	NC	16	V _{DD}
	NC	7	INHX	17	V _{ss}
	NC	8	D _o	18	V _o
	NC	9	D,	19	V _{ic}
	AC IN	10	D ₂	20	F _{GND}

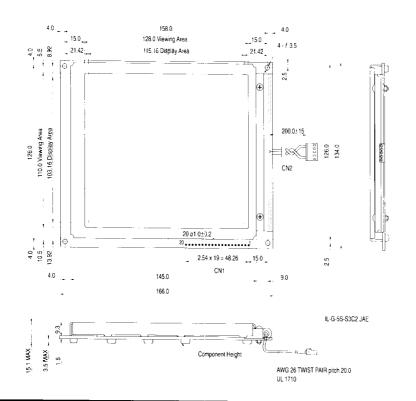
■ **G321D** Unit: mm General tolerance: ± 0.5 mm (320x200)



CN2 CFL			
No. Symbol			
1	AC IN		
2	NC		
3	NC		
4	NC		
5	AC IN		

CN.	1 With Co	ntrolle	r G321D
No.	Symb(I	No.	Symbol
1	/RES	11	$D_{\scriptscriptstyle 3}$
2	/RD	12	D,
3	/WR	13	D ₅
4	SEL2	14	D_6
5	SEL1	15	D,
6	/CS	16	V _{DD}
7	A0	17	$V_{\rm ss}$
8	D _o	18	V _o
9	D,	19	V _{ic}
10	D,	20	F _{GND}

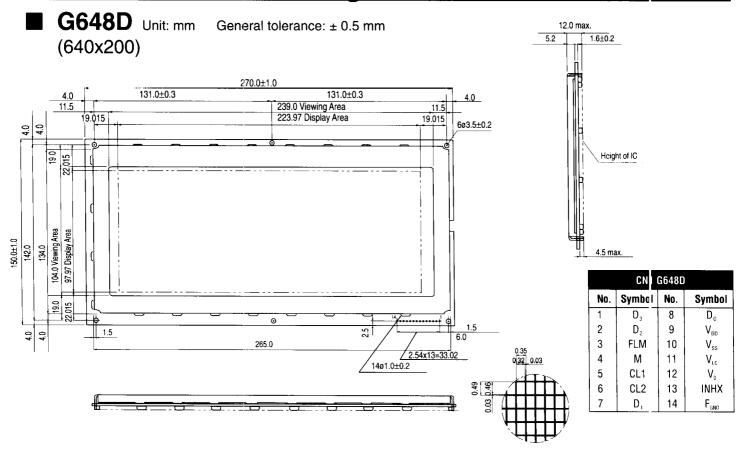
CN1 Withou		G	ontrol	ler G321D
No.	Symbo	1	No.	Symbol
1	NC		11	D_3
2	NC		12	FLM
3	NC		13	М
4	NC		14	CL2
5	NC		15	CL1
6	NC		16	V _{on}
7	INHX		17	V _{ss}
8	D_{o}		18	V _o
9	D,		19	Vic
10	D _o		20	F _{ism}


■ **G321E** Unit: mm General tolerance: ± 0.5 mm (320x240)

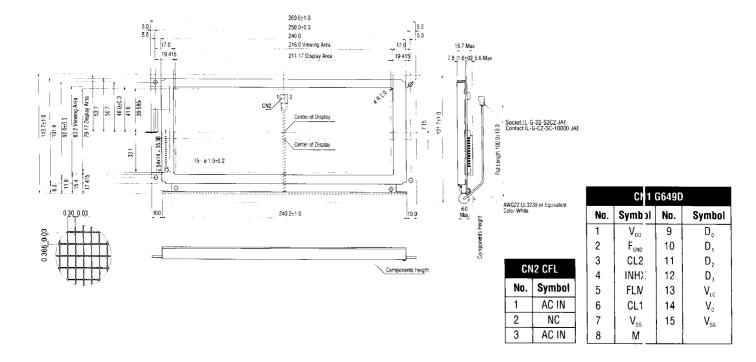
GN2 GFL				
No.	Symbol			
1	AC IN			
2	NC			
3	AC IN			

	CN1	G321E	
No.	Symbol	No.	Symbol
1	FLM	14	\overline{D}_{2}
2	M	15	D_3
3	CL1	16	V_{pp}
4	CL2	17	V_{ss}
5	INHX	18	V _{LC}
6	D _o	19	V ₀
7	D,	20	F _{GNO}

■ **G324E** Unit: mm General tolerance: ± 0.5 mm (320x240)

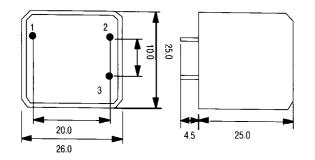


CN	CN2 CFL			
No.	Symbol			
1	AC IN			
2	NC			
3	NC			
4	NC			
5	AC IN			

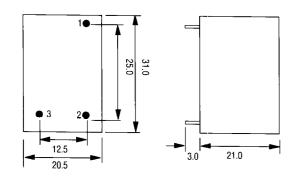

CN	1 With Co	ptrolle	er G324E
No.	Symbol	No.	Symbol
1	/RES	11	D_3
2	/RD	12	D,
3	/WR	13	D.,
4	NC	14	D_6
5	SEL1	15	D,
6	/CS	16	V _{ov}
7	A0	17	V _{ss}
8	D _o	18	V _o
9	U,	19	V _{ic}
10	D_2	20	F _{GND}
			•

CN1 Without C		ontrol	ler G324E
No.	Symbol	No.	Symbol
1	NC	11	D_3
2	NC	12	FLM
3	NC	13	М
4	NC	14	CL2
5	NC	15	CL1
6	NC	16	V _{DD}
7	INHX	17	$V_{\rm ss}$
8	Do	18	V _o
9	D,	19	V _{ii}
10	D ₂	20	F _{GND}

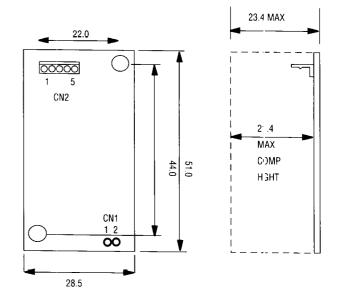
Module Outline Drawings (Continued)



■ **G649D** Unit: mm General tolerance: ± 0.5 mm (640x200)


Inverter Outline Drawings

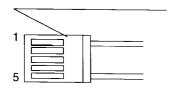
■ SKI-050-05H, G191C Unit: mm


Pin No.	Function	
1	Input: 5V DC	
2	Output	-
3	Common: GND	

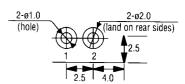
■ NEL-D32-49, G2436 Unit: mm

Pin No.	Function	
1	Input: 5V DC	-
2	Common: GND	
3	Output	

■ ILP-32X-INV, G2446/G242C/G32:1D/G324E Unit: mm

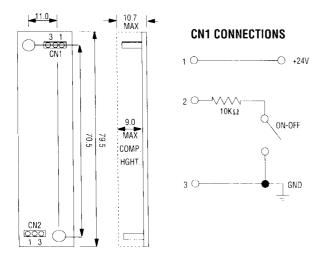

CN1 = INPUT

Pin No.	Function	
1	Input: 5V DC	
2	Ground	


CN2 = OUTPUT

Pin No.	Function	
1	AC output	
2	no connection	
3	no connection	
4	no connection	10-11
5	AC output	

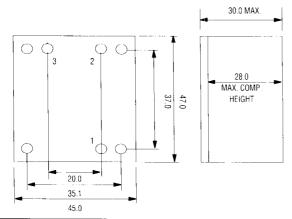
OUTPUT MATING CONNECTOR JAE IL-G-5S-S3C2



CN1 HOLE DETAIL

Inverter Outline Drawings (Continued)

■ 12902A, G321E Unit: mm

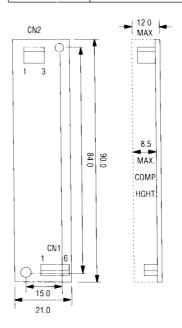

CN1 = INPUT
MATING CONNECTOR = AMP 175487-3

Pin No.	Function	
1	Input: 24V DC	
2	Switch: Gnd = ON, Open = OFF	
3	Ground	

CN2 = OUTPUT
MATING CONNECTOR = JAE IL-G-3P-S3L2

Pin No.	Function	
1	AC output	
2	no connection	
3	AC output	

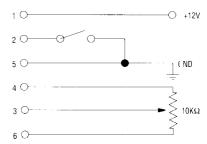
■ NEL-D5-006, G648D Unit: mm



Pin No.	Function	
1	Input: 12V DC	
2	Common: GND	
3	Output	

■ HIU-168, G649D Unit: mm

CN2 = OUTPUT
MATING CONNECTOR = JAE | L-G-3P-S3L 2-E


Pin No.	Function	
1	AC output	
2	no connection	
3	AC output	

CN1 = INPUT
MATING CONNECTOR = HIROSE DF 13-6P · 1.25H

Pin No.	Function
1	Input: 12V DC
2	Switch: Gnd = OFF, Open = ON
3	10K ohm potentiometer (wiper)
4	10K ohm potentiometer (onε end)
5	Ground
6	10K ohm potentiometer (onε end)

CN1 CONNECTIONS

Principles of Operation

■ Basic Technology

Liquid crystal displays (LCDs) are a passive display technology. This means they do not emit light; instead, they use the ambient light in the environment. By manipulating this light, they display images using very little power. This has made LCDs the preferred technology whenever low power consumption and compact size are critical.

Liquid crystal (LC) is an organic substance that has both a liquid form and a crystal molecular structure. The rod-shaped molecules are normally in a parallel array, and an electric field can be used to control the molecules. Most LCDs today use a type of liquid crystal called twisted nematic (TN) (see Fig. 1).

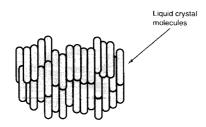


Figure 1
Structure of nematic liquid crystal

LCDs consist of two pieces of glass with electrodes printed on the inside. An alignment layer on each glass surface is used to twist the liquid crystal material in a helical or "twisted" pattern. Polarizers are used on the outside front and rear surfaces (see Figs. 2 & 3),

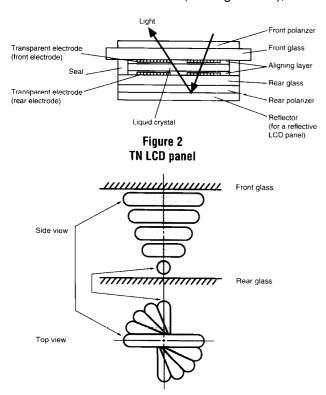


Figure 3
Orientation of nematic liquid crystal molecules (twist angle: 90°)

When the LCD is "off," no voltage is applied to the electrodes, and light passes through the LCD. When it is "on," voltage is applied and the LC mclecules align themselves in the direction of the electric field. This causes the light to be out of phase with the polarizers and to be blocked, creating a dark area on the LCD. By selectively applying voltage to the electrodes, a variety of patterns can be achieved.

Many advances in TN LCDs have been produced. Super twisted nematic (STN) LC material offers a higher twist angle (≥ 200° vs. 90°) that provides higher contrast and a better viewing angle. However, one negative feature is the birefringence effect, which shifts the background color to yellow-green and the character color to blue. This background color can be changed to a gray by using a special filter.

The most recent advance has been the introduction of film super twisted nematic (FSTN) d splays. This adds a retardation film to the STN display that compensates for the color added by the birefringence effect. This allows a black and white display to be produced. Because of the added filtering, FSTN displays look best when used with a backlight.

■ Backlighting

An LCD is basically a reflective part. It needs ambient light to reflect back to the eye. In uses where ambient light is low or non-existent, a light source must be placed behind the LCD. This is known as backlighting (see Fig. 4a). There are several technologies used:

■ Electroluminescent (EL):

EL backlights are very thin, light weight and provide a very even light. They are available in a variety of colors, with white being the most popular for use with LCDs. While their power consumption is fairly low, they require voltages of 80 to 100 VAC. This is supplied by an inverter that converts a 5, 12 or 24 VDC input to the AC output. ELs have a limited life of 2,000 to 3,000 hours to half brightness.

■ Light Emitting Diode (LED):

LED backlights offer a longer operating life — 50,000 hours minimum — and are brighter than ELs. They do consume more power than ELs. Being a solid state device, they operate directly off +5 VDC, so they do not require an inverter. However, a current limiting resistor is recommended for protection of the LEDs. LEDs are mounted in an array directly behind the display, which increases the thickness 2 to 5 mm. LEDs come in a variety of colors, with yellow-green being the most common.

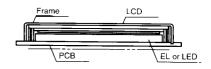
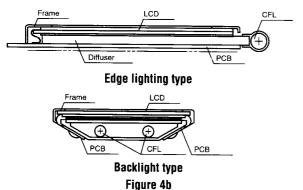



Figure 4a
EL and LED Backlight

Principles of Operation (Continued)

■ Cold Cathode Fluorescent Lamp (CFL):

CFL backlight offers low power consumption and a very bright white light (see Fig. 4b). Two technologies are used: direct and edge lighting. In both types a cold cathode fluorescent tube is the light source. A diffuser distributes the light evenly across the viewing area. Edge lighting offers a thinner package and less power. CFLs require an inverter to supply the 270 to 300 VAC used by the CFL tube. They are used primarily in graphic LCDs and have a longer life – 10,000 to 15,000 hours – than ELs do.

■ Viewing Modes

LCDs are offered in three basic light transmission modes: reflective, transmissive and transflective (see Fig. 5).

In a reflective mode, available light is used to illuminate the display. This is achieved by combining a reflector with the rear polarizer. It works best in an outdoor or well-lighted office environment.

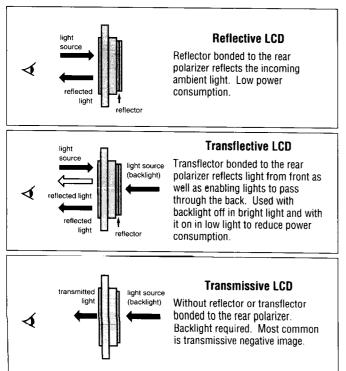


Figure 5

Transmissive LCDs have a transparent rear polarizer and do not reflect ambient light. They require a backlight to be visible. They work best in low light conditions with the backlight on continuously.

Transflective LCDs are a mixture of the reflective and transmissive types, with the rear polarizer having partial reflectivity. They are combined with a backlight for use in all types of lighting conditions. The backlight can be left off where there is sufficient light, conserving power. In darker environments, the backlight can provide a bright display. Transflective LCDs will not "wash out" when operated in direct sunlight.

Another feature of the viewing mode is whether the LCD is a positive or negative image (see Fig. 6). The standard image is positive, which means a light background with a dark character or dot. This works best in reflective or transflective mode. A negative image is usually combined with a transmissive mode. This provides a dark background with a light character. A strong backlight must be used to provide good illumination. In most graphic applications, the transmissive negative mode is inverted. This combination provides a light background with dark characters, which offers the user better readability.

■ LCD Modules

The first LCDs were composed of only the LCD panel. This left the drive circuitry to the customer. More recent developments have combined the LCD panel with a PCB (printed circuit board) containing the drive LSI. This is known as an LCD module, which offers customers a more complete solution.

There are two types of LCD modules: character and graphic. The character module is composed of 1 to 4 lines of 16 to 40 character blocks having 5x8 dots. Each character block is addressed separately and can form alphanumeric characters and a limited number of symbols.

Graphic modules provide users with a greater degree of flexibility. They are composed of pixels arranged in rows and columns. Each pixel can be addressed individually for text, graphics or any combination of the two. An LCD controller IC (integrated circuit) is required to operate the graphic LCD. Some models feature the controller chip built into the module.

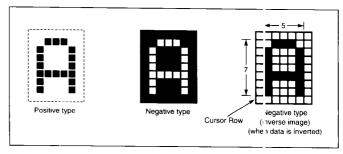
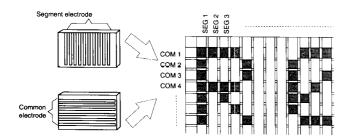
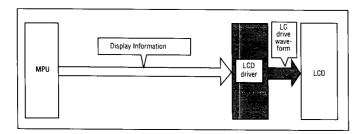
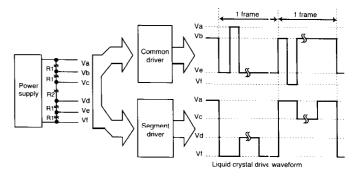



Figure 6

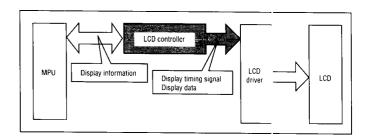

Graphic modules offer the greatest flexibility in formatting data on the display. They allow for text, graphics or any combination of the two. Since character size is defined by software, they allow any language or character font to be shown. The only limit is the resolution of the display.

Graphic modules are organized in rows (horizontal) and columns (vertical) of pixels. Each pixel is addressed individually, allowing any combination to be "on". This bitmapping provides the user with the ability to construct text of any size or shape, or true graphics, if that is desired.



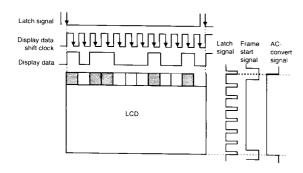
The above figure shows the structure of an LCD. Liquid crystals are placed between two types of glass substrates, one having segment electrodes (SEG1, SEG2, and so on), the other having common electrodes (COM1, COM2, and so on). Each cross point of the segment and common electrodes is a display pixel.

The LCD is driven as follows. The common electrodes are sequentially selected. The display pixels on the selected common electrode are turned on/off according to the select/non-select signals of the corresponding segment electrodes. This is called multiplex drive.



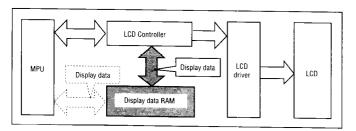
The LCD driver generates liquid crystal drive waveforms according to the display information sent from the MPU, and uses the waveforms to drive the LCD.

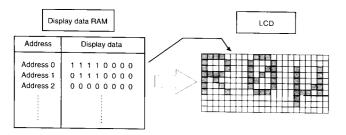
The LCD drivers are classified into the two types: the common driver and the segment driver. The common driver drives common electrodes and the segment driver drives segment electrodes. As shown in the figure above, these drivers select a proper voltage level sequentially from the six voltage levels (Va to Vf) to generate liquid crystal drive waveforms. The six voltage levels are generated by resistance division.


■ LCD Controller

The MPU cannot directly interface the LCD driver. So the LCD controller is placed between the MPU and the LCD drivers to handle the interface between them.

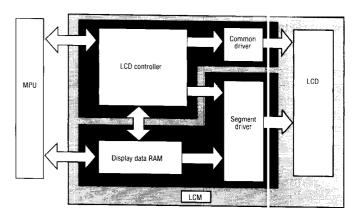
The LCD controller receives display information from the MPU, converts it into the display timing signals and display data required for the LCD drivers, and transfers them to the LCD drivers.


Principles of Operation (Continued)


There are four display timing signals: display data shift clock, latch signal, frame start signal, and AC-convert signal.

There are two formats for the display data transfer: serial transfer and parallel transfer. In serial transfer, data is transferred bit by bit as shown in the figure above. In parallel transfer, four or eight bits are transferred at the same time. All Seiko Instruments graphic modules use parallel transfer.

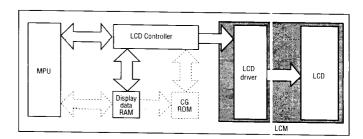
■ Display Data RAM



The display data RAM stores the display information sent from the MPU. The LCD controller reads data from the display data RAM, and transfers the data to the LCD drivers. Some LCD controllers let the MPU directly interface the display data RAM as shown by dotted lines in the figure above.

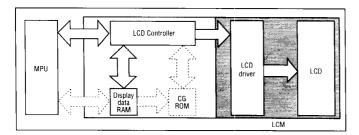
One of the methods to correspond display contents to display data is to assign a display data bit to a display pixel dot. In that case, if the MPU writes and stores data "11110000" at address 0 of the display data RAM, the LCD screen displays a pattern of "DITT according to the 0's and 1's in the data. This correspondence method is called the graphic display mode. The graphic display mode allows any pattern to be displayed, because each display pixel dot can be turned on and off independently.

■ Graphic LCD Module With Built-in RAM (F1016, G1213, G1216)



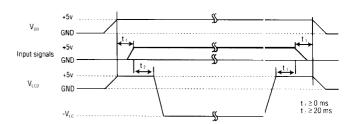
Built-in Data RAM = Direct Bit Mapping

Graphic modules with built-in data RAM have two types of ICs: one integrating the controller and common driver, and one integrating the displey data RAM and the segment driver. These modules use direct bitmapping ... one bit in RAM corresponds to each pixel on the display. They communicate directly to the microprocessor through an 8-bit parallel interface. All the required controller timing functions are built-in to the module. There is no "CG ROM", or any way to store information.


■ Graphic LCD Modules With External Controller

(G191C, G191D, G2436, G321E, G648I), G649D)

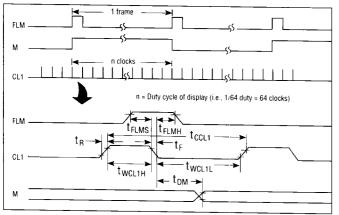
Most graphic modules feature the segment and common drivers on the LCD Module, and use a four bit parallel interface to an external controller. The controller can be an external PC board (such as the LCDC-1330) or the controller IC can be located on the mother board with the microprocessor. In the larger graphic modules, all the board space is taken up with the driver ICs. Also for small graphic modules with high resolution, there may be no room to locate the controller on the module.


■ Graphic Modules With Built-in Controller (G121C, G2446, G242C, G321D, G324E)

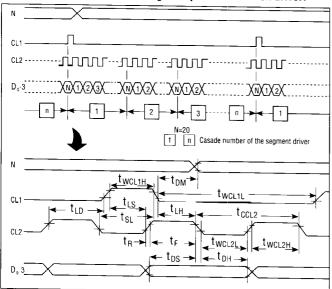
Seiko Instruments offers five graphic modules with the SED1330 controller built-in.* These modules interface directly to the microprocessor with an eight bit parallel interface. The 1330 was carefully chosen to offer our customers the most advanced features, including overlayed graphics & text, horizontal & vertical scrolling, built-in character generator with external RAM, etc.

■ Power ON/OFF and Signal Input Timing

Power ON/OFF and signal input should be performed according to the timing shown below in order not to damage the LCD driving circuit and the LCD panel. See special requirements for G1213 & G1216 in the next section.

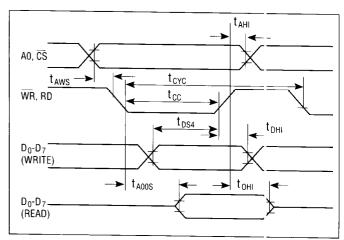

Interface Signal	Function	
Α0	Command mode set	
CL1	Display data latch signal. Signal is used to latch data in each common line	
CL2	Display data shift signal. Clock signal to shift data in four bit increments to the display	
CS1, CS2	Chip select (read/write enable)	
/CS	Chip select	_
CS11-CS24	Chip select (screen selection)	
D ₀ -D ₃	Display data signal; Do-D3 for single screen; UD0-UD3 & LD0-LD3 for dual screen display	
DB ₀ -DB ₇	Tri-state bidirectional data bus	_
D/I	Display data/display control data instruction	
E	Enable	_
FLM	Frame start-up signal. Beginning signal that is sent at the start of each screen frame	
INHX	Display on/off signal: H=on, L=off	
M	Liquid crystal AC signal. This signal provides AC polarity in each display frame to prevent damage to the LCD from DC voltage	
/RD	Read	_
/RES, RST	Reset	_
RS	Register select signal	
R/W	Read/write select signal	
SEL1, SEL2	MPU interface configuration; for Intel, SEL1=0, SEL2=0; for Motorola, SEL1=1, SEL2=0	
V _{DD}	Power supply voltage for logic: +5v	
V_{LC}	Power supply for LCD: -5v to -24v (see model)	_
Vo	LCD contrast adjustment voltage	_
V_{SS}	Ground	_
/WR	Write	_

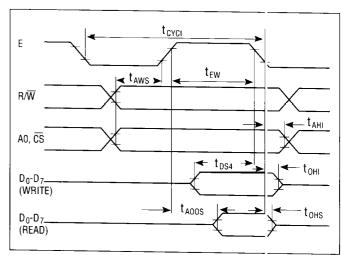
^{*} Model G121C features SED1335...see p. 31.


Principles of Operation (Continued)

■ Timing Characteristics

The following Timing diagrams apply to all the graphic modules without a built-in controller.


Timing characteristics of signal input into common driver.


Timing characteristics of signal input into segment driver.

Timing Characteristics Temp. = 0 - 50°C, VDD = 5.0v ± 5%, VSS = 0v								
Item	Symbol	Min.	Max.	Unit				
CL1 period	t _{CCL1}	1000		ns				
CL1 "H" pulse width	t _{wcl1H}	125		ns				
FLM setup time	t _{FLMS}	100		ns				
FLM hold time	t _{FLMH}	100	-	ns				
Input signal rise time	t _R		30	ns				
Input signal fall time	t _F		30	ns				
CL2 period	t _{CCL2}	330		ns				
CL2 "H" pulse width	t _{wcl2H}	110	-	ns				
CL2 "L" pulse width	t _{wcL2L}	110		ns				
Data setup time	tos	100		ns				
Data hold time	t _{oh}	100		ns				
CL2 fall to CL1 fall time	t _{si.}	125		ns				
CL1 fall to CL2 fall time	t _{LH}	80		ns				

■ Timing Characteristics For Modules With Built-in 1330 Controller.

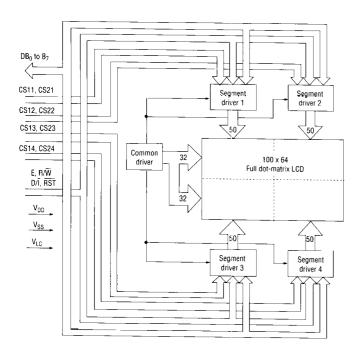
Intel 80 series timing diagram

Motorola 68 series timing diagram

Si	gnal	Symbol	Item	Min.	Max	Unit
80 series	WR, RD	t _{cyc}	System cycle time	10:10		ns
timing	WIN, NO	t _{cc}	Control pulse width	220		ns
68 series	A0, CS, R/W, E	t _{cyc}	System cycle time	10:00	-	ns
timing	AU, US, N/W, E	t _{EW}	Enable pulse width	220	-	ns
	A0, CS	t _{ah}	Address hold time	10	•	ns
		t	Address setup time	30	-	ns
80 and 68		t _{DS}	Data setup time	120	-	ns
series timing		t _{DH}	Data hold time	10	-	ns
		t	RD access time		120	ns
		t _{oh}	Output disable time	10	50	ns

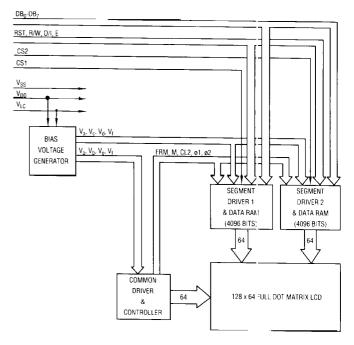
Note: See page 17 for microprocessor chip selection control (SEL).

Modules with Built-In Data RAM

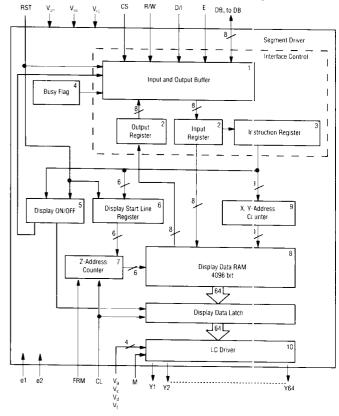

The Seiko Instruments liquid crystal display modules F1016, G1213 and G1216 are used to upgrade character-only modules in an easy and cost-effective way.

These compact graphic LCD modules can be used in personal translators, medical and scientific instrumentation, data collection, telephones, pagers, and devices that you can imagine. The new series of compact graphic LCD modules, G1213 and G1216, have the following features:

- 128 x 32 and 128 x 64
- Wide operating temperature range (-20°C to +70°C)
- High contrast for easy viewing
- STN reflective or optional LED backlight version
- Built-in RAM that eliminates external controllers
- Lower power consumption (+5V @ 2.0 mA and -8V @ 1.8 mA)


■ Circuit Block Diagram (F1016)

The F1016 is composed of a common driver and four segment drivers.



■ Circuit Block Diagram (G1213 & G1216)

The following block diagram shows the basic operation of the G1216. Model G1213 is similar with only one segment driver and 4096 bits of data RAM.

■ Segment Driver & Data RAM Detailed Block Diagram (G1213 & G1216)

Modules with Built-In Data RAM (Continued)

■ Functions and Operations of Main Blocks. (G1213 & G1216)

■ Interface Control Unit

The interface control unit consists of the following blocks:

- (1) Input and output buffer
- (2) Input and output register
- (3) Instruction register

The above blocks are selected according to the following combinations of R/W and D/I signals:

R/W	D/I	Functions
1	1	Output Register Read Internal Operation (Display Data RAM → Output Register)
0	1	Input Register Write Internal Operation (Input Register → Display Data RAM)
1	0	Busy Check and Status Read
0	0	Instruction

■ (1) Input and Output Buffer

The data is transmitted through eight data buses $(DB_0 \text{ to } DB_7)$.

DB₇ MSB (most significant bit) DB₀ LSB (least significant bit)

The data can input and output only when the Chip Select is selected. Therefore, if the Chip Select is not selected, the internal condition remains unchanged and instruction will not be executed, even when changing the signal of the input terminals excluding the RST (reset) terminal.

Note that the $\overline{\text{RST}}$ operates regardless of CS1 and CS2.

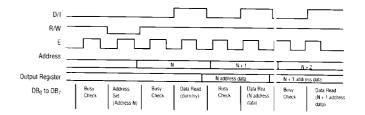
■ (2) Input and Output Register

This product is provided with an input register and an output register so that the product can interface with MPUs having speed differing from the internal operation.

■ Input Register

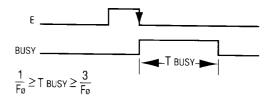
The input register is a register that is used for temporarily storing the data to be written in the display data RAM. The data to be written from the MPU to the input register will be automatically written in the display data RAM through internal operation.

When the Chip Select is selected and $R/\overline{W}=0$, $D/\overline{I}=0$, the data is written in the register, synchronized with the fall of signal E.


■ Output Register

The output register is a register that is used for temporarily storing the data to be read from the display data RAM.

■ (3) Instruction Register


In order to read the content of the output register, the Chip Select must be selected, D/I must be 1, and R/W must be 1. When executing the "Read" instruction, the contents of the output register stored at that time are output during the time that "E" is 1. When "E" falls, display data of currently indicated address is written in the output register. After that, the address advances by one.

The contents of the output register are rewritten by the Read instruction. The data is retained by the address set or other instructions. Accordingly, when performing the address set, and next executing the Read instruction, the data of the specified address is not output and the data of the address which is specified is output at the second data read time. Therefore, when setting the address, a dummy read is needed once.

■ (4) Busy Flag

The status when busy flag is "1" means that the module is operating internally. Instructions other than The Status Read are not available at this time. The busy flag is output to DB₇ by the Status Read instruction. Ensure that the busy flag is "0" before executing the instruction.

Fø is frequency of ø1 or ø2 (1/2 the source oscillation frequency of HD61203): 215 KHz typ.

■ (5) Display ON/OFF Flip/Flop

The display ON/OFF Flip/Flop is a flip-flop function that determines whether the display data corresponding to the RAM data is output to the segment on the LCD (ON status) or goes to all nonlit status regardless of the RAM data (OFF status). This controlled by the display ON/OFF instruction. When the RST signal becomes "0", the display goes to OFF status. This flip-flop status is output to DB₅ by the Status Read instruction.

Even when performing display ON/OFF, the data inside the RAM is not affected.

■ (6) Display Start Line Register

The display start line register is a register which determines the line address for which data is displayed on the top line of the LCD screen when displaying the contents of the display data RAM on the LCD screen. It is also used to scroll the display. The 6 bit (0 to 63) display start line information is written in this register by the Display Start Line Set Instruction.

The contents of this register are transmitted to address counter Z at "H" level of the FRM signal (common driver output) which indicates the display start on the screen.

■ (7) Z-address Counter

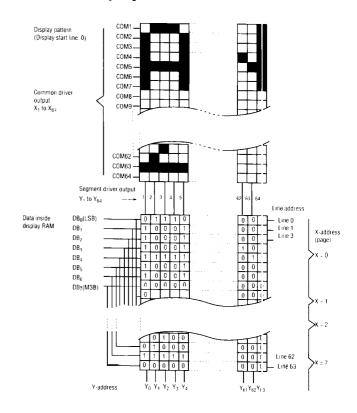
The Z-address counter generates the address to output the display data synchronized with the common signal. This is a 6-bit counter which counts at the fall of the CL signal (common driver output). The contents of the display start line register are preset to the Z-address counter at "H" level of the FRM signal (common driver output).

■ (8) Display Data RAM

The display data RAM is a RAM that stores the display dot data. 1 bit of RAM data corresponds to lighting (data = 1) or non-lighting (data = 0) of 1 dot of the display on the LCD screen.

■ (9) X,Y-address Counter

X,Y-address counter is a 9-bit counter which gives the address of the internal display data RAM. It is necessary to set the X-address counter of the three upper bits, and the Y-address counter of the six lower bits using differing instructions.

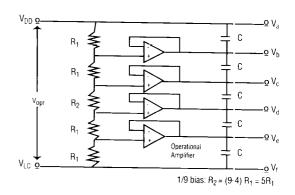

■ X-address Counter

Address counter X is a simple register that is not provided with a count function. The address is set by instruction.

■ Y-address Counter

This counter sets the address by instruction and is automatically advanced by the read/write operation. Counting is performed by looping the values 0 to 63.

■ Relationship Between Display and Data Inside Display RAM

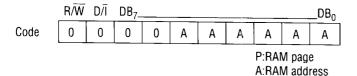


■ (10) Common Driver (HD61203)

The common driver is a 64 drive output CMOS IC. Incorporating an oscillation circuit, this driver generates the common signal and timing signals (LC AC drive control, and one-frame timing signal) necessary for the LC display, and controls the display by supplying the timing signals to the segment drivers.

■ (11) Bias Voltage Generator

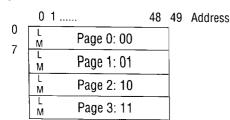
Six levels of standard voltage V_a to V_f are applied to the drivers as a bias voltage. This voltage is generated by resistance division of Vopr and driver by a voltage follower through an operational amplifier.



Modules with Built-In Data RAM (Continued)

■ Software Instructions (F1016)

Ir	Instruction		D/Ī	DB ₇	DB ₆	DB ₅	DB ₄	DB ₃	DB ₂	DB ₁	DB ₀	Note
(1)	Address set	0	0	Р	Р	Α	Α	Α	Α	Α	Α	
(2)	Address count mode set	0	0	0	0	1	1	1	0	1	AC	AC=1:Up mode AC=0:Down mode
(3)	Display on/off set	0	0	0	0	1	1	1	0	0	Di	Di=1:Display on Di=0:Display off
(4)	Write display data	0	1	D	D	D	D	D	D	D	D	
(5)	Read display data	1	1	D	D	D	D	D	D	D	D	
(6)	Display start page set	0	0	Р	Р	1	1	1	1	1	0	
(7)	Status P: RAM page A: RAM address D: Display data	1	0	BF	AC	Di	R	0	0	0	0	BF=1:Instruction in progress BF=0:Instruction can be accepted AC=1:Up mode AC=0:Down mode Di=1:Display off Di=0:Display on R=1:Reset mode R=0:Operation mode


■ Address set (F1016)

Sets display RAM address from which display data is read or written. The upper two bits specify the display RAM page, and the lower six bits specify the address. The address specified with the lower six bit is incremented or decremented according to the address count mode set instruction when a read or write operation is executed. Addresses 0 to 49 are counted, but the RAM page is not counted. If data has been written to every address on a page, new data is overwritten into the first adress on the page. To write data in the next RAM page, the Address set instruction must be reexecuted.

■ Supplement 1:Display RAM (F1016)

The F1016 has four display RAMs. A display RAM has 50x8x4 (1600) bits, and controls one screen. It has the following constructon:

Display RAM

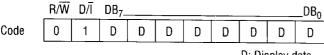
■ Address count mode set (F1016)

	тоде	R/W	D/Ī	DB ₇ _							_DB ₀
Code	Upm	0	0	0	0	1	1	1	(1	1
	rode -	0	0	0	0	1	1	1	C	1	0
	Down									-	

Sets adress count mode of the display RAM for reading or writing display data.

In up mode, the address is incremented. The value is looped from 49 to 0; After 49, the next address to be counted is 0.

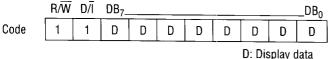
In down mode, the address is decremented. The value is looped from 0 to 49; After 0, the next address to be counted is 49.


■ Display on/off set (F1016)

	ay on	R/W	D/Ī	DB ₇ _							$_{DB_0}$
Code	Display	0	0	0	0	1	1	1	(0	1
	ay off	0	0	0	0	1	1	1	(0	0
	Display										

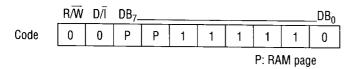
When the display set is on, display RAM data is displayed.

When the display is set to off, display RAM is not displayed. This has no effect on the data.

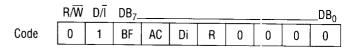

■ Write Display Data (F1016)

D: Display data

Write data at the display RAM Address specified with (1) Address set instruction from the CPU.


■ Read Display Data (F1016)

Reads data at the display RAM address specified with (1) Address set instruction to the CPU.


With a read operation, data read timing is as shown in Figure 7. After display data is read, the display data in the address that has been specified now is fetched into the internal register, and the address is incremented or decremented. If the Address set (Address N) instruction is executed, the first data becomes dummy data, and the data at Address N is output at the second data read.

■ Display Start Page Set (F1016)

The upper two bits specify the display RAM page, which is displayed at the top of the screen.

■ Status Read (F1016)

Outputs the status of the F1016

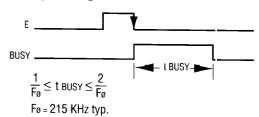
BF: Gives the status of the busy flag

BF=1: Instruction is being executed. Only the Status read instruction can be received.

BF=0: Instruction can be received.

AC: Gives the address count mode

AC=1: Up mode AC=0: Down mode The status of the display Di: Di=1: Display off


Di=0: Display on R: Gives the internal status of the F1016

> R=1: Reset mode R=0: Operation mode

■ Supplement 2: Busy Flag (F1016)

When an instruction other than the Status read instruction is received, the busy flag is set during execution of the internal operation, and it is reset when the instruction is completed. The F1016 carl only accept the Status read instruction in the busy state. Make sure the busy flag is reset before executing an instruction.

■ Busy Flag Timing

■ Display Start Page (F1016)

When page 0 is specified $(DB_7=0, DB_6=0)$

Page 0	
Page 1:	
Page 2	
Page 3	

Screen 1 to 4 (50x32 dots)

When page 1 is specified $(DB_7=0, DB_6=1)$

 	_
	Page 1
	Page 2
	Page 3
	Page 0

Screen 1 to 4 (50x32 dots)

When page 2 is specified $(DB_7=1, DB_6=0)$

Page 2	
Page 3	
Page 0	
Page 1	

Screen 1 to 4 (50x32 dots)

When page 3 is specified (DB₂=1 DB₂=1)

(007=1, 006=1)						
Page 3						
Page 0						
Page 1						
Page 2						

Screen 1 to 4 (50x32 dots)

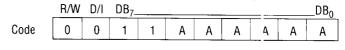
Modules with Built-In Data RAM (Continued)

■ Software Instructions (G1213, G1216)

Instructions other than the Status Read instruction will not be executed if they are sent while another instruction is already being executed. The busy flag is

"1" when executing the instruction. Check whether or not the flag is "1" before transmitting the instructions from the MPU.

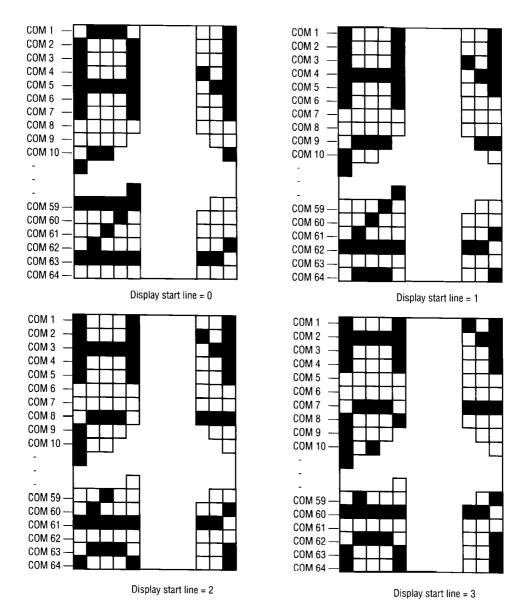
	Instruction					Code								
		R/W	D/I	DB ₇	DB ₆	DB ₅	DB ₄	DB ₃	DB ₂	DB ₁	DB ₀	Function		
1	Display ON/OFF	0	0	0	0	1	1	1	1	1	1/0	Turns ON/OFF total display. Date and internal status in the display RAM remain unchanged. 1:ON 0:OFF		
2	Display start line	0	0	1	1		D	isplay : (0 t	start lir o 63)	ies		Determines the RAM line to be displayed on the top line (COM1) on the display.		
3	X-address (page) set	0	0	1	0	1	1	1		dress ((0 to 7		Sets the x-address of the RAM (page) in the x-address (page) register.		
4	Y-address set	0	0	0	1			'-addre (0 to 6				Set y-address of the RAM in the Y-address counter	er.	
5	Status read	1	0	B U S Y	0	ON / OFF	R E S E T	0	0	0	0	Reads the status. RESET 1:Reset 0: Normal ON/OFF 1:Display OFF, 0: Display ON BUSY: 1:During internal operation 0:READY status		
6	Display data write	0	1			W	Write Data				-	Writes data to DB ₀ (LSB) to DB ₇ (MSB) on the data bus into the display RAM. Accesses the RAM in which address has been specified		
7	Display data read	1	1			R	tead Da	nta				Reads data DB ₀ (LSB) to DB ₇ (MSB) from the display RAM into the data bus. beforehand. After that the Y-address advances by one.		


Note: The BUSY time varies depending upon the frequency Fø (:215 kHz (typ.)) of Ø1, Ø2 ($1/Fø \le TBUSY \le 3/Fø$).

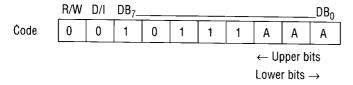
■ (1) Display ON/OFF (G1213, G1216)

	R/W	D/I	DB ₇₋							$_{DB_0}$
Code	0	0	0	0	1	1	1	1	1	D

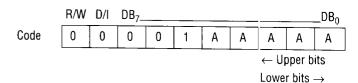
Turns the display ON when D = 1, and OFF when D = 0. When the display is turned OFF by D = 0, the original display appears if D is set to 1 because the display data is retained in the display data RAM.


■ (2) Display Start Line (G1213, G1216)

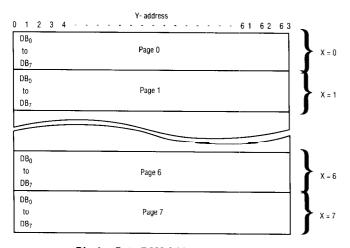
 \leftarrow Upper bits


lower bits \rightarrow

Sets the display data RAM line address expressed with binary AAAAAA in the display start ine register. When displaying the content of the display data RAM, the display data on the line addresses which are set in the register is displayed on the top line on the LCD screen.


Relationship Between Display Start Lines and Displays

■ (3) X-address (page) Set (G1213, G1216)


The display data RAM "X" address (page) which is expressed with binary AAA is set in the X-address register. Following write/read operations from the MPU are performed on the specified X-address (page) until the next X-address (page) set is performed.

■ (4) Y-address Set (G1213, G1216)

The display data RAM Y-address which is expressed with binary AAAAAA is set in the Y-address counter. After that the Y-address counter advances by one each time write/read is performed from the MPU.

Modules with Built-In Data RAM (Continued)

Display Data RAM Address Configuration

■ (5) Status Read (G1213, G1216)

	R/W	D/I	DB ₇ _							DB_0
Code	1	0	BUSY	0	ON/OFF	RESET	0	0	0	0

BUSY:

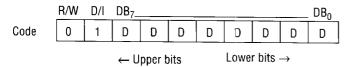
When BUSY = 1, it means that the module is operating internally and the next instruction is not accepted until BUSY = 0. After confirming that BUSY = 0, it is necessary to perform the next write.

ON/OFF: Indicates that the display is OFF when

ON/OFF = 1.

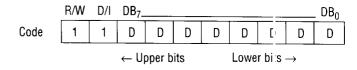
Indicates that the display is ON when

ON/OFF = 0.


RESET:

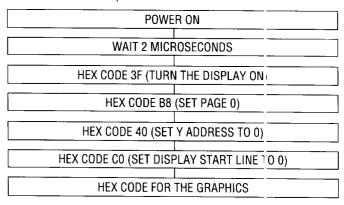
Indicates that initial setup is performed by

the RST signal.


Indicates that the initialization is being performed when RESET = 1 and instructions other than the Status Read instruction are not accepted.

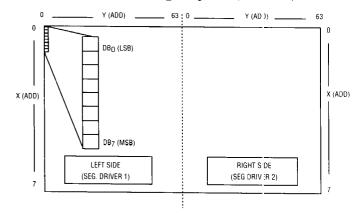
■ (6) Display Data Write (G1213, G1216)

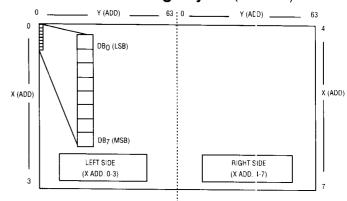
Writes 8-bit binary data DDDDDDD in the display data RAM. After the write is completed, the Y-address is automatically advanced by one.


■ (7) Display Data Read (G1213, G1216)

Read 8-bit binary data DDDDDDD from the display data RAM. After read is performed, the Y-address is automatically advanced by one. A dummy read is necessary once, immediately after the address set is completed.

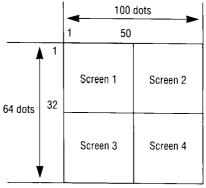
■ Sample Software Instruction


(G1213, G1216)


■ Hexadecimal Code for Characters (8 Bytes per Character)

Text 0:	Byte	3EH, 7FH, 71H, 59H, 4DH, 7FH, 3EH, 00H
Text 1:	Byte	40H, 42H, 7FH, 7FH, 40H, 40H, 00H, 00H
Text 2:	Byte	62H, 73H, 59H, 49H, 6FH, 66H, 00H, 00H
Text 3:	Byte	22H, 63H, 49H, 49H, 7FH, 36H, 00H, 00H
Text 4:	Byte	18H, 1CH, 16H, 53H, 7FH, 7FH, 50H, 00H
Text 5:	Byte	27H, 67H, 45H, 45H, 7DH, 39H, 00H, 00H
Text 6:	Byte	3CH, 7EH, 4BH, 49H, 79H, 30H, 00H, 00H
Text 7:	Byte	03H, 03H, 71H, 79H, 0FH, 07H, 00H, 00H
Text 8:	Byte	36H, 7FH, 49H, 49H, 7FH, 36H, 00H, 00H
Text 9:	Byte	06H, 4FH, 49H, 69H, 3FH, 1EH, 00H, 00H
Text A:	Byte	7CH, 7EH, 13H, 13H, 7EH, 7CH, 00H, 00H
Text B:	Byte	41H, 7FH, 7FH, 49H, 49H, 7FH, 36H, 00H
Text C:	Byte	1CH, 3EH, 63H, 41H, 41H, 63H, 22H, 00H
Text D:	Byte	41H, 7FH, 7FH, 41H, 63H, 3EH, 1CH, 00H
Text E:	Byte	41H, 7FH, 7FH, 49H, 5DH, 41H, 63H, 00H
Text F:	Byte	41H, 7FH, 7FH, 49H, 1DH, 01H, 03H, 00H
Text G:	Byte	1CH, 3EH, 63H, 41H, 51H, 73H, 72H, 00H
Text H:	Byte	7FH, 7FH, 08H, 08H, 7FH, 7FH, 00H, 00H
Text I:	Byte	00H, 41H, 7FH, 7FH, 41H, 00H, 00H, 00H
Text J:	Byte	30H, 70H, 40H, 41H, 7FH, 3FH, 01H, 00H
Text K:	Byte	41H, 7FH, 7FH, 08H, 1CH, 77H, 63H, 00H
Text L:	Byte	41H, 7FH, 7FH, 41H, 40H, 60H, 70H, 00H
Text M:	Byte	7FH, 7FH, 0EH, 1CH, 0EH, 7FH, 7FH, 00H
Text N:	Byte	7FH, 7FH, 06H, 0CH, 18H, 7FH, 7FH, 00H
Text 0:	Byte	1CH, 3EH, 63H, 41H, 63H, 3EH, 1CH, 00H
Text P:	Byte	41H, 7FH, 7FH, 49H, 09H, 0FH, 06H, 00H
Text Q:	Byte	1EH, 3FH, 21H, 71H, 7FH, 5EH, 00H, 00H
Text R:	Byte	41H, 7FH, 7FH, 09H, 19H, 7FH, 66H, 00H
Text S:	Byte	26H, 6FH, 4DH, 59H, 73H, 32H, 00H, 00H
Text T:	Byte	03H, 41H, 7FH, 7FH, 41H, 03H, 00H, 00H
Text U:	Byte	3FH, 7FH, 40H, 40H, 7FH, 3FH, 00H, 00H
Text V:	Byte	1FH, 3FH, 60H, 60H, 3FH, 1FH, 00H, 00H
Text W:	Byte	7FH, 7FH, 30H, 18H, 30H, 7FH, 7FH, 00H
Text X:	Byte	43H, 67H, 3CH, 18H, 3CH, 67H, 43H, 00H
Text Y:	Byte	07H, 4FH, 78H, 78H, 4FH, 07H, 00H, 00H
Text Z:	Byte	47H, 63H, 71H, 59H, 4DH, 67H, 73H, 00H

■ G1216 Addressing Layout (128 x 64)



■ G1213 Addressing Layout (128 x 32)

■ F1016 Screen Selection (100 x 64)

The F1016 display is divided into four screens, each of which is controlled by a segment driver. Chip select signals select the screens and set their state. Then, a read or write operation is executed by an instruction.

CS1n	CS2n	State of chip selected
L	L	Unselected
L	Ι	Selected, read/write
Н	الــ	Selected, write
Н	I	Selected, read/write

n indicates screen No.

For example, Screen 1 is selected with CS⁻1 (Pin No. 14) and CS21 (Pin No. 15).

Modules with Built-In Data RAM (Continued)

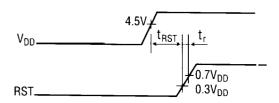
■ Terminal Functions

Signal	QTY	1/0	Destination	Functions				
DB ₀ to DB ₇	8	1/0	MPU	Common terminal for tristate input and output, and data bus. DB ₇ = MSB				
E	1	Input	MPU	Enable Write (R/W = 0): Latches data of DB ₀ to DB ₇ at the fall of E. Read ($R/W = 1$): Outputs data to DB ₀ to DB ₇ while "E" keeps a high level.				
R/W	1	Input	MPU	Read/Write selection R/W = 1: When E = 1 and CS1 = 0 or CS2 = 0, the data is output to DB ₀ to DB ₇ and read is available by MPU. R/W = 0: When CS1 = 0 or CS2 = 0, DB ₀ to DB ₇ are ready for receiving the input.				
D/I	1	Input	MPU	Data/Instruction selection D/I = 1: Indicates that the data in DB ₀ to DB ₇ is the display data. D/I = 0: Indicates that the data in DB ₀ to DB ₇ is the instruction code.				
CS1, CS2	2	Input	MPU	Chip select input. Data input and output is possible under the following status: Terminal No. CS1 CS2 Status 0 0 0 CS1 CS2 CS1: Controls the LCM left half display screen (SEG1 to SEG64). CS2: Controls the LCM right half display screen (SEG65 to SEG128).				
CSII-CS24	8	Input	MPU	F1016 only: see screen selection				
RST	1	Input	MPU	Reset signal Setting the RST signal to a low level allows for initial setup. (1) ON/OFF register: 0 setup (display OFF) (2) Display start line register: 0 line setup (display starts from 0 line) The setup status is retained until the status is changed by an instruction after reset is released.				
V_{DD}	1	-	Power	Power terminal for logic (+5V)				
V _{SS}	1	-	Power	GND terminal (0V)				
V _{LC}	11	-	Power	Power terminal for LC drive				
LEDA	1 1	-	Power	LED backlight anode terminal (+)				
LEDC	11	-	Power	LED backlight cathode terminal (-)				
F _{GND}	1	-	_	Frame ground ¹				

¹ F_{GND} terminal is connected to the metallic frame of the module. Use this terminal when grounding the frame.

■ Reset Function

Setting the RST terminal to a low level when the power is on allows for initial setup.

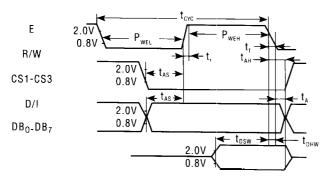

- 1 Display OFF
- 2 Display start line register: Set address 0. (G1213, G1216)
- 3. Address count mode: Up mode (F1016)

G1213, G1216: While the $\overline{\text{RST}}$ remains at a low level, instructions other than the status read cannot be accepted. Execute other instructions after confirming that DB₄ = 0 (reset release) and DB₇ = 0 (ready), using the status read instruction.

F1016: When RST turns to H, the F1016 can receive an instruction. With busy flag checked by status read instruction, display start page set, address count mode set, write/read display data instructions are executed.

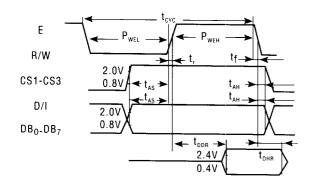
The power conditions for power-on initial setup are as follows:

Item	Symbol	Min.	Тур.	Max	unit
Reset time	t _{RST}	1.0	-		μs
Rise time	tr	-	-	200	ns

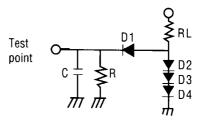


If the RESET is executed during operation, retention of the contents of all registers (excluding an ON/OFF register) and the RAM is not guaranteed. Always set them again.

■ Timing Characteristics

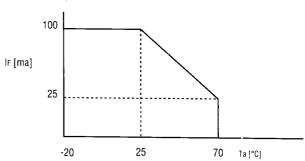

Item	Symbol	Min.	Тур.	Max.	Unit	Note
E cycle time	t _{CYC}	1000		-	ns	1, 2
E high level width	P _{WEH}	450	-	-	ns	1, 2
E low level width	P _{WEL}	450	-	-	ns	1, 2
E rise time	tr	-	-	25	ns	1, 2
E fall time	t _f	-	-	25	ns	1, 2
Address setup time	t _{AS}	140	-	-	ns	1, 2
Address hold time	t AH	10	-	-	ns	1, 2
Data setup time	t _{DSW}	200	-	-	ns	1
Data delay time	t _{DDR}	-	-	320	пѕ	2, 3
Data hold time (Write)	t _{DHW}	10	-	-	ns	1
Data hold time (Read)	t DHR	20	-	-	ns	2

■ Data Write from MPU to Module

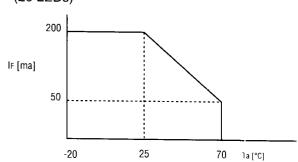

CPU Write Timing

■ Data Write from Module to MPU

CPU Read Timing

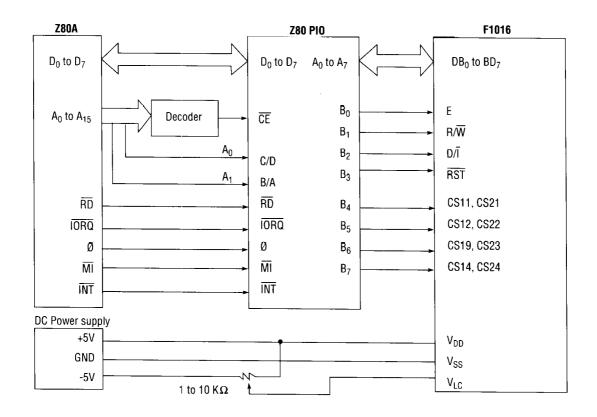

■ DB₀-DB₇: Load Circuit

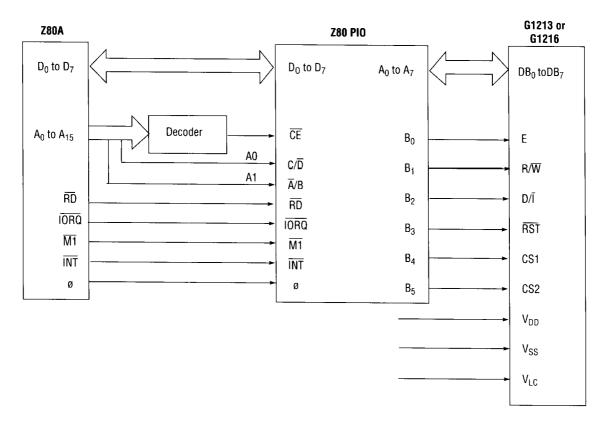
RL=2.4K Ω R=11K Ω C=130pF (including jig capacity) Diodes D1 to D4 are all 1S2074 (H).


■ LED Backlight

■ G1213B1N000 Maximum Rating (12 LEDs)

Recommended LED current = 50 mA @ 25°C Typical forward voltage = 4.1 VDC Use 18 OHM current limiting resistor to + 5 VDC supply (PIN 19)


■ G1216B1N000 Maximum Rating (20 LEDs)



Recommended LED current = 100 mA @ 25°C Typical forward voltage = 4.1 VDC Use 9.1 OHM current limiting resistor to + 5 VDC supply (PIN 19)

Modules with Built-In Data RAM (Continued)

■ Example of Connection to Z80 Microprocessor

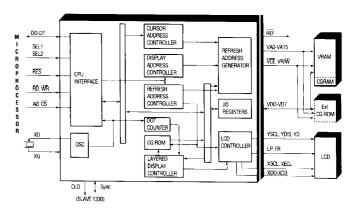
1330 Controller Features

■ SED1330 Advanced LCD Display Controller

Seiko Instruments has selected the SED1330 to use as a built-in controller in our mid-size graphic modules. This CMOS LSI device generates all the signals required by the display memory and LCD drivers, and incorporates a character generator ROM. The command set within the SED1330 allows the user to create a layered display of characters and graphics, scroll the display, and assign display attributes to selected areas of the screen. The controller also functions as a pipeline buffer between the MPU and display memory so that low cost, medium speed SRAM can be used.

This advanced LCD controller IC features:

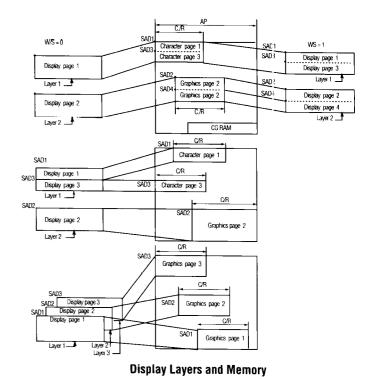
- 6800 and 8080 family compatibility
- Eight bit parallel buffered MPU interface (bi-directional)
- Control of 64 K bytes of memory
- Horizontal and vertical scrolling
- Reverse video and flashing
- Up to three layers of graphics
- Up to two layers of mixed character & graphics
- User defined characters & internal character generator
- Supports external character ROM & RAM
- Supports 8 x 8 or 8 x 16 pixel characters


The new SED1335 controller, used in model G121C, has all of the same features as the SED1330. In addition, this new controller accommodates a +3.3 Volt input.

The SED1330, shown in the block diagram, is located between the MPU and the display memory. This permits the MPU to send and receive control commands and data for display. The SED1330 can control up to 64 K bytes of display memory.

The on-chip LCD control circuit enables the SED1330 to exploit all the graphic features of the Seiko Instruments LCD modules, using the on-chip register functions with no external circuits.

The SED1330 divides its memory space into four areas:


- 1. Character data table
- 2. Graphics data table
- 3. CG RAM table
- 4. External CG ROM table

Internal Block Diagram

The SED1330 supports virtual screens that are larger than the physical size of the LCD panel address range, C/R. A layer of the SED1330 can be considered as a window in the larger virtual screen held in display memory. This window can be divided into two blocks, with each block able to display a different portion of the virtual screen.

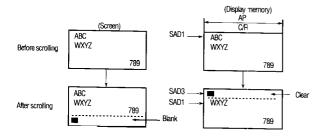
This enables, for example, one block to dynamically scroll through a data area while the other acts as a status message display area.

1330 Controller Features (Continued)

An SED1330 can provide a superimposed display of up to three layers of screens, but the cursor can be displayed on only one of the three. If more than one layer is used the cursor home layer is

- The 1st layer (L1) for a two-layer display.
- The 3rd layer (L3) for a three layer display.

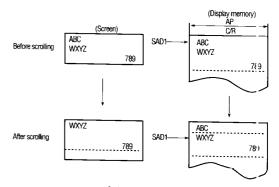
The cursor is not displayed outside its home layer. Screens can be moved into the cursors home layer by adjusting the parameters of the SCROLL command.


■ Scrolling

Scrolling of the screens is managed by the MPU, and affected by dynamically modifying the contents of the scroll address registers (SAD1 to SAD4). The MPU determines when scrolling should occur, selection of scroll mode, scroll rate, etc.

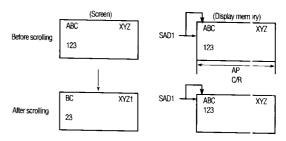
■ On-page Scrolling

Scrolling is executed in a display memory area the size of one screen. When the cursor is on the bottom line of the display, as shown below, execution of a line feed (LF) or the entry of the last character in the line should cause the whole screen to scroll up by one line width and the bottom line to be cleared. This is achieved by splitting the display between two screens, 1 and 3.


- 1. Set the start address of screen 3 to the current start address of screen 1 (SAD3 = SAD1).
- Move screen 1 down one line (SAD1 = SAD1 + AP).
- 3. Clear the last line of screen 3.

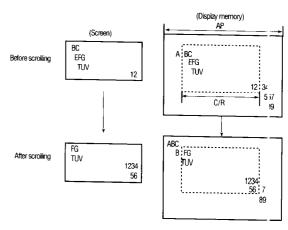
On-page Scrolling

■ Inter-page Scrolling and Page Switchover


Inter-page scrolling and page switch-over are available when using display memory with a capacity of more than one screen.

Inter-page Scrolling

■ Horizontal Wraparound Scrolling


This scrolling style is available when C/R = AP.

Horizontal Wraparound Scrolling

■ Multi-directional Scrolling

This style of scrolling is available when the size of display memory is larger than the actual screen by at least one character in both the X and Y directions. Multi-directional scrolling is usually made in 1-character units, but by using the HDOT SCR command pixel by pixel horizontal scrolling is also possible.

Multidirectional Scrolling

■ Display Attributes

To improve the display legibility when using a monochromatic LCD, the SED1330 can generate "reverse video" characters, half tone displays, and local flashing by combining layers in different ways.

	MX1	MXO	Screen	1st Layer Single Screen	2nd Layer Single Screen
Reverse	0	1	IV SEIKO	IV SEIKO	
Half-Tone Display	0	0 -	ME YES, NO	ME YES, NO	
Locally Flashing Display	1	0	BL = Error = /\\\\\	BL	\V///// = Error = /\\\\\

Possible Display Attributes

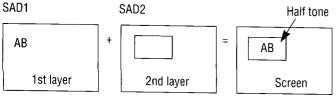
■ Reverse Video

Reverse video effects can be generated by taking the "exclusive-OR" of the 1st layer (character) and the 2nd layer (graphics)

- 1. CSRW, CSRDIR, and MWRITE commands: Data "1" are written into the graphics area corresponding to the intended "reversed" area of the display.
 - OVLAY command: The OVLAY command selects "exclusive-OR" superposition of the first and second layers.

$$MX1 = 0, MX = 1$$

3. DISP ON/OFF command: This command turns on the first and second layers, resulting in reversed characters.


(FP1, FP0) = (0,1)(FP3, FPZ) = (0,1)

■ Half Tone Display

Half tone displays can be generated by rapidly flashing one layer of the display. Care should be taken using this display mode since it may cause certain LCD's to flicker.

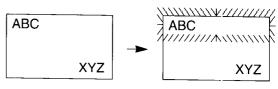
1. Display of menu pad (using "OR-ed" lavers)


A menu choice can be highlighted by displaying full tone characters against a half tone "pad".

Halftone Menu

2. Graph display (using 'OR-ed" layers)

If data is to be displayed in the form of graphs, two different graphs can be differentiated by creating a contrast difference between them.


■ Localized Flashing

1. When a few characters are to be flashed.

A few characters can be flashed if the MPU alternately rewrites character codes and blank codes into display memory. The MPU should rewrite the data every 0.5 to 1.0 second.

2. When a large area is to be flashed.

The first and second layers are divided into two screens each. Then the flashing sections are "XOR-tied", and flashed slowly.

Localized Flashing

■ Character Generator

■ Internal Character Generator

The internal character generator is recommended for minimum system configurations containing a SED1330, display RAM, LCD panel, single-chip microprocessor and power supply. Since the internal character generator uses a CMOS mask ROM, it is also recommended for low-power applications.

- 5 x 7-pixel font
- 160 JIS standard characters
- Can be mixed with character generator RAM (maximum of 64 CG RAM characters)
- Can be automatically spaced out up to 3 x 16 pixels

■ External Character Generator ROM

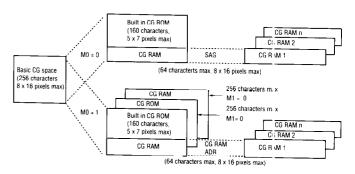
The external CG ROM can be used when fonts other than those in the internal ROM are needed. Data is stored in the external ROM in the same format used in the internal ROM.

- Up to 8 x 8-pixel characters (M2 = 0) cr 8 x 16-pixel characters (M2 = 1)
- Up to 256 characters (192 if used together with the internal ROM)

^{*} Only one style of attribute can be used per screen.

1330 Controller Features (Continued)

- Mapped into the display memory address space at F000H to F7FFH (M2 = 0) or F000H to FFFFH (M2 = 1)
- Characters can be up to 8 x 16 pixels, however excess bits must be set to zero.


■ Character Generator RAM

The user can freely use the character generator RAM for storing graphics characters. The character generator RAM can be mapped by the microprocessor anywhere in display memory, allowing effective use of unused address space.

- Up to 8 x 8-pixel characters (M2 = 0) or 8 x 16 characters (M2 = 1)
- Up to 256 characters if mapped at F000H to FFFFH (64 if used together with character generator ROM)
- Can be mapped anywhere in display memory address space if used with the character generator ROM
- Mapped into the display memory address space at F000H to F7FFH if not used with the character generator ROM (more than 64 characters are in the CG RAM). Set SAG0 to F000H and M1 to zero when defining characters number 193 upwards.

■ CG Memory Allocation

Since the SED1330 uses 8-bit character codes, it can handle no more than 256 characters at a time. However, if a wider range of characters is required, character generator memory can be bank-switched using the CGRAM ADR command.

Internal and external character mapping

Note that there can be no more than 64 characters per bank.

■ Character Mapping

	tem	Parameter	Remarks
Internal/external character genera	tor selection		MO
	1 to 8 pixels	M2 = 0	
Character field height	9 to 16 pixels	M2 = 1	-
	Greater than 16 pixels	Graphics mode (8 bits x 1 line)	
Internal CG ROM/RAM select External CG ROM/RAM select		Automatic	Determined by the character code
CG RAM bit 6 correction		M1	
CG RAM data storage address		Specified with CGRAM ADR command	Can be moved any where in the display memory ac dress space
	192 characters or less	Other than the area of figure 49	
External CG ROM address More than 192 characters		Set SAG to F000H and overlay SAG and the CG ROM table	1

■ Internal Character Generator Font

			Character code bits 0 to 3														-
		0	11	2	3	4	5	6	7	8	9	Α	В	С	D		F
Character code bits 4 to 7	2					•	••••		-							::	"
	3		•••••••••••••••••••••••••••••••••••••••						:			::	::				•***
	4																
	5										• • •						
	6	•••						••••			•					! ":	
	7		~::					i:			•:		:::::::::::::::::::::::::::::::::::::::			••••	·:··
	Α	_	***	:	# = = =	* .		*****						•			: : :
	В			.::										::.:	:		•
	С	:::	<u></u>	:::		:		••••			_:	•			••••	::::	****
	D	····	<u></u>	.:: [:]												•:•	:::
	1																

Modules with Built-in 1330 Controller

■ Seiko Instruments Offers Five Mid-size Graphic Modules With a Built-in Controller.

■ G121C = 128 x 128 = SED1335

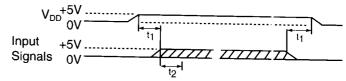
■ G2446 = 240 x 64 = SED1330

■ G242C = 240 x 128 = SED1330

■ G321D = 320 x 200 = SED1330

■ G324E = 320 x 240 = SED1330

The SED1330 LCD controller IC generates all the signals required by the display memory and by the common and segment drivers, and has a built-in character generator ROM. The MPU interface can be configured for both the 6800 family and 8080 family processors. Text, graphics, and overlayed text and graphics can be displayed.


The new SED1335 controller, used in model G121C, has all of the same features as the SED1330. In addition, this new controller accommodates a +3.3 Volt input.

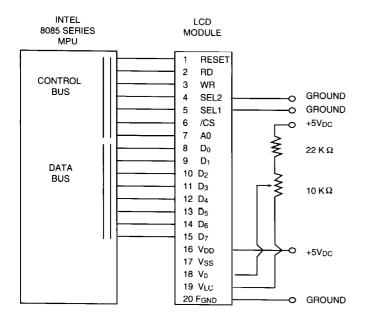
Command	Code (Hex)	Description	
SYSTEM SET	40	System and display initialization	
SLEEP IN	53	Enter standby mode	
DISP ON/OFF	58,59	Display blinking and blanking	
SCROLL	44	Set display starting address and display are	
CSRFORM	5D	Set cursor type	
CSRDIR	4C-4F	Set cursor movement direction	
OVLAY	5B	Set overlay format	
CGRAM ADR	5C	Set CGRAM start address	
HDOT SCR	5A	Set horizontal scroll position	
CSRW	46	Set cursor address	
CSRR	47	Read cursor address	
MWRITE	42	Write data to display memory	
MREAD	43	Read data from memory	

■ Timing Characteristics

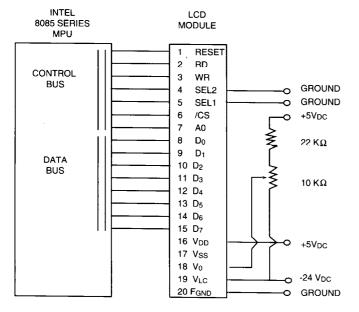
Power ON/OFF and signal input timing should be performed according to the timing charts shown below.

■ G2446 & G242C

t1 ≥ 0 ms

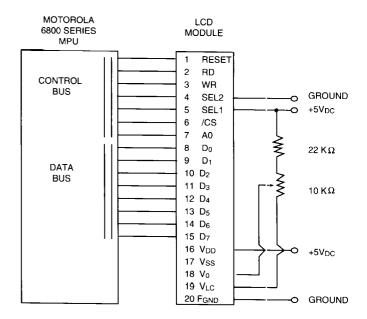

t2: controller initialization time

NOTE: The controller must be initialized immediately after the power supply goes to 5V

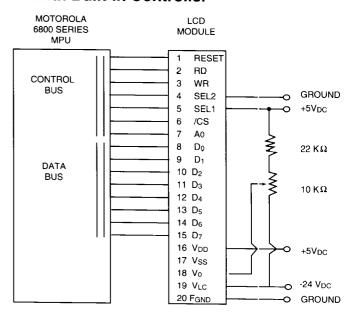

■ G121C, G321D, G324E

■ Connections for G2446 & G242C With Built-In Controller

■ Connections for G121C, G321D & G324E With Built-In Controller*



* Note: Modify these two diagrams as follows:


G121C Pin 20 = INH. Pins 21 & 22 = LED backlight.

G324E: Pin 4 = no connection. SEL2 is internally grounded for G324E with built-in controller.

■ Connections for G2446 & G242C With Built-In Controller

■ Connections for G121C, G321D & G324E With Built-In Controller*

On the following pages you can find the initialization examples for the five display modules. Transferring the parameters to the display modules will set up a display system having:

- Single screen drive mode
- Layer 1, character display
- Layer 2, graphic display
- Character font, 8 x 8 pixels
- CGRAM, 32 characters max.

Modules with Built-in 1330 Controller (Continued)

■ Initialization Example for G121C (128 x 128)

Command	Code				Fur	nction			_	
	(HEX)	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Description
SYSTEM SET	40	0	1	0	0	0	0	0	0	System and display initialization command
										M0: 0 Internal CGROM
										M1: 0 CGRAM 32 characters Max
Parameter 1	30	PKT	0	IV	1	W/S	M2	l2 M1	Mo	M2: 0 Character height = 8 pixels
		' '	"	'*	'	VV/3	IVIZ		IVIU	W/S: 0 Single screen display
										I/V: 1 Character offset disabled
										PKT: 0
Parameter 2	87	WF	0	0	0	0	←	ŀΧ		FX: 7 Character field width = 8
			ļ			L		- 1 ^	\rightarrow	WF: 1 Two frame AC Drive
Parameter 3	07	0	00	0	0_	←	F	Υ	\rightarrow	FY: 7 Character field height = 8
Parameter 4	10	←			C/R				\rightarrow	C/R: 29d Characters per row = 16
Parameter 5	4A	←			T C/	D				T C/R: 148d Timing characters per row = 149d
					1 0/	n			\rightarrow	fOSC = 6 MHz: Frame Freq. = 70 Hz
Parameter 6	7F	←			L/F				\rightarrow	L/F: 63 Number of lines per screen = 128
Parameter 7	1E	<u></u> ←			APL				\rightarrow	APL: 30d Address pitch = C/R + 1
Parameter 8	00	←			APH				\rightarrow	APH: 00H
SCROLL	44	0	1	0	0	0	1	0	0	Set display starting address and display area
Parameter 1	00	←			SAD1	L			\rightarrow	Screen1 start address (low) = 00H
Parameter 2	00	←	SAD1H →						→	Screen1 start address (high) = 00H
Parameter 3	7 F	←		SL1 →					\rightarrow	SL1: 127d Number of lines in Screen 1 = 128d
Parameter 4	00	←		SAD2L →					\rightarrow	Screen2 start address (low) = 00H
Parameter 5	05	←	_		SAD2	H			\rightarrow	Screen2 start address (high) = 05H
Parameter 6	7F	←			SL2				\rightarrow	SL2: 127d Number of lines in Screen 2 = 128d
CSRDIR	4C	0	1	0	0	1	1	CD1	CDO	Set cursor movement direction
						<u> </u>	'	וטטו	CD2	CD1, CD2: 0 0 Shift direction = Right
HDOT SCR	5A	0	_ 1	0	1	1	0	1	0	Set horizontal scroll position
Parameter 1	00	0	0	0	0	0	←	CD1	\rightarrow	CD1: 0d Don't scroll display horizontally
CSRW	46	0	1	0	0	0	1	1	0	Set cursor address
Parameter 1	00	←			CSRL				\rightarrow	Cursor address (low) = 00
Parameter 2	00	←			CSRF	1			\rightarrow	Cursor address (high) = 00
MWRITE	42	0	1	0_	0	0	0	1	0	Write data to display memory
Parameter 1 - n		←		C	haracte	er codes	3		\rightarrow	Write n characters to the display memory
OVLAY	5B	0	1_1_	0	1	1	0	1	1	Set overlay format
										MX1, MX0: 01 L1 exOR L2
Parameter 1	01	0	0	0	0V	DM2	DM1	MX1	MX0	DM2, DM1: 00 1st and 3rd screens in character mode
								İ		OV: 0 Two layer synthesis
DISP ON/OFF	59	0	1	0	1	4				Display blinking and blanking
				"	'	1	0	0	D	D: 1 Entire display active
										FC1, FC0: 00 Cursor display OFF
Parameter 1	04	FP5	ED4	LD0	FD2	 		F.C.		FP1, FP0: 01 1st screen ON
i arameter i	04	ן ררס	FP4	FP3	FP2	FP1	FP0	FC1	FC0	FP3, FP2: 00 2nd screen OFF
			L	L	L			L		

■ Initialization Example for G2446 (240 x 64)

Command	Code				Fun	ction				
Commanu	(HEX)	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Description
SYSTEM SET	40	0	1	0	0	0	0	0	0	System and display initialization command
										M0: 0 Internal CGROM
										M1: 0 CGRAM 32 characters Max
Parameter 1	30	PKT	0	IV	1	W/S	M2	NA4	l MO	M2: 0 Character height = 8 pixels
T diditiotor 1	00	1 101	"	10	J	VV/3	IVIZ	M1	M0	W/S: 0 Single screen display
										I/V: 1 Character offset disabled
										PKT: 0
Parameter 2	87	l wf	0	0	0	0		FX		FX: 7 Character field width = 8
		VV'		L u			←	ΓΛ	\rightarrow	WF: 1 Two frame AC Drive
Parameter 3	07	0	0	0	0	←	F	Y	-→	FY: 7 Character field height = 8
Parameter 4	1D	<u>←</u>			C/R				\rightarrow	C/R: 29d Characters per row = 30
Parameter 5	94	←			T C/F	2				T C/R: 148d Timing characters per row = 149d
		`_		_	1 0/1	ı 			\rightarrow	fOSC = 6 MHz: Frame Freq. = 70 Hz
Parameter 6	3F	←			L/F				\rightarrow	L/F: 63 Number of lines per screen = 64
Parameter 7	1E	<u></u> ←			APL				\rightarrow	APL: 30d Address pitch = C/R + 1
Parameter 8	00	<u> </u>	·····		APH			_	\rightarrow	APH: 00H
SCROLL	44	0	1	0	0	0	1	0	0	Set display starting address and display area
Parameter 1	00	\leftarrow SAD1L \rightarrow							Screen1 start address (low) = 00H	
Parameter 2	00	\leftarrow SAD1H \rightarrow							Screen1 start address (high) = 00H	
Parameter 3	3F	← SL1 →							SL1: 63d Number of lines in Screen 1 = 64d	
Parameter 4	00	\leftarrow SAD2L \rightarrow							Screen2 start address (low) = 00H	
Parameter 5	05	_ ←			SAD2	Н			- →	Screen2 start address (high) = 05H
Parameter 6	3F	←			\$L2				\rightarrow	SL2: 63d Number of lines in Screen 2 = 64d
CSRDIR	4C	0	1	0	0	1	1	CD1	CDO	Set cursor movement direction
CONDIN				L	"	'	1	וטט	CD2	CD1, CD2: 0 0 Shift direction = Right
HDOT SCR	5A	0	1	0	1	1	0	1	0	Set horizontal scroll position
Parameter 1	00	0	0	0	0	0	←	CD1	<u> </u>	CD1: 0d Don't scroll display horizontally
CSRW	46	0	1	0	0	0	1	1	0	Set cursor address
Parameter 1	00	←			CSRL				\rightarrow	Cursor address (low) = 00
Parameter 2	00	<u> </u>			CSRI	1			\rightarrow	Cursor address (high) = 00
MWRITE	42	0	1_1_	0	0	0	0	1	0	Write data to display memory
Parameter 1 - n		←		C	haracte	er code:	3		\rightarrow	Write n characters to the display me nory
OVLAY	5B	0	1	0	1	1	0	1	1	Set overlay format
										MX1, MX0: 01 L1 exOR L2
Parameter 1	01	0	0	0	0V	DM2	DM1	MX1	MX0	DM2, DM1: 00 1st and 3rd screens in character mode
		L								OV: 0 Two layer synthesis
DISP ON/OFF	 59	0	1	0	1	1	0	_		Display blinking and blanking
5.51 011/011			'		<u></u>	1	0	0	D	D: 1 Entire display active
	· ·									FC1, FC0: 00 Cursor display OFF
Parameter 1	04	FP5	FP4	FP3	FP2	ED4	EDO	FC4	F00	FP1, FP0: 01 1st screen ON
i didiliotoi i	04	1,23	174	FFS		FP1	FP0	FC1	FC0	FP3, FP2: 00 2nd screen OFF
										FP5, FP4: 00 3rd screen OFF

Modules with Built-in 1330 Controller (Continued)

■ Initialization Example for G242C (240 x 128)

Command	Code	7			Fu	nction				
	(HEX)	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	Description
SYSTEM SET	40	0	1	0	0	0	0	0	0	System and display initialization command
							<u> </u>	†- <u>*</u> -	 - -	M0: 0 Internal CGROM
							-			M1: 0 CGRAM 32 characters Max
Parameter 1	30	PKT	0	lv	1	W/C		l		M2: 0 Character height = 8 pixels
		' '\	"	'V	'	W/S	M2	M1	M0	W/S: 0 Single screen display
										I/V: 1 Character offset disabled
~ · · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>							PKT: 0
Parameter 2	87	l we	0	0	0	0		FX		FX: 7 Character field width = 8
Down of C			<u> </u>				<u> </u>	- ۲۸	\rightarrow	WF: 1 Two frame AC Drive
Parameter 3	07	0	0	0	0	←		Y	\rightarrow	FY: 7 Character field height = 8
Parameter 4	1D	_ ←			C/P	}	_		\rightarrow	C/R: 29d Characters per row = 30
Parameter 5	4A	←			T C/	'R				T C/R: 74d Timing characters per row = 75d
Dawn 1 0									\rightarrow	fOSC = 6 MHz: Frame Freq. = 70 Hz
Parameter 6	7F	←			L/F				\rightarrow	L/F: 127 Number of lines per screen = 128
Parameter 7	1E	<u> </u>			APL				\rightarrow	APL: 30d Address pitch = C/R + 1
Parameter 8	00	_ ←			APH	<u> </u>			\rightarrow	APH: 00H
SCROLL	44	0	1	0_	0	0	1	0	0	Set display starting address and display area
Parameter 1	00	<u>←</u>			SAD1	L			\rightarrow	Screen1 start address (low) = 00H
Parameter 2	00	←	← SAD1H →						\rightarrow	Screen1 start address (high) = 00H
Parameter 3	7F	←	<u></u> →						${ ightarrow}$	SL1: 127d Number of lines in Screen 1 :: 128d
Parameter 4	00	<u>←</u>	\leftarrow SAD2L \rightarrow						\rightarrow	Screen2 start address (low) = 00H
Parameter 5	05	<u></u>			SAD2	Н			\rightarrow	Screen2 start address (high) = 05H
Parameter 6	7F	←			SL2				\rightarrow	SL2: 127d Number of lines in Screen 2 :: 128d
CSRDIR	4C	0	1	0	0	1	1	CD1	CD2	Set cursor movement direction
UDOT COD		L .	ļ .	ļ	ļ.,			CDI	LUZ	CD1, CD2: 0 0 Shift direction = Right
HDOT SCR	5A	0	1	0	1	1	0	1	0	Set horizontal scroll position
Parameter 1 CSRW		0	0	0	0	0	←	CD1	\rightarrow	CD1: 0d Don't scroll display horizontally
	46	0	1	0	0	0_	1	1	0	Set cursor address
Parameter 1 Parameter 2	00	<u>←</u>			CSRL				\rightarrow	Cursor address (low) = 00
MWRITE	00	<u>←</u>	 -		CSRF				\rightarrow	Cursor address (high) = 00
Parameter 1 - n	42	0	1	0	0	0	0	11	0_	Write data to display memory
OVLAY		-		$\overline{}$	haracte	r codes	- -		\rightarrow	Write n characters to the display memor/
UVLAT	5B	0	1_	0	1	1	0	1	_ 1	Set overlay format
Parameter 1	04			_						MX1, MX0: 01 L1 exOR L2
Parameter 1	01	0	0	0	0V	DM2	DM1	MX1	MX0	DM2, DM1: 00 1st and 3rd screens in character mode
		<u> </u>			L					OV: 0 Two layer synthesis
DISP ON/OFF	59	0	1	0	1	1	0	0	D	Display blinking and blanking
										D: 1 Entire display active
					FP2			1		FC1, FC0: 00 Cursor display OFF
Parameter 1	04	FP5	FP4	FP3		FP1	FP0	FC1	FC0	FP1, FP0: 01 1st screen ON
		''	-			'''		101	100	FP3, FP2: 00 2nd screen OFF
										FP5, FP4: 00 3rd screen OFF

■ Initialization Example for G321D (320 x 200)

Command	Command Code				Fun	ction				
	(HEX)	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	Description
SYSTEM SET	40	0	1	0	0	0	0	0	0	System and display initialization command
										M0: 0 Internal CGROM
										M1: 0 CGRAM 32 characters Max
Parameter 1	30	PKT	0	lv			8.40			M2: 0 Character height = 8 pixels
i didilietei i	30	FKI	U	10	1	W/S	M2	M1	M0	W/S: 0 Single screen display
										I/V: 1 Character offset disabled
										PKT: 0
Parameter 2	87	WF	0	0		_			,	FX: 7 Character field width = 8
		VVF			0	0	←	FX	\rightarrow	WF: 1 Two frame AC Drive
Parameter 3	07	0	0	0	0	←	F	Υ	<i>→</i>	FY: 7 Character field height = 8
Parameter 4	27	←			C/R	_			\rightarrow	C/R: 39d Characters per row = 40
Parameter 5	2F				T 0/1					T C/R: 47d Timing characters per rov/ = 48d
T didilicies 5	ZF	←			T C/F	1			\rightarrow	fOSC = 6 MHz: Frame Freq. = 70 Hz
Parameter 6	C7	←			L/F				\rightarrow	L/F: 199 Number of lines per screen := 200
Parameter 7	28	←			APL				\rightarrow	APL: 40d Address pitch = C/R + 1
Parameter 8	00	←			APH	_			\rightarrow	APH: 00H
SCROLL	44	0	1	0	0	0	1	0	0	Set display starting address and display area
Parameter 1	00	←	-		SAD1	L			\rightarrow	Screen1 start address (low) = 00H
Parameter 2	00	← SAD1H →							Screen1 start address (high) = 00H	
Parameter 3	C7	← SL1 →					_		SL1: 199d Number of lines in Screen 1 = 200d	
Parameter 4	00	← SAD2L →							Screen2 start address (low) = 00H	
Parameter 5	05	←			SAD2	Н	1		<i>→</i>	Screen2 start address (high) = 05H
Parameter 6	C7	←		_	SL2		_		\rightarrow	SL2: 199d Number of lines in Screen 2 = 200d
CSRDIR	4C	0	4	_				004	000	Set cursor movement direction
	40	0	1	0	0	1	1	CD1	CD2	CD1, CD2: 0 0 Shift direction = Right
HDOT SCR	5A	0	1	0	1	1	0	1	0	Set horizontal scroll position
Parameter 1	00	0	0	0	0	0	←	CD1	<u> </u>	CD1: Od Don't scroll display horizontally
CSRW	46	0	1	0	0	0	1	1	0	Set cursor address
Parameter 1	00	←			CSRL				<u>→</u>	Cursor address (low) = 00
Parameter 2	00	←			CSRF	1			\rightarrow	Cursor address (high) = 00
MWRITE	42	0	1	0	0	0	0	1	0	Write data to display memory
Parameter 1 - n		←		C	haracte	er codes	 3		\rightarrow	Write n characters to the display mernory
OVLAY	5B	0	1	0	1	1	0	1	1	Set overlay format
										MX1, MX0: 01 L1 exOR L2
Parameter 1	01	0	0	0	0۷	DM2	DM1	MX1	MX0	DM2, DM1: 00 1st and 3rd screens in character mode
	<u> </u>									OV: 0 Two layer synthesis
DISP ON/OFF	59	0	1	0	1	1	0	0		Display blinking and blanking
						L'	_ ′	U	D	D: 1 Entire display active
										FC1, FC0: 00 Cursor display OFF
Parameter 1	04	FP5	FP4	FP3	LD0	ED4		FC4		FP1, FP0: 01 1st screen ON
i didiliotoi i	04	1173	1.74	173	FP2	FP1	FP0	FC1	FC0	FP3, FP2: 00 2nd screen OFF
										FP5, FP4: 00 3rd screen OFF

Modules with Built-in 1330 Controller (Continued)

■ Initialization Example for G324E (320 x 240)

(HEX)					ction				
· · · · · · · · · · · · · · · · · · ·	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Description
40	0	1	0	0	0	0	0	0	System and display initialization command
									M0: 0 Internal CGROM
									M1: 0 CGRAM 32 characters Max
30	PKT	_	l w	4	MAZIC	MO			M2: 0 Character height = 8 pixels
00	' Ki	"	''		VV/5	IVIZ	IVII	MO	W/S: 0 Single screen display
									I/V: 1 Character offset disabled
									PKT: 0
87	WE	n	0	0			ΓV		FX: 7 Character field width = 8
	VV'		U	0		←	ΓX	\rightarrow	WF: 1 Two frame AC Drive
	0	0	0	0	←	F	Υ		FY: 7 Character field height = 8
27	←			C/R				\rightarrow	C/R: 39d Characters per row = 40
2F	 			T C/I	2				T C/R: 47d Timing characters per row = 48d
	<u> </u>				1			\rightarrow	fOSC = 6 MHz: Frame Freq. = 70 Hz
	←			L/F				\rightarrow	L/F: 199D Number of lines per screen = 240
	←			APL				\rightarrow	APL: 40d Address pitch = C/R + 1
	<u>←</u>			APH				\rightarrow	APH: 00H
	0	_1_	0	0	0	1	0	0	Set display starting address and display area
	← SAD1L →							\rightarrow	Screen1 start address (low) = 00H
	← SAD1H →							\rightarrow	Screen1 start address (high) = 00H
	← SL1 →							SL1: 239d Number of lines in Screen 1 = 240d	
	← SAD2L →							Screen2 start address (low) = 00H	
	←			SAD2	H			\rightarrow	Screen2 start address (high) = 05H
<u>EF</u>	←			SL2				\rightarrow	SL2: 239d Number of lines in Screen 2 = 240d
4C	0	1	0		1	1	CD1	CD2	Set cursor movement direction
							וטט	002	CD1, CD2: 0 0 Shift direction = Right
	0	1	0	1	1	0	1	0	Set horizontal scroll position
	0	0	0	0	0	←	CD1	\rightarrow	CD1: 0d Don't scroll display horizontally
	0	1	0	0	0	1	1	0	Set cursor address
	←			CSRL				\rightarrow	Cursor address (low) = 00
	←			CSRH				\rightarrow	Cursor address (high) = 00
42	0_	1	0	0	0	0	1	0	Write data to display memory
	←		С	haracte	r codes	3			Write n characters to the display memory
5B_	0	1	0	1	1	0	1	1	Set overlay format
									MX1, MX0: 01 L1 exOR L2
01	0	0	0	0V	DM2	DM1	MX1	MX0	DM2, DM1: 00 1st and 3rd screens in character mode
									OV: 0 Two layer synthesis
59	0	1	0	4	4	0			Display blinking and blanking
		. I	<u> </u>			U	U	ן ט	D: 1 Entire display active
									FC1, FC0: 00 Cursor display OFF
04	FP5	ED4	ED3	רנים	רר,	- FD2	LO4 :		FP1, FP0: 01 1st screen ON
04	113	1114	rrs	FF2	ררו	FPU	FU1	FCU !	FP3, FP2: 00 2nd screen OFF
								İ	FP5, FP4: 00 3rd screen OFF
	5B	87 WF 07 0 27 ← 2F ← EF ← 28 ← 00 ← 44 0 00 ← 00 ← 00 ← EF ← 4C 0 5A 0 00 ← 46 0 00 ← 42 0 ← 5B 0 01 0 59 0	87 WF 0 07 0 0 27	87 WF 0 0 07 0 0 0 27	87 WF 0 0 0 0 07 0 0 0 0 0 27 ← C/R 2F ← T C/I EF ← L/F 28 ← APL 00 ← APH 44 0 1 0 0 00 ← SAD1 EF ← SL1 00 ← SAD2 05 ← SAD2 EF ← SL2 4C 0 1 0 0 5A 0 1 0 1 00 0 ← CSRL 00 ← CSRL	87 WF 0 0 0 0 0 07 0 0 0 0 0 ← 27 ← C/R 2F ← T C/R EF ← L/F 28 ← APL 00 ← APH 44 0 1 0 0 0 0 00 ← SAD1L 00 ← SAD1H EF ← SL1 00 ← SAD2L 05 ← SAD2H EF ← SL2 4C 0 1 0 0 1 1 5A 0 1 0 1 1 00 0 0 0 0 0 0 46 0 1 0 0 0 00 ← CSRL 00 ← CSRL 00 ← CSRH 42 0 1 0 0 0 CSRH 42 0 1 0 0 0 CSRH 42 0 1 0 0 0 CSRH 42 0 1 0 0 0 CSRH 5B 0 1 0 1 1 01 0 0 0 DM2 59 0 1 0 1 1	87 WF 0 0 0 0 0 ← 07 0 0 0 0 0 ← 27 ← C/R 2F ← L/F 28 ← APL 00 ← APH 44 0 1 0 0 0 0 1 00 ← SAD1L 00 ← SAD1L 00 ← SAD2L 05 ← SL2 4C 0 1 0 0 1 1 0 0 1 1 5A 0 1 0 1 1 0 0 1 1 5A 0 1 0 1 1 0 0 0 1 5A 0 1 0 1 1 0 0 0 1 5A 0 1 0 1 1 0 0 0 1 00 ← CSRL 00 ← CSRL 00 ← CSRH 42 0 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 01 0 0 0 0	87 WF 0 0 0 0 0 ← FX 07 0 0 0 0 0 ← FY 27 ← C/R 2F ← T C/R EF ← L/F 28 ← APL 00 ← APH 44 0 1 0 0 0 0 1 0 00 ← SAD1L 00 ← SAD2L 05 ← SAD2H EF ← SL2 4C 0 1 0 0 0 1 1 0 1 00 0 0 0 0 0 1 1 5A 0 1 0 1 1 0 1 00 0 ← CSRL 00 ← CSRL 00 ← CSRL 00 ← CSRH 42 0 1 0 0 0 0 0 1 01 0 0 1 1 0 1 01 0 0 0 1 1 0 1 00 ← CSRH 42 0 1 0 0 0 0 0 1 01 0 0 1 1 0 1 01 0 0 0 0	30 PKT 0 IV 1 W/S M2 M1 M0 87 WF 0 0 0 0 0 ← FX → 07 0 0 0 0 0 ← FY → 27 ← C/R → 2F ← T C/R → 28 ← APL → 00 ← APH → 44 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

LCDC-1330 Controller Board

The Seiko instruments family of LCDC-1330 controller boards feature the advanced SED1330 IC described in the previous section. These controller boards are designed to allow the user to quickly interface our graphic modules with the intel 8085 or Motorola 6800 series microprocessors to display text, graphics, and overlayed text & graphics. The controller boards support 32K bytes of static RAM as display memory that can be defined as text space or graphics space. These memory spaces may be overlayed to produce mixed graphics and text, inverse video, area blinking, and overlay masking.

■ Memory Size Selection

Resolution of LCD	Min. memory size for 1 screen	Model number
128 x 128	2K	LCDC-1300-32A
240 x 64	2K	LCDC-1330-32A
192 x 128	3K	LCDC-1330-32A
192 x 192	5K	LCDC-1330-32A
240 x 128	4K	LCDC-1330-32A
320 x 200 320 x 240	8K 8K	LCDC-1330-32A LCDC-1330-32A
640 x 200	16K	LCDC-1330-32A

■ LCDC-1330 Features

Character Display Mode

- Programmable or automatic cursor shift function
- Flexible scroll function
- Two or three screen layered function
- Block or underline cursor function
- Area flashing function
- Internal character generator: JIS 160 characters (5x7)
- External character generator: 256 characters (8x8 or 8x16)

Graphic Display Mode

- Maximum display size: 640 dots (H) x 256 dots (V)
- 2 or 3 screen overlayed function
- Independent block flashing and on/off control
- Graphic display mode can be mixed with character display mode

■ Electrical Characteristics ($T_{opr} = 0$ °C to 50°C $V_{DD} = 5V \pm 5\%$; $V_{SS} = 0V$)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions	Terminals
V_{DD}	Supply Voltage	4.0	5.0	6.0	V	901141110110	V_{DD}
V _{DDPD}	Power Down Supply Voltage	2.0		6.0	V		
TTL V _{IHT} V _{ILT} V _{OHT}	Input High Voltage (TTL) Input Low Voltage (TTL) Output High Voltage (TTL) Output Low Voltage (TTL)	2.2 -0.3 2.4	- - -	V _{DD} =0.3 0.8 - 0.4	V V V	I _{OH} =-0.5mA I _{OL} =5.0mA	D ₀ ·· D ₇ , A0 CS, RD, WR
CMOS VIHC VILC VOHC VOLC	Input High Voltage (CMOS) Input Low Voltage (CMOS) Output High Voltage (CMOS) Output Low Voltage (CMOS)	0.8V _{DD} - V _{DD} -0.4	- - -	0.2V _{DD}	V	I _{OH} =1.6mA	DB ₀ -Dl3 ₃ , FLM, M CL1, CL2
SCHMITT	(c.i.ge)			0.4	+ <u>'</u>	I _{0L} =1.6mA	
V _{T+}	Positive-going Threshold Voltage	0.5V _{DD}	0.7V _{DD}	0.8V _{DD}	V		RES
V_{T-}	Negative-going Threshold Voltage	0.2V _{DD}	0.3V _{DD}	0.5V _{DD}	V		RES
l _{LI}	Input Leakage Current	-	0.05	2.0	μА		
I_{LO}	Output Leakage Current	-	0.10	5.0	μА		
I _{OPR}	Average Dynamic Power Consumption	-	8.0	12	mA		
Ia	Average Static Power Consumption	-	0.05	20	μA		

LCDC-1330 Controller Board (Continued)

■ Pin Assignment

CN1: Connection for Microprocessor Interface

PIN#		But "	
FIN#	SIGNAL	PIN#	SIGNAL
1	*RESET	9	D_3
2	*RD (E)	10	D_4
3	*WR (R/*W)	11	D_{5}^{T}
4	*CS	12	D_6^3
5	A0	13	D_7
6	D_0	14	V _{DD} (+5V)
7	D_1	15	V _{SS} (GND)
8	D_2	16	V _{LCD}

^{*}Active low on the control signal

CN2: Connection for LCD Interface

PIN#	SIGNAL	PIN#	SIGNAL
1	DB_3	7	CL1 (LP)
2	DB_2^{T}	8	CL2(XSCL)
3	\overline{DB}_1	9	V _{DD} (+5V)
4	DB_0	10	V _{SS} (GND)
5	FLM (YD)	11	V ₀
6	M (WF)	12	Vicin

The microprocessor may access the command/status register or read/write data by changing the value of *RD, *WR, and A0.

CN3: Contrast Adjustment

PIN#	SIGNAL	
1	V _{DD} (+5V)	
2	V_0	
3	V_{LCD}	

J1: Jumper Settings for CPU

- 1-2: Select Intel 8085 or Z80 microprocessor
- 2-3: Select Motorola 6800 microprocessor

■ Control Signal Status

Intel 8080 Series

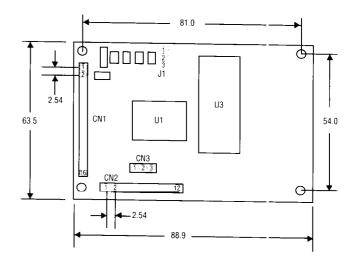
A0	*RD	*WR	FUNCTION
0	0	1	Status Register Read
1	0	1	Read Data
0	1	0	Write Data
1	1	0	Command Register Write

^{*}Active low on the control signal

Motorola 6800 Series

AO	*RD	*WR	FUNCTION
0	1	1	Status Register Read
1	1	1	Read Data
0	0	1	Write Data
1	0	1	Command Register Write

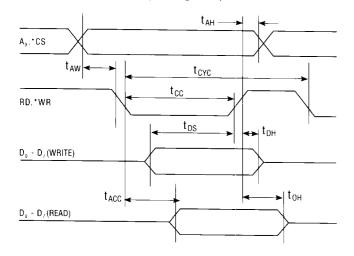
^{*}Active low on the control signal


Except for the erase command, the LCDC-1330 does not require the CPU to check the ready status between passing commands or parameters. When issuing the erase command, the CPU must wait for at least two frame times before writing a new command to the LCDC-1330.

■ LCDC-1330 Characteristics

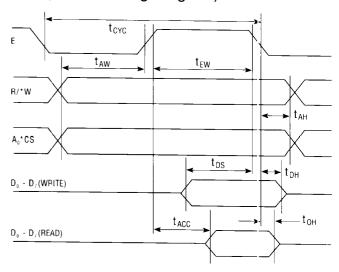
Absolute Maximum Ratings

ITEM	SPECIFICATION	
Supply Voltage (V _{DD})	0.3V to +7.0V	
Voltage on Any Pin With		
Respect to Ground (V _{SS})	0.5V to V _{DD} + 0.5	
Operating Temperature	0°C to 50°C	
Storage Temperature	20°C to 60°C	
Power Consumption	60mW	


■ Dimensions of LCDC-1330 (mm)

■ Microprocessor Interface Timing (T_{opr}=0°C to 50°C V_{DD}=5.0V±10%)

Signal	Symbol	Parameter	Min.	Max.	Units
80 Series Tim	ing				<u> </u>
WR, RD	t _{CYC}	System Cycle Time	1000		ns
	t _{CC}	Control Pulse Width	220		ns
68 Series Tim	ing			<u> </u>	<u> </u>
A0, CS, RW	t _{CYC}	System Cycle Time	1000		ns
E	t _{EW}	Enable Pulse Width	220		ns
Timing for 80	and 68 Se	eries Processors			1
A0, CS	t _{AH}	Address Hold Time	10		ns
	t _{AW}	Address Setup Time	30		ns
D ₀ -D ₇	t _{DS}	Data Setup Time	120		ns
	t _{DH}	Data Hold Time	10		ns
	t ACC	RD Access Time		120	ns
	t _{OH}	Output Disable Time	10	50	ns


■ 80 (Series Timing Diagram)

■ Instruction Set Summary

System Set	0100 0000	40h
Display On	0101 1001	59h
Display Off	0101 1000	58h
Overlay	0101 1011	5Bh
CG RAM Address	0101 1100	5Ch
Scroll	0100 0100	44h
Horiz. Dot Scroll	0101 1010	5Ah
Cursor Format	0101 1101	5Dh
Cursor Right	0100 1100	4Ch
Cursor Left	0100 1101	4Dh
Cursor Up	0100 1110	4Eh
Cursor Down	0100 1111	4Fh
Cursor Write	0100 0110	46h
Cursor Read	0100 0111	47h
Memory Write	0100 0010	42h
Memory Read	0100 0011	43h
Erase	0101 0010	52h
Sleep	0101 0011	53h

■ 68 (Series Timing Diagram)

■ Control Command Description

■ System Set (C:40h)

Symbol	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	[escription
Pi	0 M0 M1:	1:	IV Intern Exterr 32 RA	M0	Mode of Operation				
	M2: IV:	0: 1: 0:	64 RA Chara Chara First I						
P2		0 0: Li 1: F 0/1:	0 ne revi rame Define	0 erse A(reverse e the w	AC dri	FX2 ve (nori			V/idth of a character field
P3	(normally 111 is used for 8 pixels wide) 0 0 0 0 FY3 FY2 FY1 FY0 FYn 0/1: Define the height of the font (normally 0111 is used for 8 pixels high)						FY0	Height of a character field	
P4 C/R:			Γotal p	ixels ir	C/R width	divided	by FX		(haracters per row
P5	FR:	Total pixels in width divided by FX TC/R TC/R x L/F x FR x 9 = Fosc L/F: Lines per frame (vertical pixels/screen) FR: Frame frequency (from 60Hz to 80Hz) Fosc: 10 MHz (10 ⁷) for LCDC-1330 6MHz (6 x 10 ⁸) for built-in controller							Timing per character row (Adjust frame frequency)
P6		L/F L/F: Vertical pixels per screen							Lines per graphics screen
P7		A	PL: No	rmally	APL C/R or	C/R+1 i	s used		Virtual screen low tyte
P8		•	API		Virtual screen high				

LCDC-1330 Controller Board (Continued)

■ Display On (C:59h)

Symbol	D ₇	D ₆	D ₅	D ₄	D_3	D_2	D ₁	D ₀	Note
P1	FP5	FP4	FP3	FP2	FP1	FP0	FC1	FC0	
	FC1	FC0	_	Cursor	Conti	rol			
	0	0	(Cursor	off				
	0	1	(Cursor	on, n	o blin	k		
	1	0	(On wit	h 2 Hz	blink	rate		
	1	_ 1 _	(On wit	h 1 Hz	blink	rate		
	FP1	FP0		SAD1	 (L1)				Layer 1
	FP3	FP2	5	SAD2	(L2)				Layer 2
	FP5	FP4	5	SAD3	(L3)				Layer 3
	0	0		_ayer (off	_			
	0	1	l	_ayer (on, no	blink			
	1	0		On wit			rate		
	1	1	(On wit	h 16 F	lz blin	k rate	•	

■ Display OFF (C:58h)

This command causes the controller to inhibit the display of all enabled layers. The function of the parameter P1 that follows is the same as Display On.

■ Overlay (C:5Bh)

This command controls the plane interrelations defined by the following parameter byte. Options include or, xor, intersection, and priority overlay.

Symbol	D ₇	D ₆	D ₅	Ε)4	D ₃	D	2	D ₁	Do	Note
P1	0	0	0	0V	DM	2 DM	1	MX	1 MX	(0	
	MX1	MX	0	Me	thoc	of Ov	erla				<u> </u>
	0	0		L1 U	L2	∪ L3		Si	mple	Overla	ıy
	0	1		(L1 e	Đ L2	?) ∪ L:	3	Re	vers	e Over	lav
	1	0		(L1 c	٦ L 2	() ∪ L	3			e Ove	
	1	1		L1 }	L2 >	Ĺ3				Overla	
	DM1	0: 8	SAD1	defin	ed a	ıs chai	acte	er la	ver	The	second
	DM0 OV	1: 8 0: 8 1: 8 0: 0	SAD1 SAD3 SAD3 Config	defin defin defin jured	ed a ed a ed a for	is grap is chai is grap 2 layei 3 layei	hic acte hic 's	laye er la	er yer	laye use grap	er can be d as ohic er only.

■ CG RAM Address (C:5Ch)

The parameters of this command define the base address of a memory character generator table. (Normally F000h is used)

P1 (SAGL): Sets the lower byte of the CG RAM address P2 (SAGH): Sets the higher byte of the CG RAM address

This command is not needed if the internal CG ROM is used. It is needed if an external CG RAM is used. A memory block of 2K or 4K bytes is required for vertical dot sizes of 8 or 16 respectively. (depends on M2 of System Set command)

■ Scroll (C:44h)

The scroll command is used to set the beginning display address of each layer and the number of lines in that layer. By modifying the beginning address of the layer, the screen may be made to scroll up or down.

P1 (SAD1L): Sets the lower byte of the first layer address
P2 (SAD1H): Sets the higher byte of the first layer address
P3 (SL1): Sets the line number per frame for the first

layeı

P4 (SAD2L): Sets the lower byte of the second layer

address

P5 (SAD2H): Sets the higher byte of the second layer

address

P6 (SL2): Sets the line number per frame for the second

layer

P7 (SAD3L): Sets the lower byte of the third ayer address **P8** (SAD3H): Sets the higher byte of the third layer address

■ Horiz. Dot Scroll (C:5Ah)

This command allows the screen to be scrolled by pixel increments. When used in conjunction with the Scroll command, smooth scrolling of the screen is possible. The number of pixels to offset by is passed in the parameter byte as follows:

P1: 0 0 0 0 0 D_2 D_1

■ Cursor Format (C:5Dh)

The variable size block and underline cursor can be set.

CM: 0 - Under line 1 - Block

■ Cursor Control

The cursor control commands are used to set the default cursor direction which points to the location to be modified. After every memory read or memory write operation, the cursor is automatically positioned to the next memory location.

Cursor Right: (C:4Ch - 0 1 0 0 1 1 0 0)

Cursor Left: (C:4Dh - 0 1 0 0 1 1 0 1)

Cursor Up: (C:4Eh - 0 1 0 0 1 1 1 0)

Cursor Down: (C:4Fh - 0 1 0 0 1 1 1 1)

■ Cursor Write (C:46h)

This command sets the current cursor address.

P1 (CSRL): Sets the lower byte of the cursor address
P2 (CSRH): Sets the higher byte of the cursor address

■ Cursor Read (C:47h)

This command returns the current cursor address.

P1 (CSRL): Reads the lower byte of the cursor address.
P2 (CSRH): Reads the higher byte of the cursor address

■ Memory Write (42h)

This command sets the controller into the write mode. The data that is passed to the parameter will be written to the memory location specified by the current cursor address. After the Memory Write command, the controller automatically advances the cursor to the next sequential location defined by the cursor direction. This allows the users to write many bytes of data to the screen without issuing another write command.

■ Memory Read (43h)

This command sets the controller into the read mode. The data that is read from the parameter will be from the memory location specified by the current cursor address. After the Memory Read command, the controller automatically advances the cursor to the next sequential location defined by the cursor direction. This

allows the users to read many bytes cf data to the screen without issuing another read command.

■ Erase (C:52h)

Pn

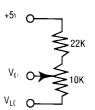
This command clears the screens that are enabled from the current cursor position to the end of the screens. After Erase command is issued, two frame time (min.) delay is needed before issuing the next command. (e.g. 34 ms is needed for 60 Hz frame frequency.)

■ Sleep (C:53h)

This command turns off the display, stcps all internal operations, stops the oscillator, and enters the sleep mode. The controller may be brought out of the sleep mode by issuing the System Set command. The contents in the memory remain unchanged.

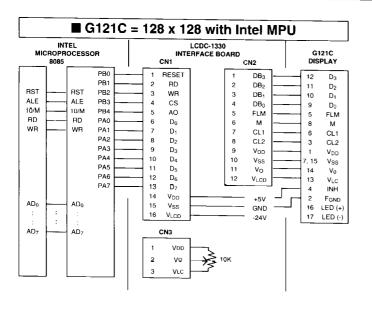
■ Initialization Setting for Seiko Instruments LCD Modules

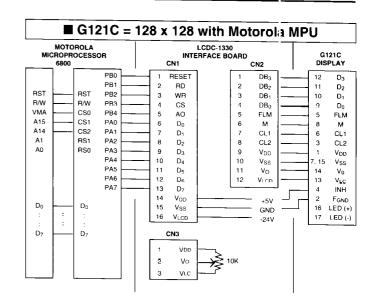
Command	Symbol	G121C	G191C	G191D	G242C	G2436 G2446	G321D	G321E G324E	G648D G694D	Note
System Set	C	40h	40h	40h	40h	40h	40h	40h	40h	
	P1	30h	30h	30h	30h	30h	30h	30h	30h	P5 is
	P2	87h	85h	85h	85h	85h	87h	87h	87h	based on
i	P3	07h	07h	07h	07h	07h	07h	07h	07H	70 Hz
	P4	0Fh	1Fh	1Fh	27h	27h	27h	27h	4Fh	
	P5	7Ch	7Ch	53h	7Ch	F8h	4Fh	42h	4Fh	frame
	P6	7Fh	7Fh	BFh	7Fh	3Fh	C7h	EFh	C7h	rate with
	P7	0Fh	1Fh	1Fh	27h	27h	27h	27h	4Fh	Fosc. =
	P8	00h	00h	00h	00h	00h	00h	00h		10 MHz.
Display On	С	59h	59h	59h	59h	59h	59h	59h	00h	
	P1	05h	05h	05h	05h	05h	05h	05h	59h	
Overlay	С	5Bh	5Bh	5Bh	5Bh	5Bh	5Bh		05h	
	P1	00h	00h	00h	00h	00h	00h	5Bh	5Bh	
Scroll	С	44h	44h	44h	44h	44h	44h	00h	00h	
	P1	00h	00h	00h	00h	00h		44h	44h	
	P2	00h	00h	00h	00h	00h	00h	00h	00h	
	P3	7Fh	7Fh	BFh	7Fh	3Fh	00h	00h	00h	
	P4	00h	00h	00h	00h	00h	C7h	EFh	C7h	
	P5	04h	04h	06h	06h	00f1 04h	00h	00h	00h	
	P6	7Fh	7Fh	BFh	7Fh	3Fh	08h	10h	10h	
Cursor Format	С	5Dh	5Dh	5Dh	5Dh	5Dh	C7h	EFh	C7h	
	P1	07h	05h	05h	05h		5Dh	5Dh	5Dh	
	P2	87h	87h	87h	87h	05h	07h	07h	07h	
Cursor Write	C	46h	46h	46h	46h	87h	87h	87h	87h	
-	P1	00h	00h	00h		46h	46h	46h	46h	
	P2	00h	00h	00h	00h	00h	00h	00h	00h	
Cursor Direction	C	4Ch	4Ch		00h	00h	00h	00h	00h	
Memory Write	$\frac{c}{c}$	42h	42h	4Ch	4Ch	4Ch	4Ch	4Ch	4Ch	
	P1	 	L 42n ode: 20h - 7l	42h h	42h	42h	42h	42h	42h	
	 Pn	ASCII C	ode: 20h - 7 I	−h						

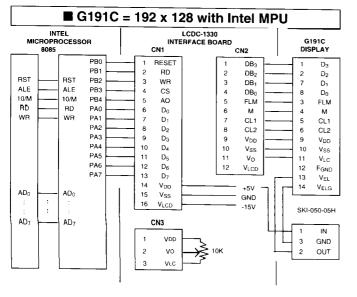

LCDC-1330 Controller Board (Continued)

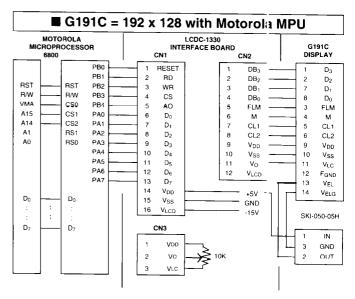
- Hardware Connection
- To Select MPU Interfaces On G121C, G2446, G242C, G321D, G324E With Built-in Controller: SEL1=0, SEL2=0 for 8085 Intel type MPU SEL1=1, SEL2=0 for 6800 Motorola type MPU
- To Enable The Display On The Graphic Modules: Connect INHX to +5V
- To Disable The Display On The Graphic Modules: Connect INHX to Ground

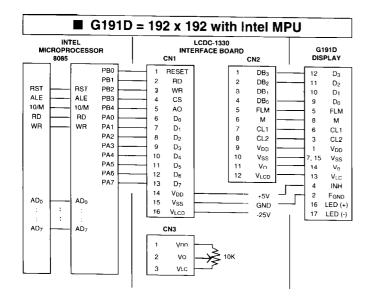
■ Contrast Control On LCDC-1330

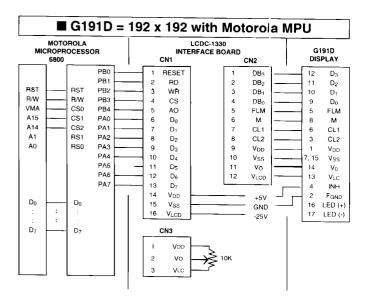

- Apply V_{LCD} (<V₀) to pin 16 of CN1 (a.g. -15v for G191C)
- Use a $10K\Omega$ potentiometer on CN3 to adjust Vo

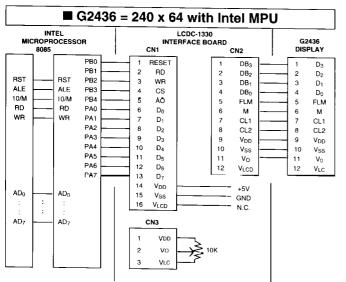

■ Contrast Control On The Modules With Built-in Controller

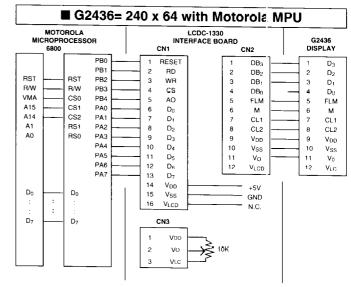


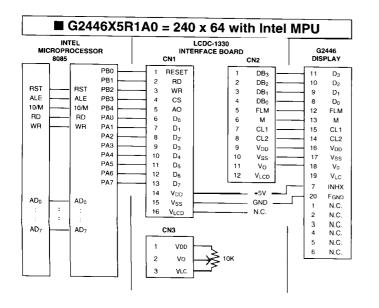

■ Optimum Contrast Control Voltage

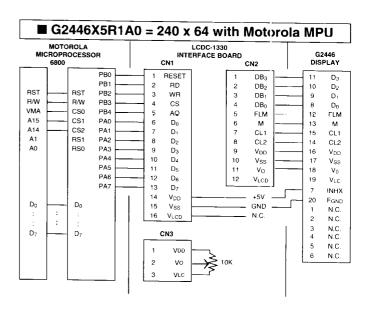

Module	G121C	G191C	G191D	G2436	G2446	G242C	G321D	G321E	G324E	G648I)	G649D
V ₀	-15.1V	-12.5V	-17.9V	-7.8V	-7.8V	-13.0V	-17.0V	-16.5V	-16.5V	-17.5\/	-17.5V

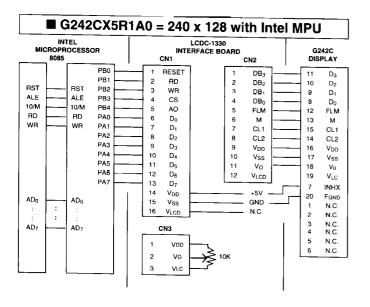


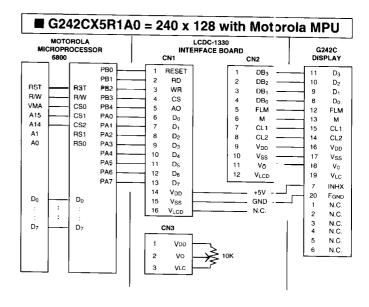


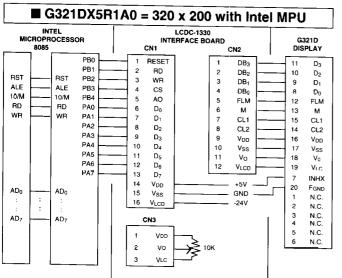


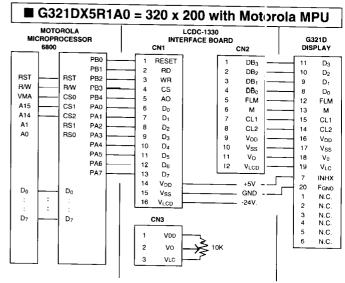


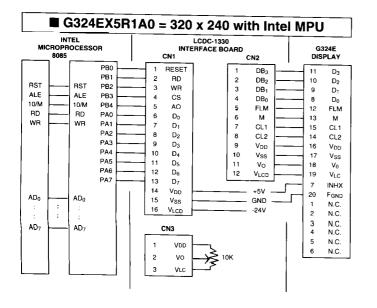


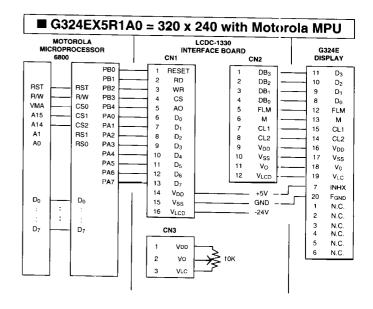


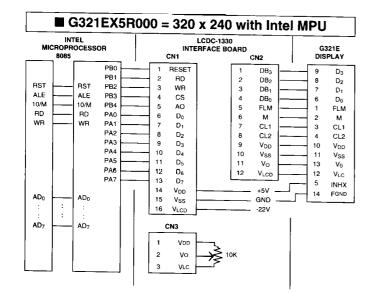


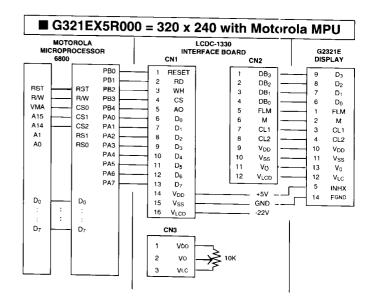


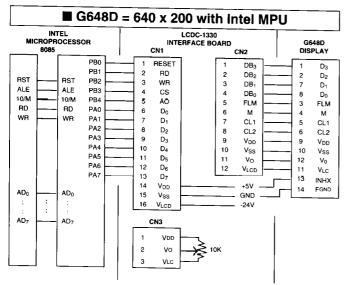


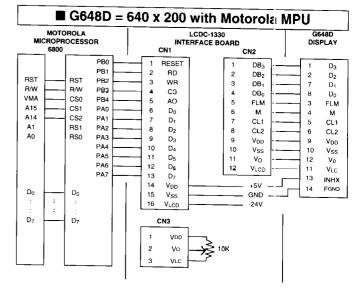

LCDC-1330 Controller Board (Continued)

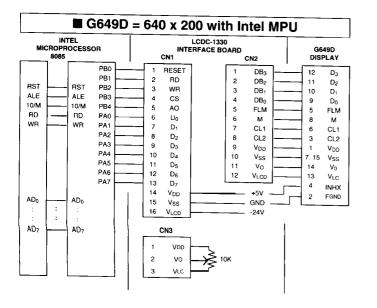


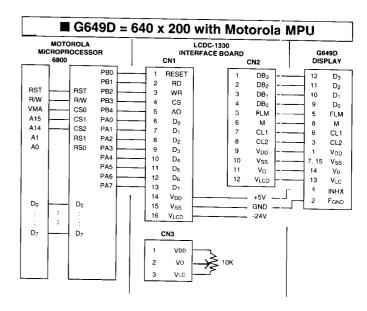












Sample Programs

■ Sample Programs

Here are sample programs to help get started with the following modules:

 $G1213 = t28 \times 32$ $G1216 = 128 \times 64$ $G191C = 192 \times 128$ $G2446 = 240 \times 64$ $G242C = 240 \times 128$ $G321D = 320 \times 200$ $G321E = 320 \times 240$ $G324E = 320 \times 240$

For additional programming information, contact the LCD application engineering department at 310-517-7770, fax 310-517-7792.

■ Program For G1213 LCD Module

'SUBROUTINE FOR COMMAND CONTROL DECLARE SUB FUNC1 () 'SUBROUTINE FOR DATA CONTROL DECLARE SUB FUNC2 ()

OUT PORT1,&3FH

FUNC1 OUT PORT1,&B8H 'SET THE PAGE (X ADDRESS) TO O FUNC1 OUT PORT1,&40H 'SET Y ADDRESS TO O FUNC1 OUT PORT1.&COH 'SET Z ADDRESS TO 0 FUNC1 PAGE = &B8H FOR I = 1 TO 4 FOR J = 1 TO 64 '64 BYTES OF DATA TO BE READ READ CODE OUT PORT1, CODE 'SHOW THE DATA ON THE SCREEN

'DISPLAY ON COMMAND

FUNC2 **NEXT J** PAGE = PAGE + 1 **OUT PORT1, PAGE** 'SET THE PAGE TO NEXT ONE FUNC₁ OUT PORT1,&40H 'SET Y ADDRESS TO O FUNC1 NEXT 1

'WRITING TO COMMAND REGISTER OUT PORT2.3 **OUT PORT2.2 END SUB** SUB FUNC2 DATA CONTROL OUT PORT2,0 WRITING TO DATA FEGISTER OUT PORT2.1 OUT PORT2.0 **END SUB** CHARACTER O

'COMMAND CONTROL

SUB FUNC1

OUT PORT2.2

DATA 3EH,7FH,71H,59H,4DH,7FH,3EH,0OH DATA 40H,42H,7FH,7FH,40H,40H,00H,00H CHARACTER 1 DATA 62H,73H,59H,49H,6FH,66H,00H,00H 'CHARACTER 2 DATA 22H,63H,49H,49H,7FH,36H,00H,00H 'CHARACTER 3 DATA 18H,1CH,16H,53H,7FH,7FH,50H,00H 'CHARACTER 4 DATA 27H,67H,45H,45H,7DH,39H,00H,00H CHARACTER 5 DATA 3CH,7EH,4BH,49H,79H,30H,00H,00H CHARACTER 6 DATA 03H,03H,71H,79H,0FH,07H,00H,00H CHARACTER 7 DATA 36H,7FH,49H,49H,7FH,36H,00H,00H 'CHARACTER 8 DATA 06H,4FH,49H,69H,3FH,1EH,00H,00H 'CHARACTER 9 DATA 7CH.7EH,13H,13H,7EH,7CH,0OH,0OH 'CHARACTER A DATA 41H,7FH,7FH,49H,49H,7FH,36H,00H 'CHARACTER B DATA 1CH,3EH,63H,41H,41H,63H,22H,00H 'CHARACTER C DATA 41H,7FH,7FH,41H,63H,3EH,1CH,00H 'CHARACTER D DATA 41H,7FH,7FH,49H,5DH,41H,63H,00H 'CHARACTER E DATA 41H,7FH,7FH,49H,1DH,0IH,03H,00H CHARACTER F DATA 1CH,3EH,63H,41H,51H,73H,72H,00H 'CHARACTER G DATA 7FH,7FH,08H,08H,7FH,7FH,00H,00H 'CHARACTER H DATA 00H,41H,7FH,7FH,41H,00H,00H,00H CHARACTER I DATA 30H,70H,40H,41H,7FH,3FH,01H,00H 'CHARACTER J DATA 41H,7FH,7FH,08H,1CH,77H,63H,00H 'CHARACTER K DATA 41H,7FH,7FH,41H,40H,60H,70H,00H 'CHARACTER L DATA 7FH,7FH,0EH,1CH,0EH,7FH,7FH,0OH 'CHARACTER M DATA 7FH,7FH,06H,0CH,18H,7FH,7FH,00H 'CHARACTER N DATA 1CH,3EH,63H,41H,63H,3EH,1CH,00H 'CHARACTER O DATA 41H,7FH,7FH,49H,09H,0FH,06H,00H 'CHARACTER P DATA 1EH,3FH,21H,71H,7FH,5EH,00H,00H 'CHARACTER Q DATA 41H,7FH,7FH,09H,19H,7FH,66H,00H 'CHARACTER R DATA 26H,6FH,4DH,59H,73H,32H,00H,00H 'CHARACTER S DATA 03H,41H,7FH,7FH,41H,03H,00H,00H 'CHARACTER T DATA 3FH,7FH,4OH,4OH,7FH,3FH,0OH,0OH 'CHARACTER U DATA 1FH,3FH,60H,60H,3FH,1FH,00H,00H 'CHARACTER V DATA 7FH,7FH,30H,18H,30H,7FH,7FH,00H CHARACTER W DATA 43H,67H,3CH,18H,3CH,67H,43H,0OH 'CHARACTER X DATA 07H,4FH,78H,78H,4FH,07H,00H,00H 'CHARACTER Y DATA 47H,63H,71H,59H,4DH,67H,73H,00H 'CHARACTER Z

Program For G12- 'SUBROUTINE FOR COMM. DECLARE SUB FUNC11() DECLARE SUB FUNC12() 'SUBROUTINE FOR DATA (DECLARE SUB FUNC21()	AND CONTROL	SUB FUNC21 OUT PORT2,0 OUT PORT2,1 OUT PORT2,0 END SUB	'DATA CONTROL F 'WRITING TO DATA	OR LEFT HALF A REGISTER
DECLARE SUB FUNC22() OUT PORT1,&3FH	IDICDI AV ON COMMAND	SUB FUNC22 OUT PORT2,4 OUT PORT2,5	DATA CONTROL F WRITING TO DATA	
FUNC11 FUNC12	'DISPLAY ON COMMAND	OUT PORT2,4 END SUB		
OUT PORT1,&B8H FUNC11 FUNC12	'SET THE PAGE (X ADDRESS) TO 0	DATA 3EH,7FH,71H,59H,4DH DATA 40H,42H,7FH,7FH,40H DATA 62H,73H,59H,49H,6FH	,40H,00H,00H	CHARACTER 0
OUT PORT1,&40H FUNC11	'SET Y ADDRESS TO O	DATA 22H,63H,49H,49H,7FH DATA 18H,1CH,16H,53H,7FH	,36H,00H,00H ,7FH,50H,00H	'CHARACTER 2 'CHARACTER 3 'CHARACTER 4
FUNC12 OUT PORT1,&COH FUNC11 FUNC12	'SET Z ADDRESS TO O	DATA 27H,67H,45H,45H,7DH DATA 3CH,7EH,4BH,49H,79H DATA 03H,03H,71H,79H,0FH DATA 36H,7FH,49H,49H,7FH	I,30H,00H,00H I,07H,00H,00H ,36H,00H,00H	CHARACTER 5 CHARACTER 6 CHARACTER 7 CHARACTER 8
PAGE = &B8H FOR I = 1 TO 4		DATA 06H,4FH,49H,69H,3FH DATA 7CH,7EH,13H,13H,7EH DATA 41H,7FH,7FH,49H,49H DATA 1CH,3EH,63H,41H,41H	I,7CH,00H,00H ,7FH,36H,00H	CHARACTER 9 CHARACTER A CHARACTER B CHARACTER C
FOR J = 1 TO 64 READ CODE	'64 BYTES OF DATA TO BE READ	DATA 41H,7FH,7FH,41H,63H DATA 41H,7FH,7FH,49H,5DH	,3EH,1CH,0OH	CHARACTER D
OUT PORT1,CODE FUNC21 FUNC22 NEXT J	'SHOW THE DATA ON THE SCREEN	DATA 41H,7FH,7FH,49H,1DH DATA 1CH,3EH,63H,41H,51H DATA 7FH,7FH,08H,08H,7FH, DATA 0OH,41H,7FH,7FH,41H	,01H,03H,00H 1,73H,72H,00H ,7FH,00H,00H 1,00H,00H,00H	CHARACTER F CHARACTER G CHARACTER H CHARACTER I
PAGE = PAGE + 1 OUT PORT1,PAGE FUNC11	'SET THE PAGE TO NEXT ONE	DATA 30H,70H,40H,41H,7FH DATA 41H,7FH,7FH,08H,1CH DATA 41H,7FH,7FH,41H,40H DATA 7FH,7FH,0EH,1CH,0EH	,77H,63H,00H ,60H,70H,00H	CHARACTER J CHARACTER K CHARACTER L
FUNC12 OUT PORT1,&40H FUNC11 FUNC12 NEXT I	'SET Y ADDRESS TO O	DATA 7FH,7FH,06H,06H,18H DATA 1CH,3EH,63H,41H,63H DATA 41H,7FH,7FH,49H,09H DATA 1EH,3FH,21H,71H,7FH DATA 41H,7FH,7FH,09H,19H	,7FH,7FH,00H I,3EH,1CH,00H ,0FH,06H,00H ,5EH,00H,00H	CHARACTER M CHARACTER N CHARACTER O CHARACTER P CHARACTER Q CHARACTER R
SUB FUNC11 OUT PORT2,2 OUT PORT2,3 OUT PORT2,2 END SUB	'COMMAND CONTROL FOR LEFT HALF 'WRITING TO COMMAND REGISTER	DATA 26H,6FH,4DH,59H,73H DATA 03H,41H,7FH,7FH,41H DATA 3FH,7FH,40H,40H,7FH DATA 1FH,3FH,60H,60H,3FH, DATA 7FH,7FH,3OH,18H,3OH DATA 43H,67H,3CH,18H,3CH	,32H,00H,00H ,03H,00H,00H ,3FH,00H,00H ,1FH,00H,00H ,7FH,7FH,00H ,67H,43H,00H	CHARACTER S CHARACTER T CHARACTER U CHARACTER V CHARACTER W CHARACTER X
SUB FUNC12 OUT PORT2,6 OUT PORT2,7 OUT PORT2,6	'COMMAND CONTROL FOR RIGHT HALF 'WRITING TO COMMAND REGISTER	DATA 07H,4FH,78H,78H,4FH, DATA 47H,63H,71H,59H,4DH	,07H,00H,00H	CHARACTER Y

END SUB

Sample Programs (Continued)

■ Program For G191C LCD I	Module
---------------------------	--------

'SUBROUTINE FOR COMMAND CONTROL DECLARE SUB FUNC1() 'SUBROUTINE FOR DATA CONTROL DECLARE SUB FUNC2 ()

DECEMBE SOB FUNCS ()	
OUT PORT1,&40H FUNC1	'SYSTEM SET COMMAND
OUT PORT1,&30H FUNC2	'P1: MODE OF OPERATION
OUT PORT1,&85H FUNC2	'P2: WIDTH OF A CHARACTER FIELD
OUT PORT1,&07H FUNC2	'P3: HEIGHT OF A CHARACTER FIELD
OUT PORT1,&1FH FUNC2	'P4: CHARACTERS PER ROW
OUT PORT1,&7CH FUNC2	'P5: FRAME FREQUENCY CONTROL
OUT PORT1,&7FH FUNC2	'P6: LINES PER GRAPHIC SCREEN
OUT PORT1,&20H FUNC2	'P7: VIRTUAL SCREEN WIDTH LOW BYTE
OUT PORT1,&OOH FUNC2	'P8: VIRTUAL SCREEN WIDTH HIGH BYTE
OUT PORT1,&59H	'DISPLAY ON COMMAND
FUNC1	DISPLATION COMMININD
OUT PORT1,&05H FUNC2	'LAYER 1 ON WITH CURSOR
OUT PORT1,&5BH	'OVERLAY COMMAND
FUNC1 OUT PORTI,&OOH FUNC2	'SIMPLE OVERLAY
OUT PORT1,&44H FUNC1	'SCROLL COMMAND
OUT PORTI,&OOH FUNC2	'FIRST LAYER LOW BYTE
OUT PORTI,&OOH Func2	'FIRST LAYER HIGH BYTE
OUT PORT1,&7FH FUNC2	'LINES OF THE LAYER
OUT PORTI,&OOH FUNC2	'SECOND LAYER LOW BYTE
OUT PORT1,&04H FUNC2	'SECOND LAYER HIGH BYTE
OUT PORT1,&7FH FUNC2	'LINES OF THE LAYER
OUT PORT1,&5DH	'CURSOR FORMAT COMMAND
FUNC1 OUT PORT1,&05H	'CURSOR WIDTH
FUNC2 OUT PORT1,&87H FUNC2	'CURSOR HEIGHT

OUT POR FUNC1	T1,&4CH	'CURSOR DIRECTION COMMAND (SHIFT RIGHT)
OUT POR	T1,&46H	'CURSOR WRITE COMMAND
FUNC1 OUT POR	T1,&00H	CURSOR POSITION LOW BYTE
FUNC2 OUT POR	T1 8 00U	CURCOR POSITION HOLD BY
FUNC2	ει,αυυπ	CURSOR POSITION HIGH BYTE
OUT POR	T1,&42H	'MEMORY WRITE COMMAND
FUNC1 FOR I = 1	TO 16	'16 LINES OF DATA TO BE READ
ONE\$ = N	R = 1 TO LEN(ASCII IID\$ (ASCII\$,CHAR, SC (ONE\$) T1,CODE	\$)
SUB FUNC OUT POR OUT POR OUT POR END SUB	T2,2 T2,3	'COMMAND CONTROL 'WRITING TO COMMAND REGISTER
SUB FUNC OUT POR' OUT POR' OUT POR' END SUB	Γ2,0 Γ2,1	'DATA CONTROL 'WRITING TO DATA FEGISTER
ΠΔΤΔ "***	******	****
DATA "*		* II
DATA **	G191C LCD MODI	
DATA "*	192x128 DOT MA	
DATA "*	EL BACK LIGHT	*"
DATA "*	FSTN FOR BLACK	& WHITE **
DATA "*		*"
DATA "*	DIMENSION:	*"
DATA "*	98x86x13 (mm)	* 11
DATA "*	()	* "
DATA "*	VIEWING AREA:	* 11
DATA "*	78x54 (mm)	★ Ⅱ
DATA "^	,	* n
DATA "*	SEIKO INSTRUME	NTS INC. *"
DATA "*		*"
DATA "* * *	******	******

■ Program For G244 'SUBROUTINE FOR COMMADECLARE SUB FUNC1() 'SUBROUTINE FOR DATA COMECLARE SUB FUNC2()	AND CONTROL	OUT PORT1,&5DH FUNC1 OUT PORT1,&07H FUNC2 OUT PORT1,&87H FUNC2	CURSOR FORMAT COMMAND CURSOR WIDTH CURSOR HEIGHT
OUT PORT1,&40H FUNC1 OUT PORT1,&30H	'SYSTEM SET COMMAND	OUT PORT1,&4CH FUNC1	CURSOR DIRECTION COMMAND (SHIFT RIGHT)
FUNC2	'P1: MODE OF OPERATION		
OUT PORT1,&87H FUNC2	'P2: WIDTH OF A CHARACTER FIELD	OUT PORT1,&46H FUNC1	CURSOR WRITE COMMAND
OUT PORT1,&07H FUNC2	'P3: HEIGHT OF A CHARACTER FIELD	OUT PORT1,&OOH FUNC2	CURSOR POSITION LOW BYTE
OUT PORT1,&1DH FUNC2	'P4: CHARACTERS PER ROW	OUT PORT1,&OOH FUNC2	CURSOR POSITION FIGH BYTE
OUT PORT1,&F8H FUNC2	'P5: FRAME FREQUENCY CONTROL	OUT DODT4 9 40H	HATTAGEN AND THE COLUMN
OUT PORT1,&3FH FUNC2	'P6: LINES PER GRAPHIC SCREEN	OUT PORT1,&42H FUNC1 FOR I = 1 TO 8	'MEMORY WRITE COMMAND
OUT PORTI,&1DH FUNC2	'P7: VIRTUAL SCREEN WIDTH LOW BYTE	READ ASCII\$ FOR CHAR = 1 TO LEN(ASCI	'8 LINES OF DATA TO BE READ
OUT PORT1,&OOH FUNC2	'P8: VIRTUAL SCREEN WIDTH HIGH BYTE	ONE\$ = MID\$(ASCII\$,CHAR, CODE = ASC(ONE\$) OUT PORT1,CODE	1)
OUT PORT1,&59H FUNC1	'DISPLAY ON COMMAND	FUNC2 NEXT CHAR	
OUT PORT1,&05H FUNC2	'LAYER 1 ON WITH CURSOR	NEXT I	
OUT PORT1,&5BH FUNC1	OVERLAY COMMAND	SUB FUNC1 OUT PORT2,2 OUT PORT2,3	'COMMAND CONTROL 'WRITING TO COMMAND REGISTER
OUT PORT1,&OOH FUNC2	'SIMPLE OVERLAY	OUT PORT2,2 END SUB	
OUT PORT1,&44H FUNC1	SCROLL COMMAND	SUB FUNC2 OUT PORT2,0	'DATA CONTROL 'WRITING TO DATA REGISTER
OUT PORT1,&OOH FUNC2	'FIRST LAYER LOW BYTE	OUT PORT2,1 OUT PORT2,0	WAITING TO DATA KEGISTER
OUT PORT1,&OOH FUNC2	FIRST LAYER HIGH BYTE	END SUB	
OUT PORT1,&3FH FUNC2	'LINES OF THE LAYER	DATA "***********************************	**************************************
OUT PORT1,&OOH FUNC2	'SECOND LAYER LOW BYTE	DATA "* G2446 LCD MOD DATA "* 240x64 DOT MA	
OUT PORT1,&04H FUNC2	'SECOND LAYER HIGH BYTE	DATA "* CCFL BACK LIGH	-
OUT PORT1,&3FH FUNC2	'LINES OF THE LAYER	DATA "* FSTN FOR BLACI DATA "* DATA "**********	*"

Sample Programs (Continued)

■ Program For G242C LCD Module

SUBROUTINE FOR COM		OUT PORT1,&4CH FUNC1	'CURSOR DIRECTION COMMAND (SHIFT RIGHT)
DECLARE SUB FUNC1()	A 00M70 0		,
'SUBROUTINE FOR DATA DECLARE SUB FUNC2()	A CONTROL	OUT DODT4 9 40U	101100000000000000000000000000000000000
000 1 01402()		OUT PORT1,&46H FUNC1	CURSOR WRITE COMMAND
OUT PORT1,&40H	'SYSTEM SET COMMAND	OUT PORT1,&OOH FUNC2	'CURSOR POSITION LOW BYTE
FUNC1	OTOTEM SET COMMINIMOD	OUT PORT1,&OOH	CURSOR POSITION FIIGH BYTE
OUT PORT1,&30H FUNC2	'P1: MODE OF OPERATION	FUNC2	CONSONT COMON MUNICIPAL
OUT PORT1,&87H FUNC2	'P2: WIDTH OF A CHARACTER FIELD	OUT PORT1,&42H FUNC1	MEMORY WRITE COLIMAND
OUT PORT1,&07H FUNC2	'P3: HEIGHT OF A CHARACTER FIELD	FOR I = 1 TO 16 READ ASCII\$	'16 LINES OF DATA T() BE READ
OUT PORT1,&1DH FUNC2	'P4: CHARACTERS PER ROW	FOR CHAR = 1 TO LEN(ASCII ONE\$ = MID\$(ASCII\$,CHAR,I	(\$)
OUT PORT1,&7FH FUNC2	'P5: FRAME FREQUENCY CONTROL	CODE = ASC(ONE\$) OUT PORT1,CODE)
OUT PORT1,&7FH FUNC2	'P6: LINES PER GRAPHIC SCREEN	FUNC2 NEXT CHAR	
OUT PORT1,&1EH FUNC2	'P7: VIRTUAL SCREEN WIDTH LOW BYTE	NEXT I	
OUT PORT1,&OOH FUNC2	'P8: VIRTUAL SCREEN WIDTH HIGH BYTE	SUB FUNC1 OUT PORT2,2 OUT PORT2,3	'COMMAND CONTROL 'WRITING TO COMMAND REGISTER
OUT PORT1,&59H FUNC1	'DISPLAY ON COMMAND	OUT PORT2,3 OUT PORT2,2 END SUB	
OUT PORT1,&05H FUNC2	'LAYER 1 ON WITH CURSOR	SUB FUNC2	IDATA CONTROL
OUT PORT1,&5BH FUNC1	'OVERŁAY COMMAND	OUT PORT2,0 OUT PORT2,1 OUT PORT2,0	'DATA CONTROL 'WRITING TO DATA REGISTER
OUT PORT1,&OOH FUNC2	'SIMPLE OVERLAY	END SUB	
		DATA "**********	********
OUT PORT1,&44H	'SCROLL COMMAND	DATA "*	★ Ⅱ
FUNC1	IFIDOT I AVED I AVED	DATA "* G242C LCD MODU	
OUT PORT1,&OOH FUNC2	'FIRST LAYER LOW BYTE	DATA "* 240X128 DOT MA	TRIX LCD *"
OUT PORT1,&OOH	'FIRST LAYER HIGH BYTE	DATA "* CCFL BACK LIGHT DATA "* FSTN FOR BLACK (
FUNC2	THIS EXTERNIANDITE	DATA "*	X VV⊓I∤⊏
OUT PORT1,&3FH	'LINES OF THE LAYER	DATA "* DIMENSION:	***
FUNC2		DATA "* 180x110x15 (mm)	* II
OUT PORT1,&OOH	'SECOND LAYER LOW BYTE	DATA " *	***
FUNC2 OUT PORT1,&04H	IOCOONE LANGE	DATA "* VIEWING AREA:	* II
FUNC2	'SECOND LAYER HIGH BYTE	DATA "* 134x76 (mm)	***
OUT PORT1,&3FH	'LINES OF THE LAYER	DATA "* DATA "* SEIKO INSTRUMEN	XII
FUNC2	LINES OF THE LATER	DATA "* SEIKO INSTRUMEI DATA "*	115 INC. *"
		DATA "************	******
OUT PORT1,&5DH FUNC1	'CURSOR FORMAT COMMAND		
OUT PORT1,&07H FUNC2	'CURSOR WIDTH		

OUT PORT1,&4CH

FUNC2

FUNC2

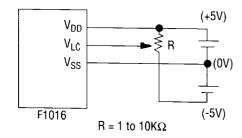
OUT PORT1,&87H

'CURSOR HEIGHT

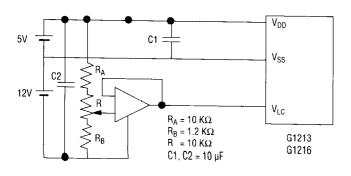
■ Program For G321 'SUBROUTINE FOR COMMADECLARE SUB FUNC1()		OUT PORT	1,&4CH	'CURSOR DIRECTION (SHIFT RIGHT)	N COMMAND
'SUBROUTINE FOR DATA C DECLARE SUB FUNC2()	ONTROL	OUT PORT	1,&46H	'CURSOR WRITE CO	MMAND
DESERVE SOB / SNO2()		OUT PORT	1,&00H	'CURSOR POSITION	LOW BYTE
OUT PORT1,&40H FUNC1	'SYSTEM SET COMMAND	OUT PORT	1,&00H	'CURSOR POSITION	H GH BYTE
OUT PORT1,&30H FUNC2	'P1: MODE OF OPERATION	OUT PORT	1 & <i>4</i> 2H	'MEMORY WRITE CO	JN INAANID
OUT PORT1,&87H FUNC2	'P2: WIDTH OF A CHARACTER FIELD	FUNC1 FOR I = 1 T	•	'25 LINES OF DATA	
OUT PORT1,&07H FUNC2	'P3: HEIGHT OF A CHARACTER FIELD	READ ASC			TO BE NEAD
OUT PORT1,&27H FUNC2	'P4: CHARACTERS PER ROW		D\$(ASCII\$,CHAR,		
OUT PORT1,&4FH FUNC2	'P5: FRAME FREQUENCY CONTROL	OUT PORT FUNC2	1,CODE		
OUT PORT1,&C7H FUNC2	'P6: LINES PER GRAPHIC SCREEN	NEXT CHAI NEXT I	R		
OUT PORT1,&28H FUNC2	'P7: VIRTUAL SCREEN WIDTH LOW BYTE	SUB FUNC	1	'COMMAND CONTRO	าเ
OUT PORT1,&OOH FUNC2	'P8: VIRTUAL SCREEN WIDTH HIGH BYTE	OUT PORT OUT PORT OUT PORT	2,2 2,3	WRITING TO COMM	
OUT PORT1,&59H FUNC1	'DISPLAY ON COMMAND	END SUB	_,_		
OUT PORT1,&05H FUNC2	'LAYER 1 ON WITH CURSOR	SUB FUNC	2,0	'DATA CONTROL 'WRITING TO DATA	REGISTER
OUT PORT1,&5BH FUNC1	'OVERLAY COMMAND	OUT PORT OUT PORT END SUB			
OUT PORT1,&OOH FUNC2	'SIMPLE OVERLAY	DATA "***	******	******	* * * * * * * 11
FUNG2		DATA "*			★ #
OUT PORT1,&44H FUNC1	'SCROLL COMMAND	DATA "* DATA "*	G321D LCD M0 320x200 DOT N		* "
OUT PORT1,&OOH	'FIRST LAYER LOW BYTE	DATA "*	CCFL BACK LIG	HT	*"
FUNC2 OUT PORT1,&OOH	'FIRST LAYER HIGH BYTE	DATA "* DATA "*	FSTN FOR BLA	CK & WHIIE	* II
FUNC2		DATA "*	DIMENSION:		★ H
OUT PORT1,&C7H FUNC2	'LINES OF THE LAYER	DATA "* DATA "*	166x134x15 (n	nm)	*"
OUT PORT1,&OOH	'SECOND LAYER LOW BYTE	DATA "*	VIEWING AREA	۸:	*"
FUNC2		DATA "*	128x110 (mm)		*"
OUT PORT1,&08H FUNC2	'SECOND LAYER HIGH BYTE	DATA "* DATA "*	SUITABLE CON	ITDOLLED.	* II
OUT PORT1,&C7H	'LINES OF THE LAYER	DATA DATA "*	SED1330FBA, I		* u
FUNC2	EINES OF THE EATER	DATA "*	0LB 10001 B/1, 1	VIOIVIOZOGGO	* u
		DATA "*	SUITABLE CON	ITROLLER BOARD:	*"
OUT PORT1,&5DH	'CURSOR FORMAT COMMAND	DATA "*	LCDC-1330-32	A	*"
FUNC1	IOUDOOD WIDTH	DATA "*			*"
OUT PORT1,&07H FUNC2	'CURSOR WIDTH	DATA "* DATA "*	SEIKO INSTRU	MENTS INC	*"
OUT PORT1,&87H	'CURSOR HEIGHT	DATA "*	2990 WEST LO		*"
FUNC2	SOMOONTIEMIN	DATA "*	TORRANCE, CA		*"
		DATA "*			* "
		DATA "***	*********	******	*****

Sample Programs (Continued)

■ Program For G321 'SUBROUTINE FOR COMMADECLARE SUB FUNC1()	E/G324E LCD Module ND CONTROL	OUT PORT FUNC1	⁻ 1,&4CH	'CURSOR DIRECTIO (SHIFT RIGHT)	N COMMAND
'SUBROUTINE FOR DATA CO DECLARE SUB FUNC2 ()	ONTROL	OUT PORT FUNC1	1,&46H	'CURSOR WRITE CO	DMMAND
(,		OUT PORT FUNC2	1,&00H	'CURSOR POSITION	L DW BYTE
OUT PORT1,&40H FUNC1	'SYSTEM SET COMMAND	OUT PORT FUNC2	1,&00H	CURSOR POSITION	HIGH BYTE
OUT PORT1,&30H FUNC2	'P1: MODE OF OPERATION	OUT PORT	1 0 4011	IMENAODY MOLTE O	01
OUT PORT1,&87H FUNC2	'P2: WIDTH OF A CHARACTER FIELD	FUNC1 FOR I = 1		'MEMORY WRITE C	
OUT PORT1,&07H FUNC2	'P3: HEIGHT OF A CHARACTER FIELD	READ ASC			IC BE REAU
OUT PORT1,&27H FUNC2	'P4: CHARACTERS PER ROW	ONE\$ = MI	ID\$(ASCII\$,CHAR,	1)	
OUT PORT1,&42H FUNC2	'PS: FRAME FREQUENCY CONTROL	OUT PORT FUNC2			
OUT PORT1,&EFH FUNC2	'P6: LINES PER GRAPHIC SCREEN	NEXT CHA	R		
OUT PORT1,&28H FUNC2	'P7: VIRTUAL SCREEN WIDTH LOW BYTE	SUB FUNC	1	'COMMAND CONTR	ΩI
OUT PORT1,&OOH FUNC2	'P8: VIRTUAL SCREEN WIDTH HIGH BYTE	OUT PORT OUT PORT OUT PORT	2,3	WRITING TO COMM	
OUT PORT1,&59H FUNC1	'DISPLAY ON COMMAND	END SUB	۷,۷		
OUT PORT1,&05H FUNC2	'LAYER 1 ON WITH CURSOR	SUB FUNC OUT PORT		'DATA CONTROL 'WRITING TO DATA	RF GISTER
OUT PORT1,&5BH FUNC1	'OVERLAY COMMAND	OUT PORT OUT PORT END SUB	2,1		THE GIOTEIN
OUT PORT1,&OOH FUNC2	'SIMPLE OVERLAY	DATA "* * *	******	*******	·* > * * * #
OUT DODT4 6 4411		DATA "*			*"
OUT PORT1,&44H FUNC1	'SCROLL COMMAND	DATA "* DATA "*	G321E LCD MO 320x240 DOT I		* n
OUT PORT1,&OOH	FIRST LAYER LOW BYTE	DATA "*	CCFL BACK LIG	HT	* 11
FUNC2 OUT PORT1,&OOH	'FIRST LAYER HIGH BYTE	DATA "* DATA "*	FSTN FOR BLAC	CK & WHITE	**
FUNC2	FIRST LATER HIGH BYTE	DATA "*	DIMENSION:		*"
OUT PORT1,&EFH	'LINES OF THE LAYER	DATA "*	150x96x14 (mn	n)	* II
FUNC2		DATA "*	·		* 0
OUT PORT1,&OOH FUNC2	SECOND LAYER LOW BYTE	DATA "*	VIEWING AREA	:	*"
OUT PORT1,&08H	'SECOND LAYER HIGH BYTE	DATA "* DATA "*	103x80 (mm)		*"
FUNC2	SCOONS EXTENTION BYTE	DATA "*	SUITABLE CON	TROLLER:	*"
OUT PORT1,&EFH	'LINES OF THE LAYER	DATA "*	SED1330FBA, N		* 11
FUNC2		DATA "*			*"
OUT DODT4 0 CDU	INDOOR SORTING	DATA "*		TROLLER BOARD:	* II
OUT PORT1,&5DH FUNC1	CURSOR FORMAT COMMAND	DATA "* DATA "*	LCDC-1330-32/	<i>†</i>	*"
OUT PORT1,&07H	'CURSOR WIDTH	DATA DATA "*			*"
FUNC2	5556tt FIDTH	DATA "*	SEIKO INSTRUI	MENTS INC	*"
OUT PORT1,&87H	'CURSOR HEIGHT	DATA "*	2990 WEST LO		*"
FUNC2		DATA "*	TORRANCE, CA	90505	** 11
		DATA "*			* "
		DATA "* * *	^ ~ * * * * * * * * * * * * * * * * * *	*********	* * * * * "


■ Operating Voltage vs Temperature

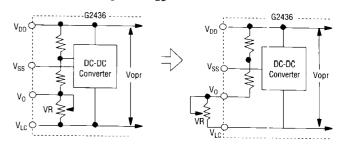
				$V_{OPR} = V_{DD} - V_{LC} (VOLTS)$					
	SIZE	DUTY	BIAS	-20°C	-10°C	0°C	+25°C	+50°C	+70°C
F1016	100 x 64	1/32	1/6			9.5	8.8	7.5	
G1213	128 x 32	1/64	1/9	13.5	13.3	13.0	12.5	11.5	10.5
G1216	128 x 64	1/64	1/9	13.5	13.3	13.0	12.5	11.5	10.5
G121C	128 x 128	1/128	1/10	22.0	21.5	21.1	20.1	18.7	17.2
G191C	192 x 128	1/128	1/12			18.4	17.4	16.3	
G191D	192 x 192	1/192	1/12	29.0	27.3	26.1	23.0	21.5	20.0
G2436	240 x 64	1/64	1/9			13.0	12.0	10.5	
G2446	240 x 64	1/64	1/9			13.8	12.8	11.8	
G242C	240 x 128	1/128	1/12			18.0	17.0	16.2	
G321D	320 x 200	1/200	1/15			23.0	22.0	20.8	
G321E	320 x 240	1/240	1/13			22.8	21.2	20.3	
G324E	320 x 240	1/240	1/13			24.0	23.0	22.1	
G648D	640 x 200	1/200	1/15			23.5	22.5	20.5	
G649D	640 x 200	1/200	1/15			23.0	22.1	20.3	


■ Contrast Adjustment Circuits

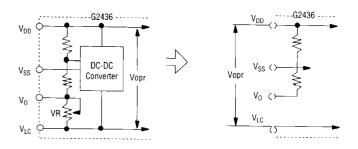
Display screen contrast and viewing angle are affected by changes in the liquid crystal operating voltage (V_{opr}) and the ambient temperature. Here are some suggested circuits for maintaining optimum contrast.

■ F1016:

■ G1213, G1216:

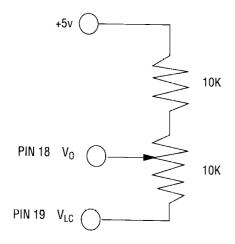


■ G2436:

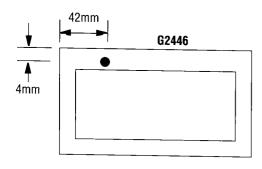

The DC-DC converter internally generates the power supply voltage (V_{LC}). Also, the G2436 has a built-in variable resistor (VR) which controls V_{LC} . When V_{LC} is changed, the liquid crystal operating voltage (V_{opr}) changes. This changes the display screen contrast.

When the VR is supplied external to the G2436, or when the DC-DC converter is not used, the circuit must be changed as follows.

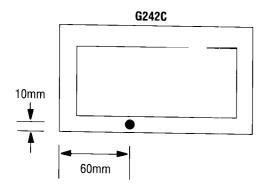
When the VR is supplied external to the G2436: remove the VR, and supply 100K Ω of variable resistance between V_O and V_{LC}.



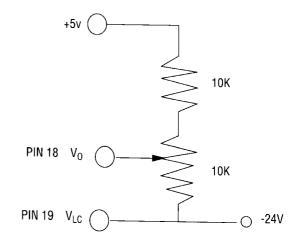
When the DC-DC converter is not used: remove the DC-DC converter and the VR, and apply V_{opr} to the V_{LC} terminal. Set V_O to NC.

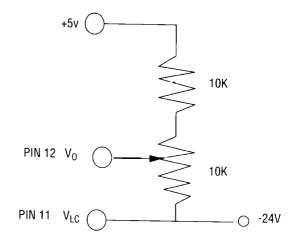

Application Notes (Continued)

■ G2446, G242C*

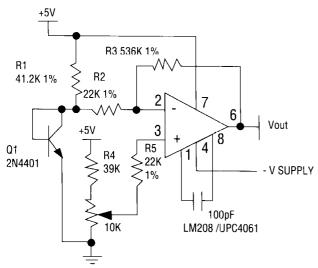


* Special Note: Both the G2446 and G242C have contrast adjustment holes accessible from the PC board. Here is their location (top view):


■ G2446


■ G242C

■ G321D, G324E


■ G649D

■ LCDC-1330 Controller Board

- Apply V_{LCD} (<V_O) to pin 16 of CN1 (€.g. -15v for G191C)
- \blacksquare Use a 10KΩ potentiometer on CN3 to adjust V_O

■ Temperature Compensation

Temperature Compensation Circuit

The temperature sensitivity of the base to emitter voltage of a 2N4401 is used to provide automatic temperature compensation to the drive voltage of the STN LCD.

Define Vbe as the base to emitter voltage of the 2N4401 transistor and V2 as pin 3 of the OP AMP.

Assuming a temperature coefficient of the STN LCD of -55mV/°C, and temperature coefficient of the transistor of -2.3 mV/°C.

The gain is defined as:

Gain =
$$\frac{\text{Temp. coef. of STN LCD}}{\text{Temp. coef. of transistor}} = \frac{-55\text{mV}}{-2.3\text{mV}} = 23.9$$

From the OP AMP circuit, output of the OP AMP is:

$$= - \frac{R3}{R2}$$
 (Vbe - V2)

If we choose R2 = 22K ohm, R3 = Gain X R2

= 23.9 X 22K ohms

= 536K ohms

Therefore, Vout =
$$-\frac{536K}{22K}$$
 (0.6 - V2)

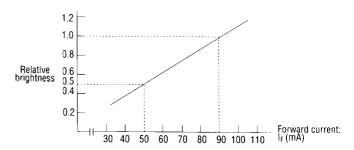
The trimmer of the OP AMP is adjusted at room temperature (25°C) resulting in pin 3 of the OP AMP to be at V2 = 0.272 V.

Then, Vout =
$$-\frac{536K}{22K}$$
 (0.6 - 0.272)
= -7.9912V

If the temperature is decreased 1°C, the temp. coef of the 2N4401 transistor is increased by 2.3mV

So,
$$Vbe = 0.6V + 2.3mV = 0.6023V$$

The output of the OP AMP at 24°C


Vout =
$$-\frac{536K}{22K}$$
 (0.6023 - 0.272) = -8.47V

Then the output of the OP AMP is increased by 55mV when the temperature drops by 1°C.

Adjust the gain of the OP AMP to match the temperature performance of the display you are using.

■ LED Brightness

The surface brightness of the LED backlight varies with the forward current.

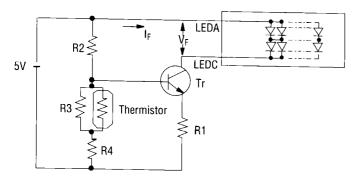
G1216 Forward Current-Brightness Characteristic: (Ta = 25°C)

The forward current must be reduced at high temperatures to maintain the LED within saie operating limits.

MODEL	I _F @ 25°C	I _F (⊋ 70°C
G1213	50mA	2:5mA
G1216	100mA	50mA
G121C	120mA	4l8mA
G191D	120mA	48mA

In addition, the forward voltage will charge with temperature. Here are examples for the G1213 and G1216:

G1213 Forward Voltage At Temperatures


Temperature (Ta)	Conditions	V _F min.	V _F lyp.	V _F max.
-20°C	I _F = 40 mA	3.7V	3.9V	4.2V
+25°C	$I_F = 40 \text{ mA}$	3.6V	3.8V	4.1V
+70°C	$I_F = 25mA$	3.4V	3.6V	3.9V

G1216 Forward Voltage At Temperatures

Temperature (Ta)	Conditions	V _F min.	V _F typ.	V _F max.
-20°C	I _F = 90 mA	3.9V	4.3V	4.6V
+25°C	$I_F = 90 \text{ mA}$	3.8V	4.1V	4.4V
+70°C	$I_F = 50 \text{mA}$	3.5V	3.7V	3.9V

Application Notes (Continued)

To keep the brightness at 25°C, use a thermosensitive element, like a thermistor, and a transistor as shown. Set the thermosensitive element to about I_{F} at 25°C and configure it so that " I_{F} and V_{F} " will be reduced as the temperature rises.

■ Reducing Screen Flicker

The 1330 controller chip is constantly reading the VRAM on board to refresh the screen, and when the user is also writing to the VRAM, interference may occur which will show up as scattered noise on the screen.

The only tool given to avoid this is the status register read. Bit 6 of this register goes "LOW" during the time interval within which it is safe to write to the VRAM without corrupting the screen image.

To utilize this, constantly read this register, and when bit 6 goes LOW, begin writing to VRAM. The register must still be intermittently read at this point, and when bit 6 goes HIGH, writing must stop.

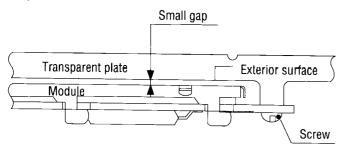
The amount of time available is directly proportional to TC/R - CR, where these are the "System Set" instruction code parameters. C/R is defined by the number of lines in your display. TC/R must be > C/R + 4. To gain extra time in which to write to VRAM, make TC/R larger.

As TC/R increases, however, the overall frame time will decrease. It is normally around 70 Hz. If TC/R is made twice C/R, the frame time should roughly halve.

The formula relating TC/R and frame rate is $Fosc >= TC/R \times 9 \times L/F \times fFR$.

As an example, the G321D has a 6MHz clock cycle, and each memory byte takes approximately 9 oscillator cycles. You can calculate approximately how much time you have per line to write to VRAM, and how much the frame rate will be slowed down by increasing TC/R.

If you make TC/R = 50 decimal, with C/R = 40 decimal, then you should have approximately 15 μ sec.s per line in which to write your graphics data. If you send your data at a cycle time of 0.5 MHz (one byte every 2 microseconds), you could send about 7 bytes per line. Thus it would take about 6 timing rows to input one new line, or about 6 frame times to input one entire new frame. At TC/R = 50, frame time is about 15 msec.s (above formula). Thus is should take about 90 msec.s to input a new frame of data.


Seiko Instruments is a well recognized leader in precision engineering and manufacturing of the highest quality LCD products. Our LCD factories (in Japan and in Italy) have recently been certified to ISO-9001. Additionally, we are key suppliers to some of the industry's most demanding customers.

Here are the environmental specifications we would recommend for our LCD graphic modules. These test conditions are expanded for wide temperature WTSTN fluids. Contact the factory for details on a particular model.

Test	Test conditions	Evaluation and assessment	
Operation at high temperature and humidity	40°C ± 2°C 90% RH for 500 hours	No abnormalities in functions and appearance	
Operation at high temperature	60°C ± 2°C for 500 hours	No abnormalities in functions and appearance	
Temperature cycle	-20°C + 60°C, 1 hr soak, 5 minute transition, 10 cycles	No abnormalities in functions and appearance	
Low temperature storage	-20 + 2°C for 500 hours	No abnormalities in functions and appearance	
Vibration	Sweep for 1 min at 10 Hz, 55 Hz, 10 Hz, amplitude 1.5 mm 2 hrs each in the X, Y, and Z directions	No abnormalities in functions and appearance	
Drop shock	Dropped onto a board from a height of 10 cm	No abnormalities in functions and appearance	

■ Mounting and Design

- Mount the module by using the specified mounting part and holes.
- To protect the module from external pressure, leave a small gap by placing transparent plates (e.g. acrylic or glass) on the display surface, frame, and polarizing plate.

- Design the system so that no input signal is given unless the power supply voltage is applied.
- Keep the module dry. Avoid condensation, otherwise the transparent electrodes may break.

■ Handling

- Avoid static electricity as this can damage the CMOS LSI.
- The LCD panel is plate glass; do not hit or crush it.
- Do not remove the panel or frame from the module.
- The polarizing plate of the display is veny fragile; handle it very carefully.

■ Cleaning

- Do not wipe the polarizing plate with a dry cloth, as it may scratch the surface.
- Wipe the module gently with a soft cloth soaked with a petroleum benzine.
- Do not use ketonic solvents (ketone or acetone) or aromatic solvents (toluene and xylene). They may damage the polarizing plate.

■ Safety

- If the LCD panel breaks, be careful not to get the liquid crystal in your mouth.
- If the liquid crystal touches your skin or clothes, wash it off immediately using soap and plenty of v/ater.

■ Reference List For LCD Accessories

The following list of manufacturers is supplied as a time-saving guide to help engineers and buyers with their LCD program requirements It is not our intent to endorse or recommend any supplier listed in this section.

■ CONNECTORS

SAMTEC

P.O.Box1147 New Albany, IN 47150 Tel 812-944-6733 Fax 812-948-5047

■ DC / AC INVERTERS

ENDICOTT RESEARCH GROUP (ERG)

2601 Wayne Street P.O Box 269 Endicott, NY 13760 Tel 607-754-9187 Fax 607-754-9255

TDK CORP

3102 Kashiwa Street Torrance, CA 90505 Tel 310-539-6631 Fax 310-539-4066

■ DC / DC CONVERTERS

MAXIM

120 San Gabriel Drive Sunnyvale, CA 94086-9892 Tel 408-737-7600 Fax 408-737-7194

TAMURA

43352 Business Park Drive Temecula, CA 92590-6624 Tel 909-699-1270 Fax 909-676-9482

XENTEK

1770 La Costa Meadows Drive San Marcos, CA 92069 Tel 619-471-4001 Fax 619-471-4021

■ LCD HEATERS

MINCO PRODUCTS

7300 Commerce Lane Minneapolis, MN 55432-3177 Tel 612-571-3121 Fax 612-571-0927

■ PROTECTIVE OVERLAYS

3M INDUSTRIAL OPTICS

3M Center, Bldg 225-4N-14 St Paul, MN 55144-1000 Tel 612-736-2240 Fax 612-736-2298

HOMALITE

11 Brookside Drive Wilmington, DE 19804 Tel 302-652-3686 Fax 302-652-4578

OPTICAL COATING LAB

2789 Northpoint Parkway Santa Rosa, CA 95407-7397 Tel 707-545-6440 Fax 707-525-7410

PANELGRAPHIC

10 Henderson Drive West Caldwell, NJ 07006 Tel 201-227-1500 Fax 201-227-7750

■ GRAPHIC CONTROLLER CHIPS

HITACHI SEMICONDUCTOR

2030 Main Street, Suite 450 Irvine, CA 92714 Tel 714-553-8500 Fax 714-553-8561

OKI SEMICONDUCTOR

785 North Mary Avenue Sunnyvale, CA 94086-2909 Tel 408-720-1900 Fax 408-720-1918

S-MOS (SED1330 & SED1335) 2460 North First Street San Jose, CA 95131 Tel 408-922-0200 Fax 408-922-0238