	SPECIFICATION	
	LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION	LIQUID CRYSTAL DISPLAY DIVISION LIQUID CRYSTAL DISPLAY GROUP
APPROVED BY: DATE	SHARP	FILE No. ISSUE: June 28. 2010 PAGE: 25pages
		SPEC No. LD-K22102A

PRESENTED

BY J. Shimada

T.Shimada

SHARP CORPORATION

General manager
LIQUID CRYSTAL DISPLAY DIVISION I
LIQUID CRYSTAL DISPLAY GROUP

CUSTOMER'S APPROVAL

DATE

BY

RECORDS OF REVISION

MODEL No.: LK600D3LA3K SPEC No.: LD-K22102A

SPEC No.	DATE	REVISED No.	PAGE	SUMMARY	NOTE
LD-K22102	2010.1.20	-	-	-	1st ISSUE
	2010.6.28	A		 Reformat all over the pages. Correction to misdescriptions. ▲ 1 Addition of the equivalent circuit. (P3,4) Correction of Inverter spec.(P7,8,12) Correction to piling number of one packing unit.(P18) Correction of the caution label. (P21) Addition of the description about UL. (P21) Application of user's requests. ▲ 2 Addition of packing specification items.(P18) 	2nd ISSUE
	***************************************	***************************************	#1#1#1#1#1#1#1#1#1#1#1#1#1#1#1#1#1#1#1		
	***************************************	***************************************			
	***************************************	***************************************			

1. Application

This specification applies to the color 60.0" TFT-LCD module LK600D3LA3K.

- * This specification is proprietary products of SHARP CORPORATION ("SHARP") and includes materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.
- * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
- * SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these technical literature.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (<u>Thin Film Transistor</u>). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a 1920×RGB×1080 dots panel with one billion colors by using 8bit+FRC LVDS (<u>Low Voltage Differential Signaling</u>) to interface, +12V of DC supply voltages.

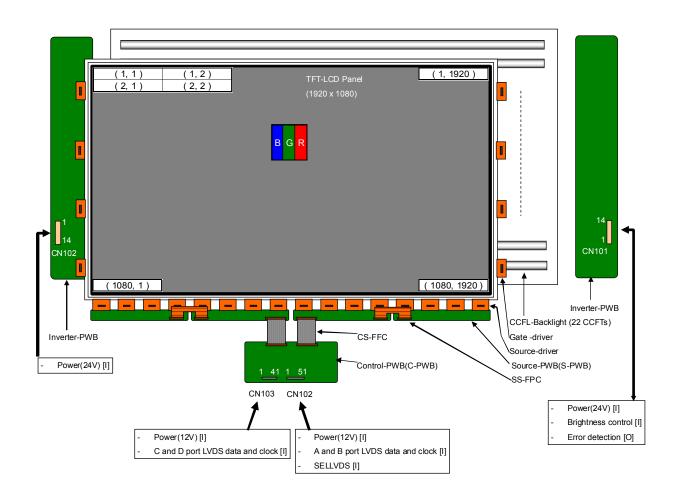
This module also includes the DC/AC inverter to drive the CCFT. (+24V of DC supply voltage)

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit. In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

With this technology, image signals can be set so that liquid crystal response completes within one frame. As a result, motion blur reduces and clearer display performance can be realized.

This LCD module also adopts Double Frame Rate driving method.

With combination of these technologies, motion blur can be reduced and clearer display performance can be realized.


3. Mechanical Specifications

Parameter	Specifications	Unit
Display size	152.496 (Diagonal)	cm
Display Size	60.0 (Diagonal)	inch
Active area	1329.12(H) x 747.63 (V)	mm
Pixel Format	1920(H) x 1080(V)	pixel
r ixei roimat	(1pixel = R + G + B dot)	
Pixel pitch	0.69225(H) x 0.69225 (V)	mm
Pixel configuration	R, G, B vertical stripe	
Display mode	Normally black	
Open Cell Outline Dimensions	1401.1(H) x 820.4(V) x 43.0(D)	mm
[Note1]	1401.1(H) x 820.4(V) x 43.0(D)	
Mass	25 <u>+</u> 1	kg
Surface treatment	Glare	
Surface treatment	Hard coating: 2H and more	

[Note1] Outline dimensions are shown in P22, P23.

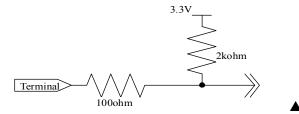
4. Input Terminals

4.1. Interface and block diagram

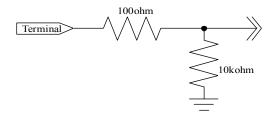
4.2. TFT panel driving

CN102 of C-PWB: Power and LVDS signal input

- Using connector: FI-RNE51SZ-HF (Japan Aviation Electronics Ind., Ltd.)
- Mating connector: FI-RE51HL, FI-RE51CL (Japan Aviation Electronics Ind., Ltd.)
- Mating LVDS transmitter: THC63LVD1023 or equivalent device


Pin No.	Symbol	Function	Remark
1	GND	1 unction	Remark
2	Reserved	N.C	Pull up: 3.3V [Note1 ▲1]
3	Reserved	N.C	Pull up: 3.3V [Note1 ▲1]
4	Reserved	N.C	1 un up. 5.5 v [1.0001 ==1]
5	Reserved	N.C	
6	Reserved	N.C	
7	SELLVDS	Select LVDS data order [Note3]	Pull down: (GND) [Note2]
8	Reserved	N.C	7.2
9	Reserved	N.C	
10	Reserved	N.C	
11	GND		
12	AIN0-	Aport (-)LVDS CH0 differential data input	
13	AIN0+	Aport (+)LVDS CH0 differential data input	
14	AIN1-	Aport (-)LVDS CH1 differential data input	
15	AIN1+	Aport (+)LVDS CH1 differential data input	
16	AIN2-	Aport (-)LVDS CH2 differential data input	
17	AIN2+	Aport (+)LVDS CH2 differential data input	
18	GND		
19	ACK-	Aport LVDS Clock signal(-)	
20	ACK+	Aport LVDS Clock signal(+)	
21	GND		
22	AIN3-	Aport (-)LVDS CH3 differential data input	
23	AIN3+	Aport (+)LVDS CH3 differential data input	
24	AIN4-	Aport (-)LVDS CH4 differential data input	
25	AIN4+	Aport (+)LVDS CH4 differential data input	
26	GND		
27	GND		
28	BIN0-	Bport (-)LVDS CH0 differential data input	
29	BIN0+	Bport (+)LVDS CH0 differential data input	
30	BIN1-	Bport (-)LVDS CH1 differential data input	
31	BIN1+	Bport (+)LVDS CH1 differential data input	
32	BIN2-	Bport (-)LVDS CH2 differential data input	
33	BIN2+	Bport (+)LVDS CH2 differential data input	
34	GND		
35	BCK-	Bport LVDS Clock signal(-)	
36	BCK+	Bport LVDS Clock signal(+)	
37	GND		
38	BIN3-	Bport (-)LVDS CH3 differential data input	
39	BIN3+	Bport (+)LVDS CH3 differential data input	
40	BIN4-	Bport (-)LVDS CH4 differential data input	
41	BIN4+	Bport (+)LVDS CH4 differential data input	
42	GND		
43	GND		
44	GND		
45	GND		
46	GND		
47	VCC	+12V Power Supply	
48	VCC	+12V Power Supply	
49	VCC	+12V Power Supply	
50	VCC	+12V Power Supply	
51	VCC	+12V Power Supply	

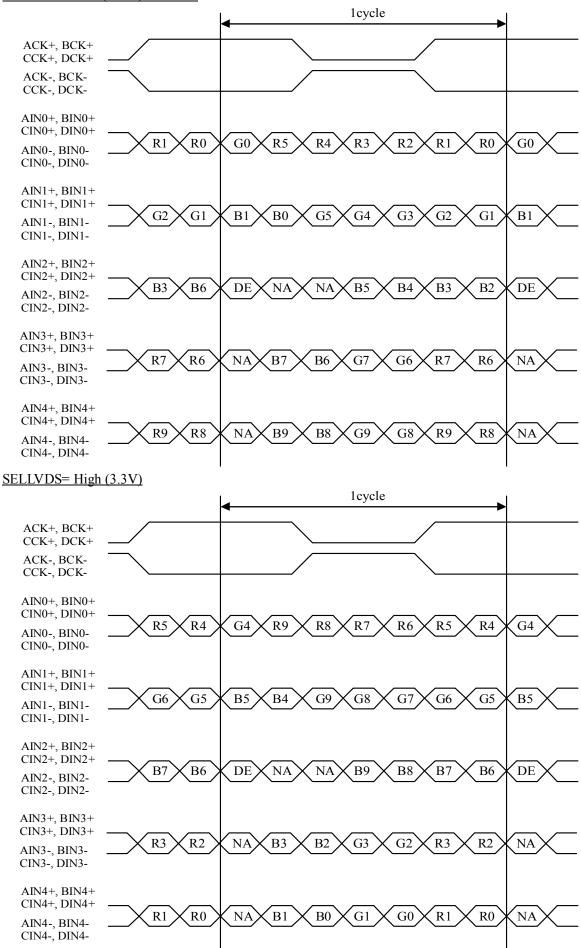
CN103 of C-PWB: Power and LVDS signal input


- Using connector: FI-RNE41SZ-HF (Japan Aviation Electronics Ind., Ltd.)
- Mating connector: FI-RE41HL, FI-RE41CL (Japan Aviation Electronics Ind., Ltd.)

Pin No.	Symbol	Function	Remark
1	VCC	+12V Power Supply	
2	VCC	+12V Power Supply	
3	VCC	+12V Power Supply	
4	VCC	+12V Power Supply	
5	Reserved		
6	Reserved		
7	Reserved		
8	Reserved		
9	GND		
10	CIN0-	Cport (-)LVDS CH0 differential data input	
11	CIN0+	Cport (+)LVDS CH0 differential data input	
12	CIN1-	Cport (-)LVDS CH1 differential data input	
13	CIN1+	Cport (+)LVDS CH1 differential data input	
14	CIN2-	Cport (-)LVDS CH2 differential data input	
15	CIN2+	Cport (+)LVDS CH2 differential data input	
16	GND		
17	CCK-	Cport LVDS Clock signal(-)	
18	CCK+	Cport LVDS Clock signal(+)	
19	GND		
20	CIN3-	Cport (-)LVDS CH3 differential data input	
21	CIN3+	Cport (+)LVDS CH3 differential data input	
22	CIN4-	Cport (-)LVDS CH4 differential data input	
23	CIN4+	Cport (+)LVDS CH4 differential data input	
24	GND		
25	GND		
26	DIN0-	Dport (-)LVDS CH0 differential data input	
27	DIN0+	Dport (+)LVDS CH0 differential data input	
28	DIN1-	Dport (-)LVDS CH1 differential data input	
29	DIN1+	Dport (+)LVDS CH1 differential data input	
30	DIN2-	Dport (-)LVDS CH2 differential data input	
31	DIN2+	Dport (+)LVDS CH2 differential data input	
32	GND	*	
33	DCK-	Dport LVDS Clock signal(-)	1
34	DCK+	Dport LVDS Clock signal(+)	1
35	GND		1
36	DIN3-	Dport (-)LVDS CH3 differential data input	
37	DIN3+	Dport (+)LVDS CH3 differential data input	
38	DIN4-	Dport (-)LVDS CH4 differential data input	1
39	DIN4+	Dport (+)LVDS CH4 differential data input	
40	GND	r v ()= · - 2 · - · · · · · · · · · · · · · · ·	1
41	GND		+
41	GND		

[Note] GND of a liquid crystal panel drive part has connected with a module chassis. [Note1] The equivalent circuit figure of the terminal.

[Note2] The equivalent circuit figure of the terminal.


[Note3] LVDS Data order

SELLVDS							
Data	L(GND) or OPEN	H(3.3V)					
	[VESA]	[JEIDA]					
TA0	R0(LSB)	R4					
TA1	R1	R5					
TA2	R2	R6					
TA3	R3	R7					
TA4	R4	R8					
TA5	R5	R9(MSB)					
TA6	G0(LSB)	G4					
TB0	G1	G5					
TB1	G2	G6					
TB2	G3	G7					
TB3	G4	G8					
TB4	G5	G9(MSB)					
TB5	B0(LSB)	B4					
TB6	B1	B5					
TC0	B2	В6					
TC1	В3	В7					
TC2	B4	B8					
TC3	B5	B9(MSB)					
TC4	NA	NA					
TC5	NA	NA					
TC6	DE(*)	DE(*)					
TD0	R6	R2					
TD1	R7	R3					
TD2	G6	G2					
TD3	G7	G3					
TD4	В6	B2					
TD5	В7	В3					
TD6	N/A	N/A					
TE0	R8	R0(LSB)					
TE1	R9(MSB)	R1					
TE2	G8	G0(LSB)					
TE3	G9(MSB)	G1					
TE4	В8	B0(LSB)					
TE5	B9(MSB)	B1					
TE6	N/A	N/A					

NA: Not Available

(*)Since the display position is prescribed by the rise of DE(Display Enable) signal, please do not fix DE signal during operation at "High".

SELLVDS= Low (GND) or OPEN

DE: Display Enable, NA: Not Available (Fixed Low)

4.3. Backlight driving

CN101 of Inverter-PWB: +24V DC power supply and inverter control

- Using connector: 20022WR-14AML(YEONHO)

- Mating connector: 20022HS-14L (YEONHO) or equivalent

Pin No.	Symbol	Function	Default(OPEN)	Input Impedance	Remark
				(min)	
1	V_{INV}	+24V	-		
2	V_{INV}	+24V	-		
3	V_{INV}	+24V	-		
4	V_{INV}	+24V	-		
5	V_{INV}	+24V	-		
6	GND		-		
7	GND		-		
8	GND		-		
9	GND		-		
10	GND		-		
11	ERR	Error Detection		Open Collector	[Note1]
12	Von/off	Inverter ON/OFF	Inverter OFF	min.196kohm ▲1	[Note2]
13	Reserved	For LCD module			
		internal usage,			
		should be open			
14	Pdim	Brightness Control	3.3V : pull up	min.235kohm ▲1	[Note3]
			Brightness 100%		

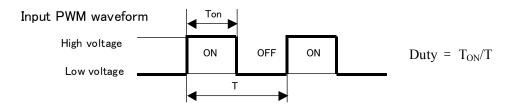
CN102 of Inverter-PWB: +24V DC power supply

- Using connector: 20022WR-14AML (YEONHO)

- Mating connector: 20022HS-14L (YEONHO) or equivalent

Pin No.	Symbol	Function	Default(OPEN)	Input Impedance	Remark
1	V_{INV}	+24V	-		
2	$V_{\rm INV}$	+24V	-		
3	V_{INV}	+24V	-		
4	V_{INV}	+24V	-		
5	$V_{\rm INV}$	+24V	-		
6	GND		-		
7	GND		-		
8	GND		-		
9	GND		-		
10	GND		-		
11	Reserved	For LCD module			
		internal usage,			
		should be open			
12	Reserved	For LCD module			
		internal usage,			
		should be open			
13	Reserved	For LCD module			
		internal usage,			
		should be open			
14	Reserved	For LCD module			
		internal usage,			
		should be open			

[Note1] Error Detection


	MIN	TYP	MAX	
Normal	-	-	0.8V ▲1	
Abnormal	(Open Collector)			

[Note2] Inverter ON/OFF

Input voltage	Function
0V	Inverter : OFF
3.3V	Inverter: ON

[Note3] Brightness Control (Pulse Dimming)

Pin No.14 is used for the control of the PWM duty with input pulse from (100Hz to 240Hz).

		MIN	TYP	MAX	Remark
Pulse signal	[Hz]	100	-	240	
DUTY(T _{ON} /T)	[%]	15	<->	100	Ta=25°C
Dimming level	[%]	10	<->	100	Ta=25°C
(luminance ratio)					Pulse signal=(120Hz)
Low voltage	V	-	0	0.6	
High voltage	V	3.0	3.3	3.6	

[Note] In case of using Pulse Dimming, be careful so that the Pdim signal (Pin 14) doesn't have glitch.

A 1

4.4. The backlight system characteristics

The backlight system is direct type with 22 CCFTs (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table. The value mentioned below is at the case of one CCFT.

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Life time	TL	-	60000	-	Hour	[Note]

[Note]

- Lamp life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the condition of Ta=25°C and brightness control (V_{BRT} =100%).
- Above value is applicable when the long side of LCD module is placed horizontally (Landscape position).

(Lamp lifetime may vary if LCD module is in portrait position due to the change of mercury density inside the lamp.)

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage (for Control)	Vı	Ta=25°C	-0.3 ~ 3.6	V	[Note1]
12V supply voltage (for Control)	VCC	Ta=25°C	0~+14	V	
Input voltage (for Inverter)	$egin{array}{c} V_{ m ON} \ V_{ m BRT} \ \end{array}$	Ta=25°C	0~+6	V	
24V supply voltage (for Inverter)	V _{INV}	Ta=25°C	0 ~ +29	V	
Storage temperature	Tstg	-	-25 ~ +60	°C	[N]-4-2]
Operation temperature (Ambient)	Тора	-	0~+50	°C	[Note2]

[Note 1] SELLVDS

[Note 2] Humidity 95%RH Max.(Ta≤40°C)

Maximum wet-bulb temperature at 39°C or less. (Ta>40°C)

No condensation.

6. Electrical Characteristics

6.1. Control circuit driving

Ta=25°C

P	arameter	Symbol	Min.	Тур.	Max.	Uniit	Remark
	Supply voltage	Vcc	11.4	12	12.6	V	[Note 1]
+ 12V/	Current dissipation	Icc	-	0.8	2.9	A	[Note 2]
+12V supply voltage	Inrush current	I _{RUSH} 1	-	7.5	-	A	t1=500us [Note 6]
		$I_{RUSH}2$	-	3.4	-	A	t1>5ms
Permissible	input ripple voltage	V_{RP}	-	-	100	mV_{P-P}	Vcc = +12.0V
Input	Low voltage	VIL	0	-	0.7	V	[Note 3]
Input	High voltage	VIH	2.3	-	3.3	V	[Note 3]
Input lea	ak current (Low)	IIL1	-	-	100	μΑ	$V_I = 0V$ [Note 4]
Input lea	k current (High)	Iгнı	-	-	100	μΑ	$V_I = 3.3V$ [Note 4]
Term	ninal resistor	Rт	-	100	-	Ω	Differential input
Input Dit	fferential voltage	VID	200	400	600	mV	[Note 5]
	erential input n mode voltage	VCM	VID /2	1.2	2.4- VID /2	V	[Note 5]

[Note] Vcm: Common mode voltage of LVDS driver.

[Note1]

Input voltage sequences

0 < t1 < 20 ms

20 ms < t2 < 5 s

20 ms < t3 < 5 s

0 < t4 < 1s

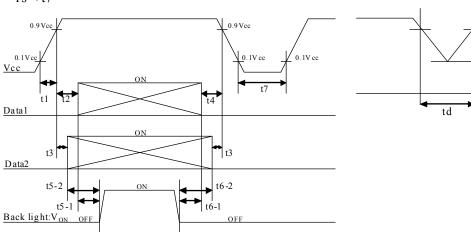
1s < t5-1

1s < t5-2

0 < t6 - 1

0 < t6 - 2

 $1s \le t7$

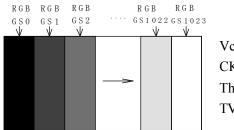

Dip conditions for supply voltage

a) $V2 \leq Vcc < V1$

td < 10ms

b) Vcc < V2

This case is based on input voltage sequences.



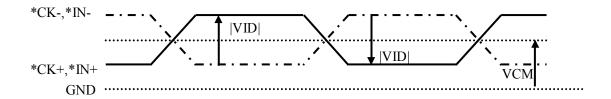
Data1: ACK±, AIN0±, AIN1±, AIN2±, AIN3±, AIN4±,BCK±, BIN0±, BIN1±, BIN2±, BIN3±, BIN4±
 CCK±, CIN0±, CIN1±, CIN2±, CIN3±, CIN4±, DCK±, DIN0±, DIN1±, DIN2±, DIN3±, DIN4±
 *V_{CM} voltage pursues the sequence mentioned above.

Data2: SELLVDS

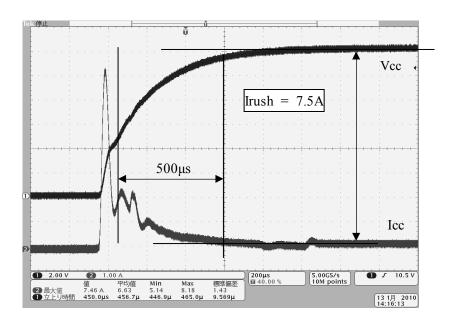
[Note] About the relation between data input and backlight lighting, please base on the above-mentioned input sequence. When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

[Note2] Typical current situation: 1024 gray-bar patterns. (Vcc = +12.0V) The explanation of RGB gray scale is seen in section 8.

Vcc = +12.0VCK = 74.25MHz

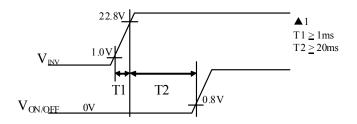

 $Th = 14.8 \mu s$

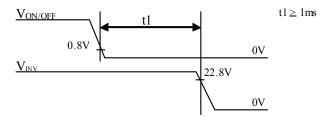
TV = 120Hz


[Note3] SELLVDS

[Note4] SELLVDS

[Note5] ACK±, AIN0±, AIN1±, AIN2±, AIN3±, AIN4±, BCK±, BIN0±, BIN1±, BIN2±, BIN3±, BIN4± CCK±, CIN0±, CIN1±, CIN2±, CIN3±, CIN4±, DCK±, DIN0±, DIN1±, DIN2±, DIN3±, DIN4±


[Note6] Vcc12V inrush current waveform


6.2. Inverter driving for backlight

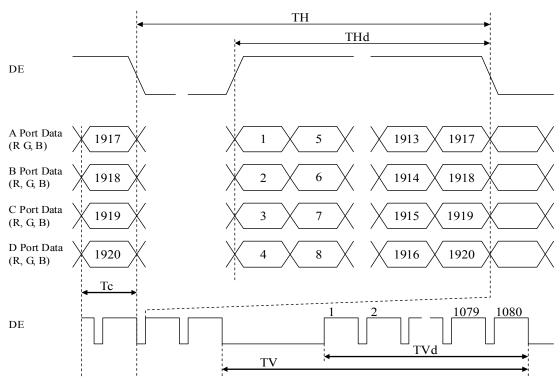
	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
	Current dissipation 1	Inv 1	-	14.0	15.5	A	$V_{INV} = 24V$, Ta = 25°C
+24V	Current dissipation 2	Inv 2	-	12.2	13.7	A	DUTY = 100% [Note 1,2]
	Inrush current	I_{RUSH}	-	-	15.5	A	
	Supply voltage	VINV	22.8	24.0	25.2	V	
Pe	ermissible input ripple voltage	Vrf	-	-	1.0	V_{p-p}	$V_{INV} = +24.0V$
	Input voltage (Low)	$V_{\scriptscriptstyle ONL}$	0	-	0.8	V	V _{ON/OFF} , Pdim_sel
]	Input voltage (High)	V_{ONH}	2.3	-	3.6	V	_
Op	erating frequency ▲1	fop	52	-	53	kHz	

[Note1] 1) Vinv-turn-on condition

2) Vinv-turn-off condition

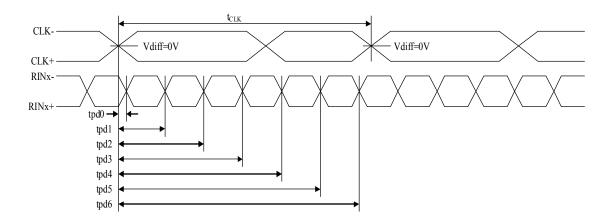
[Note2] Current dissipation 1: Definition within 60 minutes after turn on. (Rush current is excluded.) Current dissipation 2: Definition more than 60minutes after turn on.

7. Timing characteristics of input signals


7.1. Timing characteristics

Timing diagrams of input signal are shown in below figure.

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency	1/Tc	67	74.25	80.0	MHz	
	Horizontal period	TH	525	550	650	clock	
	Horizontai period	111	7.1	7.41	8.0	μs	
Data enable	Horizontal period (High)	THd	480	480	480	clock	
signal	Vertical period	TV	1120	1125	1400	line	
Signai	verticai period	1 V	94	120	122	Hz	
	Vertical period (High)	TVd	1080	1080	1080	line	


[Note]

- When vertical period is very long, flicker and etc. may occur.
- Please turn off the module after it shows the black screen.
- Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.
- As for your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting.

Timing diagram of input signal

7.2. LVDS signal characteristics

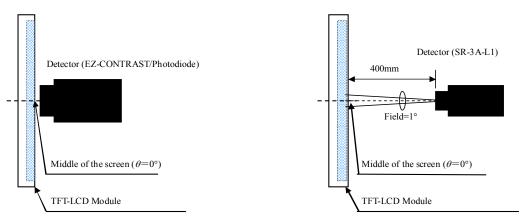
Item		Symbol	Min.	Тур.	Max.	Unit
	Delay time, CLK rising edge to serial bit position 0	tpd0	-0.25	0	0.25	
	Delay time, CLK rising edge to serial bit position 1	tpd1	1*t _{CLK} /7-0.25	1*t _{CLK} /7	1*t _{CLK} /7+0.25	
	Delay time, CLK rising edge to serial bit position 2	tpd2	2*t _{CLK} /7-0.25	2*t _{CLK} /7	2*t _{CLK} /7+0.25	
Data position	Delay time, CLK rising edge to serial bit position 3	tpd3	3*t _{CLK} /7-0.25	3*t _{CLK} /7	3*t _{CLK} /7+0.25	ns
	Delay time, CLK rising edge to serial bit position 4	tpd4	4*t _{CLK} /7-0.25	4*t _{CLK} /7	4*t _{CLK} /7+0.25	
	Delay time, CLK rising edge to serial bit position 5	tpd5	5*t _{CLK} /7-0.25	5*t _{CLK} /7	5*t _{CLK} /7+0.25	
	Delay time, CLK rising edge to serial bit position 6	tpd6	6*t _{CLK} 7-0.25	6*t _{CLK} /7	6*t _{CLK} /7+0.25	

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

Colors & Gray Scale																Da	ıta s	sign	al												
Colois & Glay Scale			R0	R1	R2	R3	R4	R5	R6	R7	R8	R9	G0	G1	G2	G3	G4	G5	G6	G7	G8	G9	B0	В1	B2	ВЗ	B4	В5	B6	В7	B8 B
Basic Color	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1
	Green	-	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0
	Cyan	_	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
	Red	_	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	Magenta	_	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
Gray Scale of Red	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
			ļ										<u> </u>																		
		GS1021	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS1022	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	Red	GS1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
Gray Scale of Green	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
													ļ																		
		GS1021	0	0	0	0	0	0	0		0	0	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0
		GS1022	II	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0
	Green	GS1023	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0 0
Gray Scale of Blue	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0 0
		GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0 0
										•••••			ļ																		
										•••••			ļ																		
		GS1021		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1 1
		GS1022		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1 1
	Blue	GS1023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1 1

- 0: Low level voltage / 1: High level voltage
- Each basic color can be displayed in 1024 gray scales from 10 bits data signals. According to the combination of total 30 bits data signals, one billion-color display can be achieved on the screen.

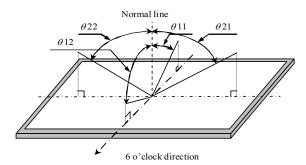
9. Optical characteristics


 $Ta=25^{\circ}C,\ Vcc=12.0V,\ V_{INV}=24.0V,\ V_{BRT}=100\%,\ Timing=120Hz\ (typ.\ value)$

Measurement of Contrast, Luminance, Chromaticity.

Parar	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing	Horizontal	θ 21 θ 22	CR≥10	70	88	1	Deg.	[Note1,4]
angle range	Vertical	θ 11 θ 12	CR <u>≥</u> 10	70	88	-	Deg.	[100:01,4]
Contra	st ratio	CRn		3500	4500	1	-	[Note2,4]
Respon	se time	$ au_{ m DRV}$			4		ms	[Note3,4,5]
	White	X		Typ0.03	0.280	Typ.+0.03	-	
	Wille	y		Typ0.03	0.290	Typ.+0.03	-	
	Red	X		Typ0.03	0.648	Typ.+0.03	-	
Luminance	Red	y	0.01	Typ0.03	0.342	Typ.+0.03	-	[Note4]
Lummanec	Green	X	θ =0 deg.	Typ0.03	0.286	Typ.+0.03	-	[110104]
	Green	y		Typ0.03	0.602	Typ.+0.03	-	
	Blue	X		Typ0.03	0.144	Typ.+0.03	-	
	Diuc	y		Typ0.03	0.073	Typ.+0.03	-	
Luminance	White	Y_{L}		400	500	1	cd/m ²	
Luminance uniformity	White	δw		-	-	1.6		[Note6]

- Measurement condition: Set the value of V_{BRT} to maximum luminance of white.
- The measurement shall be executed 60 minutes after lighting at rating.


[Note] The optical characteristics are measured using the following equipment.

Measurement of viewing angle range and Response time.

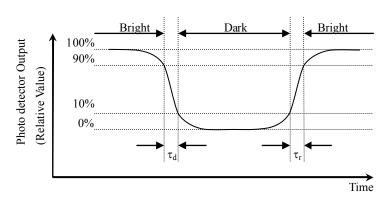
- -Viewing angle range: EZ-CONTRAST
- Response time: Photodiode

[Note1] Definitions of viewing angle range:

[Note2] Definition of contrast ratio

The contrast ratio is defined as the following.

 $Contrast Ratio = \frac{Luminance (brightness) with all pixels white}{Luminance (brightness) with all pixels black}$

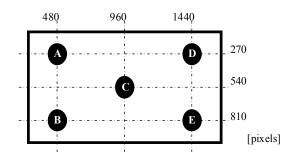

[Note3] Definition of response time

The response time (τ_d and τ_r) is defined as the following figure and shall be measured by switching the input signal for "any level of gray (0%, 25%, 50%, 75% and 100%)" and "any level of gray (0%, 25%, 50%, 75% and 100%)".

	0%	25%	50%	75%	100%
0%		tr: 0%-25%	tr: 0%-50%	tr: 0%-75%	tr: 0%-100%
25%	td: 25%-0%		tr: 25%-50%	tr: 25%-75%	tr: 25%-100%
50%	td: 50%-0%	td: 50%-25%		tr: 50%-75%	tr: 50%-100%
75%	td: 75%-0%	td: 75%-25%	td: 75%-50%		tr: 75%-100%
100%	td: 100%-0%	td: 100%-25%	td: 100%-50%	td:100%-75%	

t*:x-y --- response time from level of gray(x) to level of gray(y)

$$\tau r = \sum (tr : x - y)/10$$
, $\tau d = \sum (td : x - y)/10$



[Note4] This value shall be measured at center of the screen.

[Note5] This value is valid when O/S driving is used at typical input time value.

[Note6] This value is calculated as the following with five measurements. (A~E)

$$\delta_{W} = \frac{\text{Maximum luminance of five points (brightness)}}{\text{Minimum luminance of five points (brightness)}}$$

10. Reliability test item

No.	Test item	Condition
1	High temperature storage test	$Ta = 60^{\circ}C, 240h$
2	Low temperature storage test	Ta = -25°C, 240h
3	High temperature and high humidity	Ta = 40°C, 95%RH, 240h
3	operation test	(No condensation)
4	High temperature operation test	$Ta = 50^{\circ}C, 240h$
5	Low temperature operation test	Ta = 0°C, 240h
	Vibration test	Frequency: 10~57Hz/Vibration width (one side), 0.075mm
6	(non-operation)	: 58~500Hz/Acceleration: 9.8 m/s ²
0		Sweep time: 11 minutes
		Test period: 3 hours (1h for each direction of X, Y, Z)
	Shock test	Maximum acceleration: 294m/s ²
7	(non-operation)	Pulse width: 11ms, sinusoidal half wave
	(non-operation)	Direction: +/-X, +/-Y, +/-Z, once for each direction.
		At the following conditions, it is a thing without incorrect operation
		and destruction.
		(1)Non-operation: Contact electric discharge ±10kV
8	ESD test	Non-contact electric discharge ±20kV
		(2)Operation: Contact electric discharge ±8kV
		Non-contact electric discharge ±15kV
		Conditions: 150pF, 330ohm

[Result evaluation criteria]

Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function.

11. Packing form $\triangle 2$

<One packing unit>

Size 1515(W) x 1120(D) x 1054(H) [mm]

Mass 250kg maximum Piling number 4 maximum ▲1

Component parts of one packing unit>
Mass of one box

Quantity
Mass of one module
Mass of one module
Total mass of cardboard
Total mass of cushion
Mass of palette
Note Outline dimensions are shown P24.

12. Carton storage condition

Temperature 0°C to 40°C Humidity 95% RH or less

Reference condition 20°C to 35°C, 85% RH or less (summer) 5°C to 15°C, 85% RH or less (winter)

the total storage time (40° C, 95% RH): 240h or less

Sunlight Be sure to shelter a production from the direct sunlight.

Atmosphere Harmful gas, such as acid and alkali which bites electronic components and/or

wires must not be detected.

Notes Be sure to put cartons on palette or base, don't put it on floor, and store them

with removing from wall.

Please take care of ventilation in storehouse and around cartons, and control

changing temperature is within limits of natural environment.

Storage life 1 year.

13. Label

13.1. Module Serial Label

a) Overview

This label is stuck on the backlight chassis.

b) How to express Lot No.

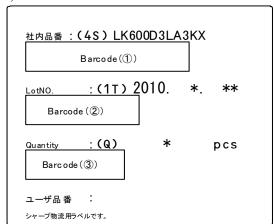
Model No.	1	2	3	4						
LK600D3LA3KX	(03)	N	(00001)	X						
LK600D3LA3KJ	(03)	F	(00001)	J						
		Suffix Code								
			Serial No.							
		Factory Cod	le							
		- N:NSEC								
		- F: D.ID								
	Product	ion Year & M	onth							

13.2. PPID Label

a) Overview

This label is stuck on the backlight chassis.

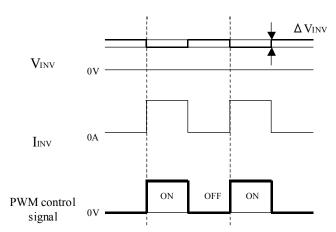
H: 70 x V: 15 mm


b) How to express and record

Model No.	1	2	3	4	5	6	7	8	9	10	11	
K600D3LA3KX	SP	00D00	0	I	L	SJ	A	NJ	0	(011)	(9999)	
K600D3LA3KJ	SP	00D01	0	I	L	SJ	A	CN	0	(011)	(9999)	
	:		i	1	:	}	1	:	-	1	Serial No.	
	-	!	į	-	:	}	:		:	1	- 0000~9999	
	!	! !	i	:	!	:	-	:	:	Producti		
	į	1	:	:	:	:	1	:			2010.Jan.1 st)	
	1	1			1	1	1	:		lule line		
	į	į	÷	•	į	•	į			No meaning	g	
	:	-		•	:	:	-	Module			viara)	
	:	1	:	1	:	!	1			ng, China (1		
	i	i	i	i	į	Cell li	- CN: Chunan, Korea (D.ID)					
	į	i	i	i	į		: G10					
	:	1	i	:	:	Cell lo						
	!	:	:	:			Sakai, J	apan				
				•	Gate							
	į	į				TOSHIE	BA					
		-			ce IC	D						
	!	1	Rev		SHAR							
	į	i		0: Rev.()							
	į	Model No				Version)						
		00:60 inc		D: Ful			LK600E	3LA3KX				
	i					01.	I K 600 F	3LA3KJ				

13.3. Packing Label

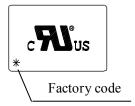
This label is stuck on the each packing box.


ex) LK600D3LA3KX

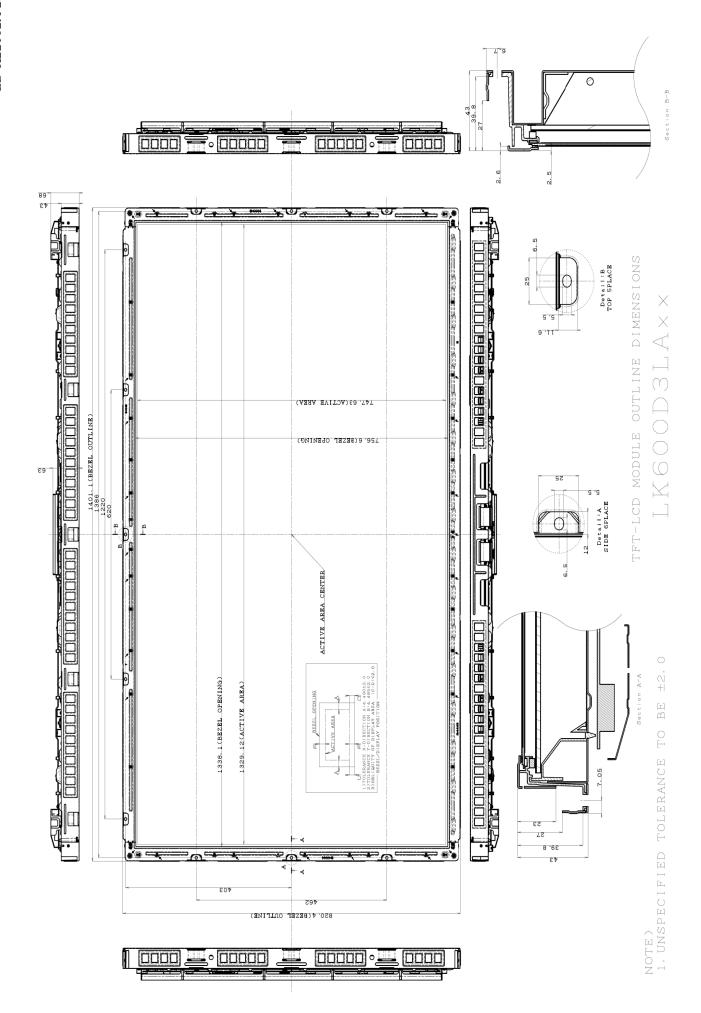
- ① Model No.& Suffix Code
- ② Lot No.
- 3 Quantity

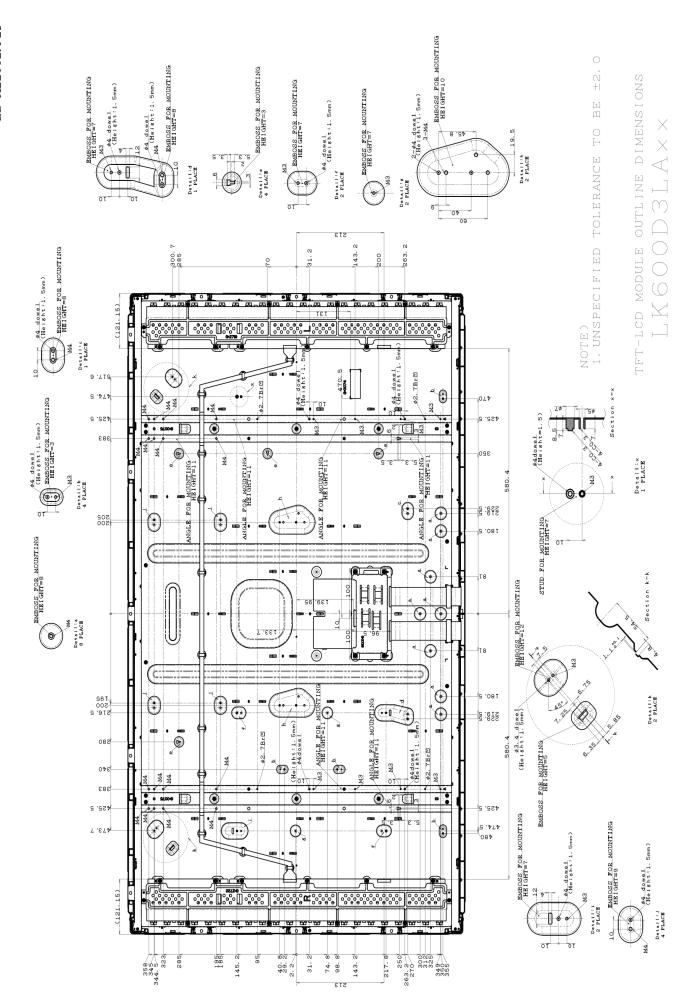
14. Precautions

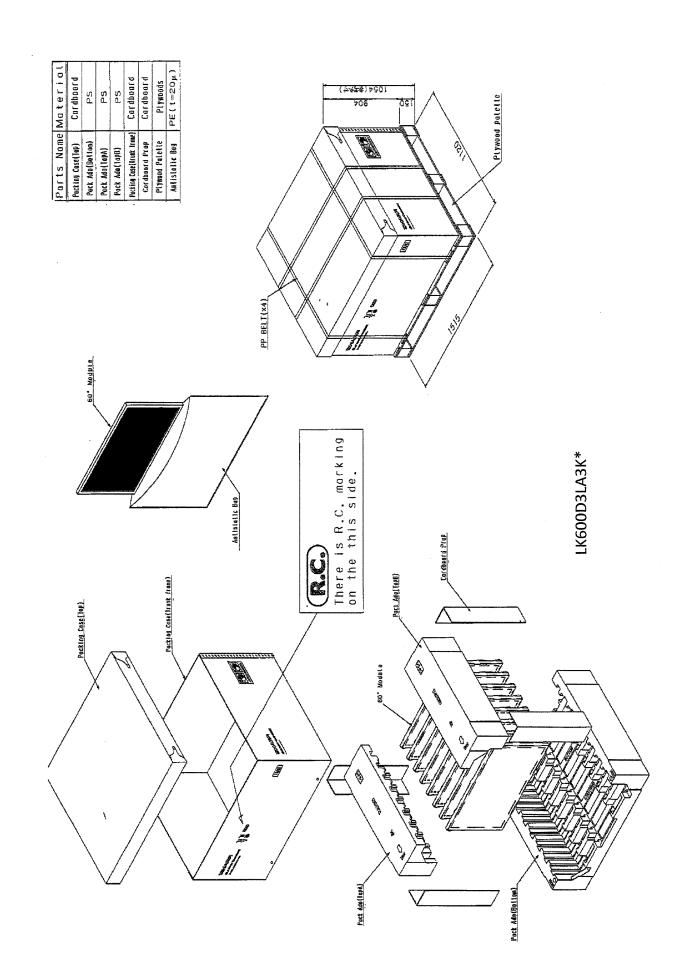
- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) This product is using the parts (inverter, CCFT etc), which generate the high voltage. Therefore, during operating, please don't touch these parts.
- c) Brightness control voltage is switched for "ON" and "OFF", as shown in below figure. Voltage difference generated by this switching, \(\sqrt{Vinv}\), may affect a sound output, etc. when the power supply is shared between the inverter and its surrounding circuit. So, separate the power supply of the inverter circuit with the one of its surrounding circuit.

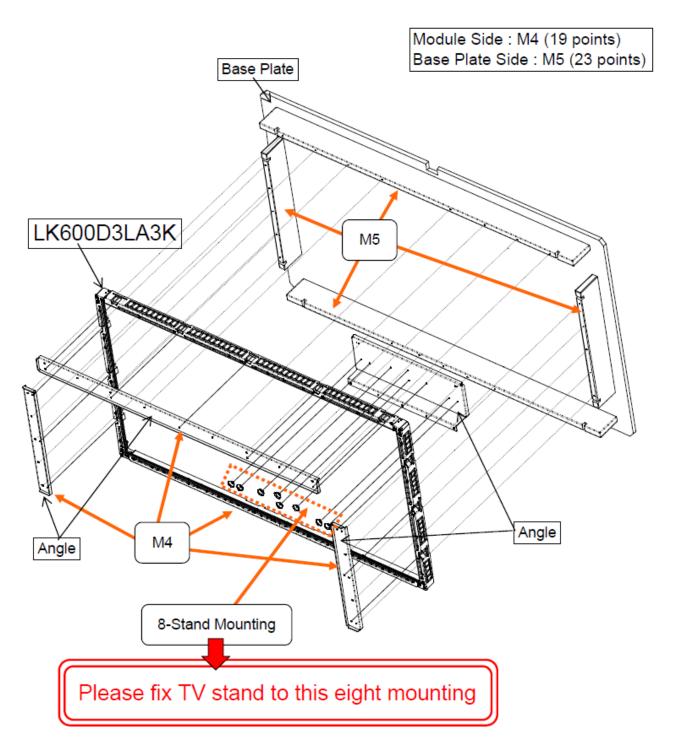

- d) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or
- e) Since the front polarizer is easily damaged, pay attention not to scratch it.
- f) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- g) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- h) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- i) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.

- j) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- k) Observe all other precautionary requirements in handling components.
- 1) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc. So, please avoid such design.
- m) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- n) When handling LCD module and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- o) This LCD module is designed to prevent dust from entering into it. However, there would be a possibility to have a bad effect on display performance in case of having dust inside of LCD module. Therefore, please ensure to design your TV set to keep dust away around LCD module.
- p) This LCD module passes over the rust.
- q) Adjusting Vcom has been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- r) Disassembling the module can cause permanent damage and should be strictly avoided.
- s) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- t) The chemical compound, which causes the destruction of ozone layer, is not being used.
- u) Cold cathode fluorescent lamp in LCD PANEL contains a small amount of mercury. Please follow local
 ordinances or regulations for disposal. This sentence is displayed on the backside of the module by below
 label.




v) This LCD is appropriate to UL. Below figure shows the UL label. This label is stuck on the backlight chassis.




- w) This module is corresponded to RoHS.
- x) When any question or issue occurs, it shall be solved by mutual discussion.

The Reliability Test Form (Shock test & Vibration test)

The reliability is guaranteed only when the following mount position is used to fix the module.