PREPARED BY: DATE		SPEC No.: LD-K24302
	SHARP	FILE No.:
APPROVED BY: DATE		ISSUE: Mar. 21. 2012
		PAGE: 23 pages
	LARGE LIQUID CRYSTAL DISPLAY	LIQUID CRYSTAL DISPLAY DIVISION
	BUSSINESS GROUP	
	SHARP CORPORATION	
	SPECIFICATION	

DEVICE SPECIFICATION FOR

TFT-LCD Module

Model No. LK800D3LA38

CUSTOMER'S	APPROVAL

DATE

PRESENTED

BY

Akira Yamaguchi

DIVISION DEPUTY GENERAL MANAGER LIQUID CRYSTAL DISPLAY DIVISION LARGE LIQUID CRYSTAL BUSSINESS GROUP SHARP CORPORATION

RECORDS OF REVISION

MODEL No.: LK800D3LA38

SPEC No.: LD-K24302

SPEC No.	DATE	REVISED No.	PAGE	SUMMARY	NOTE
LD-K24302	2012.3.21	-	-	-	1 st ISSUE

1. Application

This technical literature applies to the color 80.0" TFT-LCD Module LK800D3LA38.

- * This technical literature is proprietary products of SHARP CORPORATION ("SHARP") and includes materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.
- * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
- * SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these technical literature.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (<u>Thin Film Transistor</u>). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, LED driver circuit and back light system etc. Graphics and texts can be displayed on a 1920×RGB×1080 dots panel with one billion colors by using LVDS (<u>Low Voltage Differential Signaling</u>) to interface, +12V of DC supply voltages.

This module includes the DC driver circuit to drive the LED. (+24V of DC supply voltage)

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit. In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

With this technology, image signals can be set so that liquid crystal response completes within one frame. As a result, motion blur reduces and clearer display performance can be realized.

This LCD module also adopts Double Frame Rate driving method including FRC (Frame Rate Control) function on the control circuit. Therefore the input signal to this LCD module is Single Frame Rate, but the output is Double-Frame Rate picture. FRC of this module is a game (PC) mode setup.

With combination of these technologies, motion blur can be reduced and clearer display performance can be realized.

3. Mechanical Specifications

Parameter	Specifications	Unit	
Display size	203.218 (Diagonal)	cm	
Display size	80.0 (Diagonal)	inch	
Active area	1771.200 (H) x 996,300 (V)	mm	
Pixel Format	1920 (H) x 1080 (V)	nivol	
r ixei Poliliat	(1pixel = R + G + B dot)	pixel	
Pixel pitch	0.9225 (H) x 0.9225 (V)	mm	
Pixel configuration	R, G, B vertical stripe		
Display mode	Normally black		
Open Cell Outline Dimensions	1820.2(H) x 1045.3(V) x 26(D)	mm	
Mass	34.0 ± 1.0	kg	
Surface treatment	Low-Haze Anti glare		
Surface treatment	Hard coating: 2H and more		

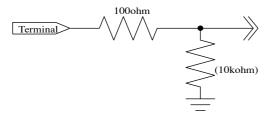
^(*1) Outline dimensions are shown in p.22 (excluding protruding portion)

4. Input Terminals

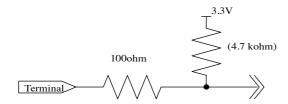
4.1. Interface and block diagram

4.2. TFT panel driving

CN1 (Interface signals and +12V DC power supply)


Using connector : FI-RNE51SZ-HF (Japan Aviation Electronics Ind., Ltd.)

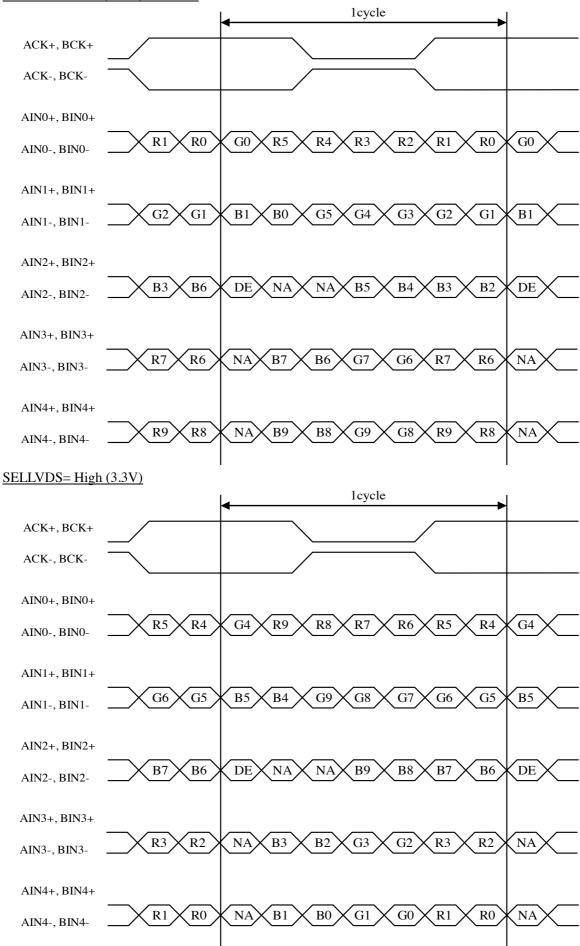
Mating connector : FI-RE51HL, FI-RE51CL (Japan Aviation Electronics Ind., Ltd.) or equivalent device


Mating LVDS transmitter : THC63LVD1023 or equivalent device

	DS transmitte		
Pin No.	Symbol	Function	Remark
1	GND		
2	Reserved	It is required to set non-connection(OPEN)]	Pull UP: (3.3V) [Note3]
3	Reserved	It is required to set non-connection(OPEN)	Pull UP: (3.3V) [Note3]
4	Reserved	It is required to set non-connection(OPEN)	
5	Reserved	It is required to set non-connection(OPEN)	
6	Reserved	It is required to set non-connection(OPEN)	
7	SELLVDS	Select LVDS data order [Note4]	Pull down: (GND) [Note2]
8	Reserved	It is required to set non-connection(OPEN)	
9	O/S set	O/S operation setting H:O/S_ON, L:O/S_OFF	Pull UP: (3.3V) [Note3]
10	FRAME	Frame frequency setting 1:60Hz 0:50Hz	Pull down: (GND) [Note2]
11	GND		
12	AIN0-	Aport (-)LVDS CH0 differential data input	
13	AIN0+	Aport (+)LVDS CH0 differential data input	
14	AIN1-	Aport (-)LVDS CH1 differential data input	
15	AIN1+	Aport (+)LVDS CH1 differential data input	
16	AIN2-	Aport (-)LVDS CH2 differential data input	
17	AIN2+	Aport (+)LVDS CH2 differential data input	
18	GND	Aport (+)Lv D3 C112 differential data input	
19		A A LVDC CL. 1 1()	
	ACK-	Aport LVDS Clock signal(-)	
20	ACK+	Aport LVDS Clock signal(+)	
21	GND		
22	AIN3-	Aport (-)LVDS CH3 differential data input	
23	AIN3+	Aport (+)LVDS CH3 differential data input	
24	AIN4-	Aport (-)LVDS CH4 differential data input	
25	AIN4+	Aport (+)LVDS CH4 differential data input	
26	GND		
27	GND		
28	BIN0-	Bport (-)LVDS CH0 differential data input	
29	BIN0+	Bport (+)LVDS CH0 differential data input	
30	BIN1-	Bport (-)LVDS CH1 differential data input	
31	BIN1+	Bport (+)LVDS CH1 differential data input	
32	BIN2-	Bport (-)LVDS CH2 differential data input	
33	BIN2+	Bport (+)LVDS CH2 differential data input	
34	GND	Bport (1)EV BS C112 differential data input	
35	BCK-	Depart LVDC Claster signal()	
36		Bport LVDS Clock signal(-)	
37	BCK+	Bport LVDS Clock signal(+)	
	GND	D (/)IMDO CHO YM	
38	BIN3-	Bport (-)LVDS CH3 differential data input	
39	BIN3+	Bport (+)LVDS CH3 differential data input	
40	BIN4-	Bport (-)LVDS CH4 differential data input	
41	BIN4+	Bport (+)LVDS CH4 differential data input	
42	GND		
43	GND		
44	GND		
45	GND		
46	GND		
47	VCC	+12V Power Supply	
48	VCC	+12V Power Supply	
49	VCC	+12V Power Supply	
50	VCC	+12V Power Supply	
51	VCC	+12V Power Supply	
J1	V C C	+12 v 1 Ower Suppry	

[Note1] GND of a liquid crystal panel drive part has connected with a module chassis. [Note2] The equivalent circuit figure of the terminal.

[Note3] The equivalent circuit figure of the terminal.


[Note4] LVDS Data order

[1,000.]	SELLVD	S
Data	L(GND) or OPEN	H(3.3V)
	[VESA]	[JEIDA]
TA0	R0(LSB)	R4
TA1	R1	R5
TA2	R2	R6
TA3	R3	R7
TA4	R4	R8
TA5	R5	R9(MSB)
TA6	G0(LSB)	G4
TB0	G1	G5
TB1	G2	G6
TB2	G3	G7
TB3	G4	G8
TB4	G5	G9(MSB)
TB5	B0(LSB)	B4
TB6	B1	B5
TC0	B2	B6
TC1	В3	B7
TC2	B4	B8
TC3	B5	B9(MSB)
TC4	NA	NA
TC5	NA	NA
TC6	DE(*)	DE(*)
TD0	R6	R2
TD1	R7	R3
TD2	G6	G2
TD3	G7	G3
TD4	B6	B2
TD5	B7	В3
TD6	N/A	N/A
TE0	R8	R0(LSB)
TE1	R9(MSB)	R1
TE2	G8	G0(LSB)
TE3	G9(MSB)	G1
TE4	B8	B0(LSB)
TE5	B9(MSB)	B1
TE6	N/A	N/A

NA: Not Available

(*)Since the display position is prescribed by the rise of DE (Display Enable) signal, please do not fix DE signal during operation at "High".

SELLVDS= Low (GND) or OPEN

DE: Display Enable, NA: Not Available (Fixed Low)

4.3. Backlight driving

CN101 (+24V DC power supply and inverter control)

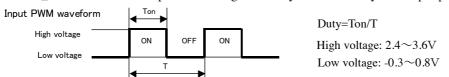
Using connector: 20022WR-14B1(YEONHO)

Mating connector: 20022HS-14L (YEONHO) or equivalent connector.

Pin No.	Symbol	I/O	Function	Default(OPEN)	Input Impedance	Remark
Till 140.	Symbol	1/0	Tunction	Default(Of EIV)	· · · · · · · · · · · · · · · · · · ·	Keniark
					(min)	
1	$V_{ m LED}$	In	+24V	=		
2	$ m V_{LED}$	In	+24V	=		
3	V_{LED}	In	+24V	-		
4	V_{LED}	In	+24V	-		
5	$V_{ m LED}$	In	+24V	-		
6	GND	In	GND	=		
7	GND	In	GND	=		
8	GND	In	GND	-		
9	GND	In	GND	=		
10	GND	In	GND	=		
11	Error_out	Out	Error Detection	Open Co	llector	[Note 1]
12	Von/off	In	LED driver On/Off	LED driver Off	10k-ohm	[Note 2]
10	NG				pull-down to GND	
13	NC	-	-	-		
14	EX_DIM	In	Brightness Control	3.3V : pull up	10k-ohm	[Note 3]
			(PWM 1~100%)	Brightness 100%	pull-up to 3.3V	Pulse Dimming

[Note 1] Error Detection

	MIN	TYP	MAX
Normal	-	-	0.8V
Abnormal	O	pen Collecto	r


Terminal load capacitance: 100pF

[Note 2] LED driver ON/OFF

Input voltage	Symbol	Function	
High voltage	Von	LED driver : On	High voltage: 2.4∼3.6V
Low voltage	Voff	LED driver : Off	Low voltage: -0.3∼0.8V

[Note3] Pulse Dimming

Pin No.14 'EX_DIM' is used for the pulse dimming control by the PWM duty with input pulse from 90Hz to 360Hz.

		MIN	TYP	MAX	Remark
Pulse signal	[Hz]	90	-	360	
DUTY(Ton/T)	[%]	1	-	100	Ta=25°C
Dimming level	[%]	-	-	100	Ta=25°C
(luminance ratio)					

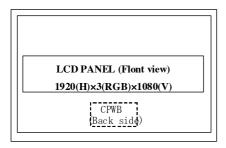
4.4. The back light system characteristics

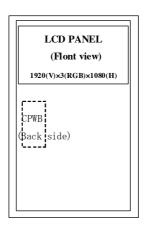
The characteristics of the LED are shown in the following table. The value mentioned below is at the case of One LED.

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Life time	Tled	-	50,000	-	Hour	25°C [Note.1]

[Note1] LED life time is the expectation value calculated from lifetime data of maker report. It is defined as the time when brightness becomes 50% of the original value in the continuous operation under the condition of Ta=25°C. It is assumed that LED current becomes 70% when the LED dimming duty ratio is 70% and calculates.

5 Installation and Display direction

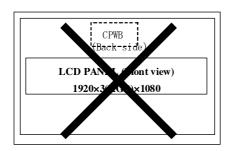

This module can be installed by both installation direction "landscape" and "portrait" as follows.

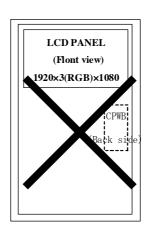

[Landscape direction]

In front view, CPWB is located BOTTOM

[Portrait direction]

In front view, CPWB is located Left-side

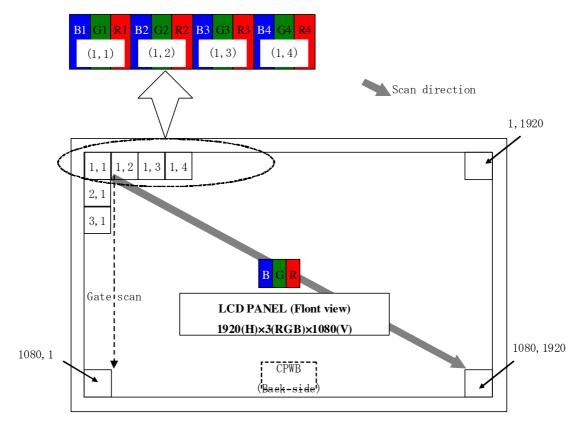




[Note] Other installation direction

Since in case of the other installation direction the characteristic and reliability cannot be guaranteed,

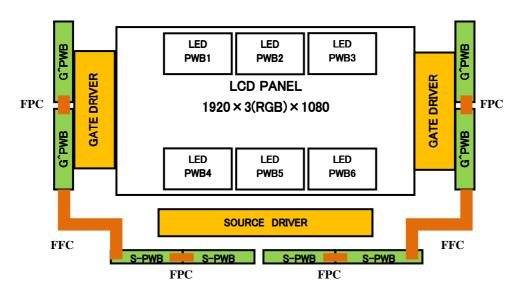
NOT recommended.



5.2 Display direction

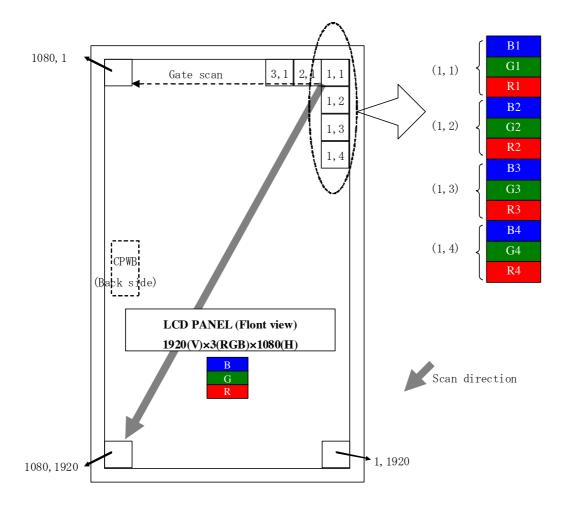
Each subpixel R, G, B is aligned as follows.

[Landscape direction]



LCD subpixel alignment in Landscape installaion

[Note] PWB layout


In Landscape installation,

Four S-PWBs and three LED-PWBs are layout at the bottom side of the screen.

Layout of LED-PWB, S-PWB & G-PWB (Front View)

[Portrait direction]

LCD subpixel alignment in Portrait installaion

6. Absolute Maximum Ratings

	Thospiaco Ivaminam Harings								
Parameter	Symbol	Condition	Ratings	Unit	Remark				
Input voltage (for C-PWB)	Vı	Ta=25°C	-0.3 ~ 3.6	V	[Note 1]				
12V supply voltage (for C-PWB)	VCC	Ta=25°C	0 ~ + 14	V					
Input voltage (for LED Driver)	Von/off DIM_SEL EX_DIM	Ta=25 °C	-0.3 ~ 3.9	V					
24V supply voltage (for LED Driver)	V_{LED}	Ta=25 °C	0 ~ + 24	V					
Storage temperature	Tstg	1	-25 ~ +60	°C	DI 4 21				
Operation temperature (Ambient)	Тора	-	0 ~ +50	°C	[Note 2]				

[Note 1] SELLVDS, OS set, FRAME

[Note 2] Humidity 95%RH Max.($Ta \leq 40$ °C)

Maximum wet-bulb temperature at 39 °C or less.(Ta>40°C)

No condensation.

7. Electrical Characteristics

7.1 Control circuit driving

Ta=25 °C

Parameter		Symbol	Min.	Тур.	Max.	Unit	Remark
	Supply voltage	Vcc	11.4	12	12.6	V	[Note 1]
+12V supply	Current dissipation	Icc	-	1.1	3.0	A	[Note 2]
voltage	Inrush current	I_{RUSH}	-	4.1	-	A	t1=500us [Note 7]
Permissible	input ripple voltage	Vrp	-	-	100	mV _{P-P}	Vcc = +12.0V
Input	Low voltage	VIL	0	ı	1.0	V	[Note 2]
Input	High voltage	V_{IH}	2.3	1	3.3	V	[Note 3]
Input los	ık current (Low)	I IL1	-	-	40	μΑ	$V_{I} = 0V$ [Note 4]
input iea	ik current (Low)	IIL2			750	μΑ	$V_{I} = 0V$ [Note 5]
Input los	k current (High)	Ііні	-	-	400	μΑ	V _I = 3.3V [Note 4]
Input iea	k current (High)	Іін2	-	ı	40	μΑ	$V_1 = 3.3V$ [Note 5]
Term	ninal resistor	RT	-	100	-	Ω	Differential input
Input Differential voltage		IVIDI	200	400	600	mV	[Note 6]
	erential input n mode voltage	VCM	IVIDI/2	1.2	2.4- IVIDI/2	V	[Note 6]

[Note]Vcm: Common mode voltage of LVDS driver.

[Note1]

Input voltage sequences

50us. < t1 < 20ms

20 ms. < t2 < 5 s

20 ms < t3 < 5 s

0 < t4 < 1s

0 < t5 < 1s

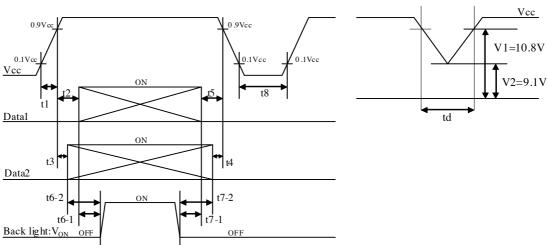
(1sec) < t6-1

(1sec) < t6-2

0 < t7-1

0 < t7-2

1s < t8

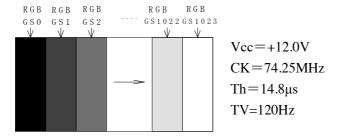

Dip conditions for supply voltage

a) $V2 \le Vcc < V1$

td < 10ms

b) Vcc < V2

This case is based on input voltage sequences.

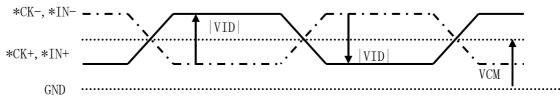


Data1: ACK±, AIN0±, AIN1±, AIN2±, AIN3±, AIN4±, BCK±, BIN0±, BIN1±, BIN2±, BIN3±, BIN4±,
 *V_{CM} voltage pursues the sequence mentioned above

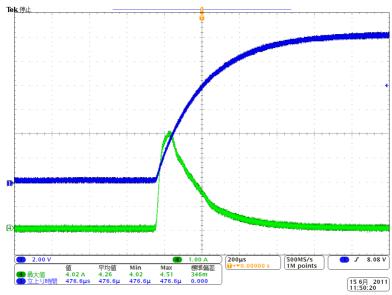
Data2: SELLVDS, O/S set, FRAME

[Note] About the relation between data input and back light lighting, please base on the above-mentioned input sequence. When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

[Note 2] Typical current situation: 1024 gray-bar patterns. (Vcc = +12.0V) The explanation of RGB gray scale is seen in section 8.

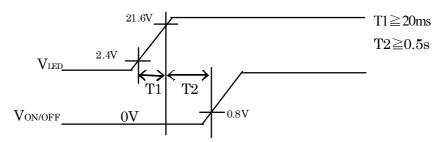


[Note 3] SELLVDS, FRAME, O/S set


[Note 4] SELLVDS, FRAME

[Note 5]O/S set

 $[Note~6]~ACK\pm, AIN0\pm, AIN1\pm, AIN2\pm, AIN3\pm, AIN4\pm, BCK\pm, BIN0\pm, BIN1\pm, BIN2\pm, BIN3\pm, BIN4\pm, BIN4\pm,$


[Note 7] Vcc12V inrush current waveform

7.2 LED driving for back light

Pa	rameter	Symbol	Min.	Тур.	Max.	Unit	Remark
124V supply	Current dissipation	I_{LEDD}	-	10.5	11. 6	A	$V_{LED} = +24V$
+24V supply voltage	Irush current	I_{RUSH}	-	16	-	A	Ta=25°C
voltage	Supply voltage	$V_{ m LED}$	21.6	24.0	26.4	V	DUTY=100%
Permissible i	nput ripple voltage	V_{RP}	-	1	1	V_{P-P}	$V_{\text{LED}} = +24.0 \text{V}$
Input v	voltage (On)	Von	2.4	3.0	3.6	V	V _{ON/OFF} ,
Input v	oltage (Off)	Voff	-0.3	0	0.8	V	EX_DIM
Input volt	age(DIM High)	VDIMH	2.4	-	3.6	V	DIM SEL
Input volt	age(DIM Low)	VDIML	-0.3	-	0.8	V	DIM-SEL

[Note] VLED-turn-on condition

2) VLED-turn-off condition

8. Timing characteristics of input signals

8.1 Timing characteristics

Timing diagrams of input signal are shown in Fig.2.

	1 0	0					
	Parameter			Typ.	Max.	Unit	Remark
Clock	Frequency	1/Tc	67	74.25	76	MHz	
	Horizontal period	TH	1050	1100	1300	clock	
	Horizontai period	111	14.2	14.8	16.1	μs	
Data enable	Horizontal period (High)	THd	960	960	960	clock	
signal	Vertical period	TV	1109	1125	1400	line	
	vertical period	1 V	47	60	61	Hz	
	Vertical period (High)	TVd	1080	1080	1080	line	

[Note]-When vertical period is very long, flicker and etc. may occur.

- -Please turn off the module after it shows the black screen.
- -Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.
- -As for your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting.

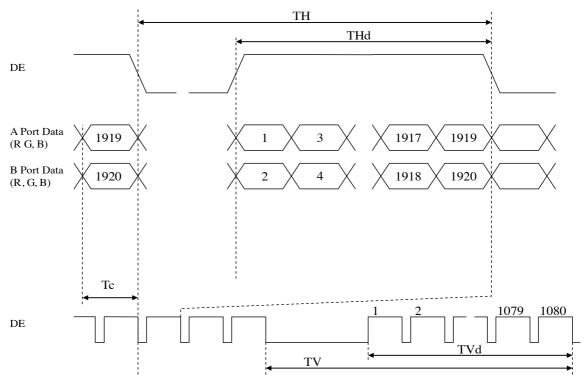
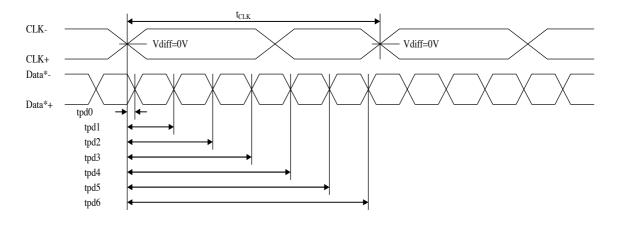



Fig.2 Timing diagram of input signal

8.2 LVDS signal characteristics

Item		Symbol	Min.	Тур.	Max.	Unit
	Delay time, CLK rising edge to serial bit position 0	tpd0	-0.25	0	0.25	
	Delay time, CLK rising edge to serial bit position 1	tpd1	1*t _{CLK} /7-0.25	1*t _{CLK} /7	$1*t_{CLK}/7+0.25$	
	Delay time, CLK rising edge to serial bit position 2	tpd2	2*t _{CLK} /7- 0.25	2*t _{CLK} /7	2*t _{CLK} /7+ 0.25	
Data position	Delay time, CLK rising edge to serial bit position 3	tpd3	3*t _{CLK} /7- 0.25	3*t _{CLK} /7	$3*t_{CLK}/7+0.25$	ns
	Delay time, CLK rising edge to serial bit position 4	tpd4	4*t _{CLK} /7- 0.25	4*t _{CLK} /7	4*t _{CLK} /7+ 0.25	
	Delay time, CLK rising edge to serial bit position 5	tpd5	5*t _{CLK} /7-0.25	5*t _{CLK} /7	5*t _{CLK} /7+ 0.25	
	Delay time, CLK rising edge to serial bit position 6	tpd6	6*t _{CLK} 7- 0.25	6*t _{CLK} /7	6*t _{CLK} /7+ 0.25	

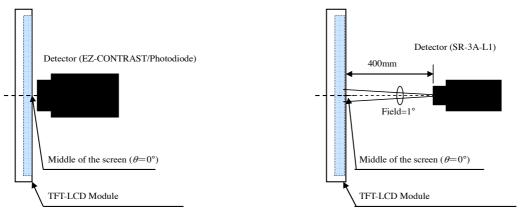
9. Input signal, basic display colors and gray scale of each color

Cala	ma Pr Cmar	. Caala	Data signal																													
Colo	rs & Gray	Scale	R0	R1	R2	R3	R4	R5	R6	R7	R8	R9	G0	G1	G2	G3	G4	G5	G6	G7	G8	G9	B0	B1	B2	В3	B4	B5	B6	B7	B8	В9
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
or	Green	_	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Col	Cyan	_	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Basic Color	Red	_	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bě	Magenta	_	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
pa		GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le c		↓						ļ										Į										l .				
Sca		Ţ						ļ										l										l				
iray	Brighter	GS1021	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9		GS1022	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
een		GS1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e of		1						ļ										ļ										ļ .				
Gray Scale of Green								Į										Į										Į				
ay	Brighter		0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
J		GS1022		0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
		GS1023		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lue		GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
f B	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
le c		<u> </u>						ļ.					ļ					ļ										ļ				
Sca		<u> </u>						<u> </u>										Į .										<u> </u>				
Gray Scale of Blue	Brighter			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1
		GS1022		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	Blue	GS1023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

0: Low level voltage / 1: High level voltage

Each basic color can be displayed in 1021 gray scales from 10 bits data signals. According to the combination of total 30 bits data signals, one billion-color display can be achieved on the screen.

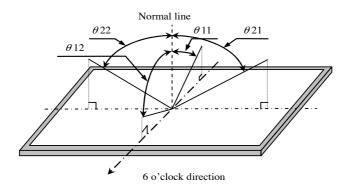
10. Optical characteristics


Ta=25°C,Vcc=12.V,VLED =+24V,Brightness 100%,Timing: 60Hz (typ. value)

 $Measurement\ of\ Contrast,\ Luminance,\ Chromaticity.$

Param	eter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark				
Viewing	Horizontal	θ 21 θ 22	CR≥10	70	88	-	Deg.	[Note 1 4]				
angle range	Vertical	θ 11 θ 12	C K <u>≥</u> 10	70	88	-	Deg.	[Note1,4]				
Contrast	ratio	CRn		4000	5000	-	-	[Note2,4]				
Response	e time	τrd		-	4	=	ms	[Note3,4,5]				
	White	X		Typ0.03	0.282	Typ.+0.03	-					
	White	y		Тур0.03	0.288	Typ.+0.03	-					
	Red	X		Typ0.03	0.640	Typ.+0.03	-	[Nata 4]				
Chamamaticity		y		Тур0.03	0.348	Typ.+0.03	-					
Chromaticity	Green	X	θ =0 deg.	Typ0.03	0.300	Typ.+0.03	-	[Note4]				
	Green	y		Typ0.03	0.623	Typ.+0.03	-					
	Dlue	X		Typ0.03	0.149	Typ.+0.03	-					
	Blue	y		Тур0.03	0.057	Typ.+0.03	-					
Luminance	White	Y_{L}		400	500	-	cd/m ²					
Luminance uniformity	White	δw		-	1.33			[Note6]				

- Measurement condition: Set the value of backlight control voltage to maximum luminance of white.
- The measurement shall be executed 60 minutes after lighting at rating.


[Note] The optical characteristics are measured using the following equipment.

Measurement of viewing angle range and Response time.

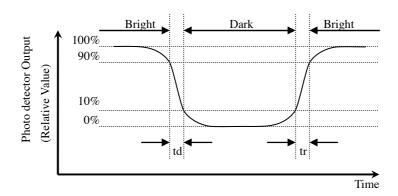
- -Viewing angle range: EZ-CONTRAST
- Response time: Photodiode

[Note1] Definitions of viewing angle range:

[Note2] Definition of contrast ratio:

The contrast ratio is defined as the following.

$$Contrast Ratio = \frac{Luminance (brightness) with all pixels white}{Luminance (brightness) with all pixels black}$$

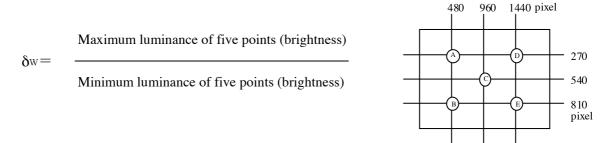

[Note3] Definition of response time

The response time (τ_{rd}) is defined as the following,

$$\tau_{rd} = \{\sum (tr : x - y) + \sum (td : x - y)\}/20$$

 τ_{rd} is the average value of the switching time from five gray levels (0%, 25%, 50%, 75% and 100%) to five gray levels (0%, 25%, 50%, 75% and 100%).

		Gray level of End (y)							
		0%	25%	50%	75%	100%			
1	0%		tr: 0%-25%	tr: 0%-50%	tr: 0%-75%	tr: 0%-100%			
evel t(x)	25%	td: 25%-0%		tr: 25%-50%	tr: 25%-75%	tr: 25%-100%			
Gray lev of Start (50%	td: 50%-0%	td: 50%-25%		tr: 50%-75%	tr: 50%-100%			
ira if S	75%	td: 75%-0%	td: 75%-25%	td: 75%-50%		tr: 75%-100%			
0	100%	td: 100%-0%	td: 100%-25%	td: 100%-50%	td: 100%-75%				



[Note4] This value shall be measured at center of the screen.

[Note5] This value is valid when O/S driving is used at typical input time value.

[Note6] Definition of white uniformity;

White uniformity is defined as the following with five measurements. (A~E)

11. Packing form

Sunlight

a) Piling number of cartons : 2 Maximum

b) Packing quantity in one carton : 9pcs

c) Carton size $: 1982(W) \times 1110(D) \times 1297(H)$

d) Total mass of one carton filled with full modules : 393kg

12. Carton storage condition

Temperature 0°C to 40°C Humidity 95% RH or less

Reference condition 20°C to 35°C, 85% RH or less (summer)

5°C to 15°C, 85% RH or less (winter)

the total storage time (40°C, 95% RH): 240h or less Be sure to shelter a production from the direct sunlight.

Atmosphere Harmful gas, such as acid and alkali which bites electronic components and/or

wires must not be detected.

Notes Be sure to put cartons on palette or base, don't put it on floor, and store them

with removing from wall.

Please take care of ventilation in storehouse and around cartons, and control

changing temperature is within limits of natural environment.

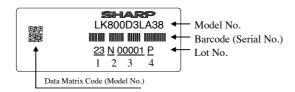
Storage life 1 year.

13. Reliability test item

. 170	manify test item						
No.	Test item	Condition					
1	High temperature storage test	Ta=60°C 240h					
2	Low temperature storage test	Ta=-25°C 240h					
3	High temperature and high humidity	Ta=40°C; 95%RH 240h					
3	operation test	(No condensation)					
4	High temperature operation test	Ta=50°C 240h					
5	Low temperature operation test	Ta=0°C 240h					
	Vibration test	Frequency: 10~57Hz/Vibration width (one side): 0.075mm					
6	(non-operation)	: 58~500Hz/Acceleration: 9.8 m/s ²					
0		Sweep time: 11 minutes					
		Test period: 3 hours (1h for each direction of X, Y, Z)					
		* At the following conditions, it is a thing without incorrect					
		operation and destruction.					
		(1)Non-operation: Contact electric discharge ±10kV					
7	ESD	Non-contact electric discharge ±20kV					
		(2)Operation Contact electric discharge ±8kV					
		Non-contact electric discharge ±15kV					
		Conditions: 150pF, 330ohm					

[Result evaluation criteria]

Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function.

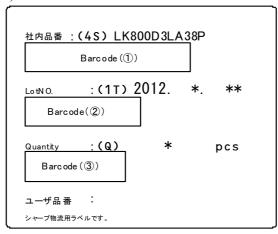

14. Others

14.1 Serial Label

The label that displays SHARP, product model (LK800D3LA38), a product number is stuck on the back of the module.

a) Overview

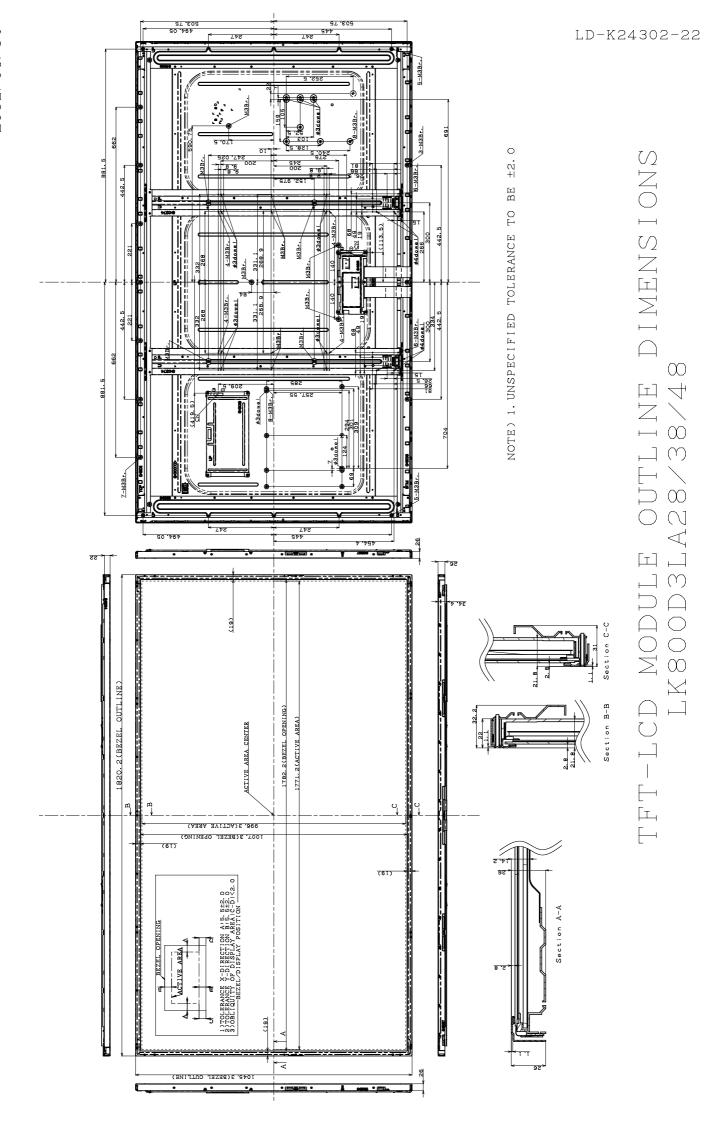
This label is stuck on the backlight chassis.

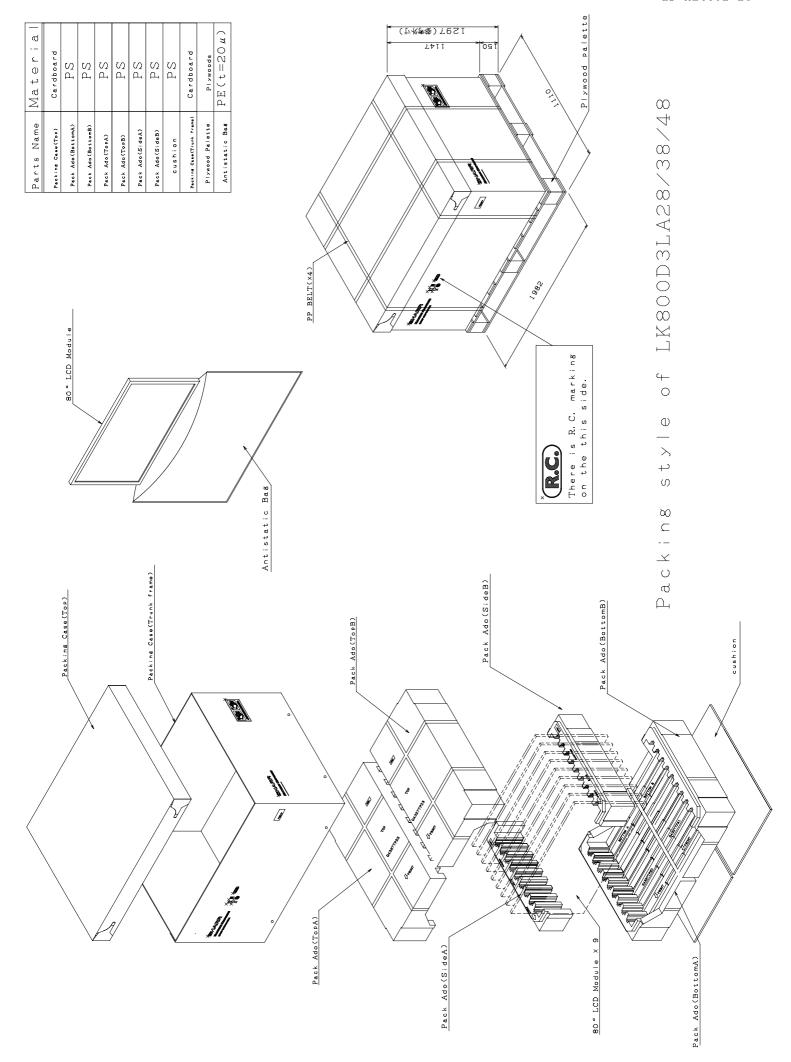

b) How to express Lot No.

Model No.	1	2	3	4				
LK800D3LA38	23	N	00001	P				
			•	<u> </u>				
				Suffix Code				
				P or T				
	!		Serial No.					
		Factory Code						
		N NSEC						
	Production Year & Month							

14.2 Packing Label

This label is stuck on the each packing box.


ex) LK800D3LA38



- ① Model No & Suffix Code
- ② Lot No.
- 3 Quantity

15. Precautions

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c) Since the front polarizer is easily damaged, pay attention not to scratch it.
- d) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- h) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- i) Observe all other precautionary requirements in handling components.
- j) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc. So, please avoid such design.
- k) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- 1) When handling LCD module and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- m) This LCD module is designed to prevent dust from entering into it. However, there would be a possibility to have a bad effect on display performance in case of having dust inside of LCD module. Therefore, please ensure to design your TV set to keep dust away around LCD module.
- n) This LCD module passes over the rust.
- o) Adjusting Vcom has been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- p) Disassembling the module can cause permanent damage and should be strictly avoided.
- q) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- r) The chemical compound, which causes the destruction of ozone layer, is not being used.
- s) In any case, please do not resolve this LCD module.
- t) This module is corresponded to RoHS.
- u) When any question or issue occurs, it shall be solved by mutual discussion.

