SPEC No. LC98613 PREPARED BY: DATE SHARP FILE No. ISSUE JUNE.24.1998 LIQUID CRYSTAL DISPLAY GROUP PAGE 27 Pages APPROVED BY: DATE SHARP CORPORATION REPREZENTATIVE DIVISION **ENGINEERING DEPARTMENT 1** DUTY LCD DEVELOPMENT CENTER **DUTY LIQUID CRYSTAL DISPLAY GROUP SPECIFICATION DEVICE SPECIFICATION for** Passive Matrix Color LCD Module $(640 \times 480 \text{ dots})$ Model No. **LM9V385** ☐CUSTOMER'S APPROVAL DATE BY PRESENTED BY Y.Inoue DIVISION GENERAL MANAGER DUTY LCD DEVELOPMENT CENTER DUTY LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION | | RECO | RDS OF REVISION | | DOC.FIRST ISSU
JUNE. 24.1998 | |----------|--------------------------------------|-----------------|---------|---------------------------------| | DATE | REF.PAGE
PARAGRAPH
DRAWING No. | NO. | SUMMARY | CHECK
AND
APPROVAL | | | - | <u> </u> | O Precautions 1) Industrial (Mechanical) design of the product in which this LCD module will be incorporated must be made so that the viewing angle characteristics of the LCD may be optimized. This module's viewing angle is illustrated in Fig.1. θ y MIN. < viewing angle < θ y MAX. (For the specific values of θ y MIN., and θ y MAX., refer to the table) Please consider the optimum viewing conditions according to the purpose when installing the module. Fig.1 Definition of viewing angle - 2) This module should be installed using mounting holes of metal bezel. When installing the module, pay attention and handle carefully not to allow any undue stress such as twist or bend. - 3) Since the front polarizer is easily damaged. Please pay attention not to scratch on its face. It is recommended to use a transparent acrylic resin board or other type of protective panel on the surface of the LCD module to protect the polarizer, LCD panel, etc.. - 4) If the surface of the LCD panel is required to be cleaned, wipe it swiftly with cotton or other soft cloth. If it is not still clear completely, blow on and wipe it. - 5) Water droplets, etc. must be wiped off immediately since they may cause color changes, staining, etc., if it remained for a long time. - 6) Since LCD is made of glass substrate, dropping the module or banging it against hard objects may cause cracking or fragmentation. - 7) Since CMOS LSIs are equipped in this module, following countermeasures must be taken to avoid electrostatics charge. PAGE MODEL No. SPEC No. 2 LM9V385 LC98613 Electrostatic shielding clothes shall be had because it is feared that the static electricity is electrified to human body in case that operator have a insulating garment. There is a possibility that the static electricity is charged to equipment which have a function of peeling or mechanism of friction(EX: Conveyer, soldering iron, working table), so the countermeasure countermeasure(electrostaticearth: $1 \times 10^8 \Omega$) should be made. 3. Floor Floor is a important part to leak static electricity which is generated from human body or equipment. There is a possibility that the static electricity is charged to them without leakage in case of insulating floor, so the countermeasure(electrostatic earth: $1 \times 10^8 \,\Omega$) should be made. 4. Humidity Humidity of working room may lower electrostatics generating material's resistance and have something to prevent electrifying. So, humidity should be kept over 50% because humidity less than 50 % may increase material's electrostatic earth resistance and it become easy to electrify. 5. Transportation/storage The measure should be made for storage materials because there is a possibility that the static electricity, which electrify to human body or storage materials like container by friction or peeling, cause the dielectric charge. 6. Others The laminator is attached on the surface of LCD module to prevent from scratches, fouling and dust. It should be peeled off unhurriedly with using static eliminator. And also, static eliminator should be installed to prevent LCD module from electrifying at assembling line. 8) Don't use any materials which emit gas from epoxy resin(amines' hardener) and silicon adhesive agent(dealcohol or deoxym) to prevent change polorizer color owing to gas. - 9) Since leakage current, which may be caused by routing of CCFT cables, etc., may affect the brightness of display, the inverter has to be designed taking the leakage current into consideration. Thorough evaluation of the LCD module/inverter built into its host equipment shall be conducted, therefore, to ensure the specified brightness. - 10) Avoid to expose the module to the direct sun-light, strong ultraviolet light, etc. for a long time. - 11) If stored at temperatures under specified storage temperature, the LC may freeze and be deteriorated. If storage temperature exceed the specified rating, the molecular orientation of the LC may change to that of a liquid, and they may not revert to their original state. Therefore, the module should be always stored at normal room temperature. 12) Disassembling the LCD module can cause permanent damage and should be strictly avoided. 13) Procedure insert mating connector When the mating connector is inserted, it should be parallel to the used connector of LCD module and it should be inserted horizontally. When the mating connector is attempted to be fixed to LCD connector, it should be inserted properly in order not to create a gap as shown "A". Please insert the connector as both edge is placed to the connect position of LCD connector. - 14) This specification describes display quality in case of no gray scale. Since display quality can be affected by gray scale methods, display quality shall be carefully evaluated for the usability of LCD module in case gray scale is displayed on the LCD module. - 15) The module should be driven according to the specified ratings to avoid permanent damage. DC voltage drive leads to rapid deterioration of LC, so ensure that the drive is alternating waveform by continuous application of the signal M. Especially the power ON/OFF sequence shown on Page 25 should be kept to avoid latch-up of drive LSIs and application of DC voltage to LCD panel. LC98613 MODEL No. PAGE LM9V385 4 | <u> </u> | | | |--|------|--| | OContents | Page | | | 1.Application | 5 | | | 2. Construction and Outline | | | | 3. Mechanical Specifications | 6 | | | 4. Absolute Maximum Ratings | | | | 4-1. Electrical absolute maximum ratings | | | | 4-2 Environment Conditions | 7 | | | 5.Electrical Specifications | 8 | | | 5-1.Electrical characteristics | | | | 5-2.Interface signals | 10 | | | 6. Module Driving Method | 16 | | | 6-1. Circuit configuration | | | | 6-2. Display face configuration . | | | | 6-3. Input data and control signal | | | | 7. Optical Characteristics | 18 | | | 8. Characteristics of Backlight | 23 | | | 9.Supply voltage sequence condition | 25 | | | 10 Applicable inspection standard | 25 | | | 11. Touch panel Specifications | 26 | | 7 .q LC98613 MODEL No. PAGE 5 ### 1.Application This data sheet is to introduce the specification of LM9V385, passive Matrix type Color LCD module. #### 2. Construction and Outline Construction: 640 × 480 dots color display module consisting of an LCD panel, PWB(printed wiring board) with electric components mounted onto, TCP(tape carrier package) to connect the LCD panel and PWB electrically, and plastic chassis with CCFT back light and bezel to fix them mechanically. Signal ground(Vss) is connected with the metal bezel. DC/DC converter is built in. Outline :See Fig. 13 Connection :See Fig. 13 and Table 6 LC98613 MODEL No. PAGE LM9V385 6 3 Mechanical Specification Table1 | Parameter | Specifications | Unit | |--------------------|---------------------------|------| | Outline dimensions | 227(W)×179.2(H)×9.5MAX(D) | mm | | Active area | 191.98(W) × 143.98(H) | mm | | Display format | 640(W)×480(H) | mm | | Dot size | 0.08×RGB(W)×0.28(H) | - | | Dot spacing | 0.02 | mm | | *1 Base color | Normally black *2 | | | Weight | Approx.470 | g | - *1 Due to the characteristics of the LC material, the colors vary with environmental temperature. - *2 Negative-type display Display data "H": ON → transmission Display data "L": OFF → light isolation 4. Absolute Maximum Ratings 4-1. Electrical absolute maximum ratings Table 2 | Parameter | Symbol | MIN. | MAX. | Unit | Remark | |-----------------------|-----------------|------|----------------------|------|----------| | Supply voltage(Logic) | $V_{DD}-V_{SS}$ | 0 | 6.0 | v | Ta=25 ℃ | | Input voltage | V _{2N} | -0.3 | V _{DD} +0.3 | v | Ta=25 ℃ | | Vcon voltage | Vcon | 0 | V _{DD} | v | Ta≃25 °C | SPEC No. MODEL No. PAGE LC98613 LM9V385 7 ### 4-2. Environment Conditions Table 3 | T | Tstg | | Topr | | | |---------------------|----------|-------|-----------|-------|----------------------| | Item | MIN. MAX | | MIN. MAX. | | Remark | | Ambient temperature | -25 °C | +60 ℃ | ე ზ | +40°C | Note 4) | | Humidity | Note 1) | | Note 1) | | No condensation | | Vibration Note 2) | | e 2) | Note 2) | | 3 directions(X/Y/Z) | | Shock | Not | = 3) | No | te 3) | 6 directions(±X±Y±Z) | Note 1) Ta ≤ 40 °C......95 % RH Max. Ta>40 °C......Absolute humidity shall be less than Ta=40 °C/95 % RH. ### Note 2) Table 4 | Frequency | 10 Hz~57 Hz | 57 Hz~500 Hz | |-----------------|--------------|----------------------| | Vibration level | - | 9.8 m/s ² | | Vibration width | 0.075 mm | _ | | Interval | 10 Hz~500 Hz | ~10 Hz/11.0 min | 2 hours for each direction of X/Y/Z (6 hours as total) Note 3) Accerelation : 490 m/s² Pulse width : 11 ms 3 times for each directions of $\pm X/\pm Y/\pm Z$ Note 4) Care should be taken so that the LCD module may not be subjected to the temperature out of this specification. 5.Electrical Specifications 5-1. Electrical characteristics | | Ï | able 5 Ta= | 25°C VD | $D=3.3 V \pm$ | 10 % | 1/tFRM: | =75 Hz | |-------------------------|----------------------------------|------------------------|-------------|--------------------|-------|--------------------|--------| | Parameter | Symbol | Cond | itions | Міл. | Тур. | Max. | Ųnit | | Supply voltage (Logic) | V _{DD} -V _{SS} | Ta = 0~40 | °C (Note 1) | 3.0 | 3.3 | 3.6 | V | | | | Ta= | ℃ | 0.8 | - | - | > | | Contrast adjust voltage | Vcon-Vss | Ta = 25 ℃
Ta = 40 ℃ | | - | 1.95 | - | V | | (Note 4) | | | | | | 2.8 | v | | Input signal voltage | V _N | "H" level | Ta = 0~ | 0.8V _{DD} | - | V _{DD} | V | | | <u> </u> | "L" level | 40 ℃ | 0 | - | 0.2V _{DD} | V | | | Ipp1(TYP.) | Ta =25 °C(Note 1,2) | | - | 50 | 75 | mA | | Supply current | I _{DD} 2(MAX.) | Ts=25 °C(Note1,3) | | - | 60 | 90 | mА | | Rush current (Logic) | Irush | Ta =25 ℃ | (Note 1) | | 0.7A× | 20mS | | | Ripple current (Logic) | Irip | Ta =25 °C | (Note 1) | | 0.3A× | 100 μ S | | | | Pd1(TYP) | Not | e 2) | | 165 | 250 | mW | | Power consumption | Pd2(MAX) | Not | € 3) | | 200 | 300 | mW | Note 1) Under the following conditions.; | (1) | Immediately | after the | rise | of V | | |------------|----------------------|-----------|------|------|------| | · · | TILD IN GOT STICE IA | STICL MC | 1130 | OF A | nn (| $:0.7A \times 20mS$ ② Under the situation that DISP signal is on and kept steady : $0.3A \times 100 \mu$ S | Note 2) Frame frequency = 75 Hz, Vcon - Vss =max contrast voltage Display pattern = all digits ON (DU0-7,DL0-7 = "H") | |---| | | | | | | | | | Note 3) Frame frequency = 75 Hz, Vcon - Vss = max contrast voltage | | Display pattern = black/white stripe pattern | | | | 医黑色性 医二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲 | | | 医医耳氏试验 医多种细胞 化二苯苯甲基苯甲基 LC98613 MODEL No. PAGE LM9V385 9 Note 4) Contrast adjust voltage "Vcon-Vss" is transformed into the LCD driving voltage "V_{LCD}" by following circuit built in the LCD module. LCD driving voltage "V_{LCD}" is adjusted automatically according to the change of ambient temperature range by the temperature compensation circuit. Temperature compensation circuit built in LCD module have been set obtain the optimum contrast under following driving conditions.; Take care that voltage for optimum contrast is changed under the different condition. Frame frequency: 75 Hz, Duty ratio: 1/244 (an odd number frame), Ta = 25 °C *The above is the condition of the module setting, not the electrical characteristics. SPEC No. LC98613 MODEL No. LM9V385 PAGE 10 ## 5-2.Interface signals OCN1 Table 6-1 | -1 N 1 | | 1 2016 0-1 | | |---------------|--------|--------------------------------|---------------| | Pin No. | Symbol | Description | Level | | 1 | DL4 | Display data signal (Lower) | H(ON), L(OFF) | | 2 | VSS | Ground potential | - | | 3 | DL'5 | Display data signal (Lower) | H(ON), L(OFF) | | 4 | YD | Scan start-up signal | e-Ha | | 5 | DL6 | Display data signal (Lower) | H(ON), L(OFF) | | 6 | LP | Input data latch signal | "H" → "L" | | 7 | DL7 | Display data signal (Lower) | H(ON), L(OFF) | | 8 | VSS | Ground potential | - | | 9 | VSS ' | Ground potential | - | | 10 | XCK | Data input clock signal | "H" → "L" | | 11 | DL0 | Display data signal (Lower) | H(ON), L(OFF) | | 12 | Vcon | Contrast adjust voltage | • | | 13 | DL1 | Display data signal (Lower) | H(ON), L(OFF) | | 14 | VDD | Power supply for logic and LCD | - | | 15 | VSS | Ground potential | - | | 16 | VDD | Power supply for logic and LCD | -1 | | 17 | DL2 | Display data signal (Lower) | H(ON), L(OFF) | | 18 | DISP | Display control signal | H(ON), L(OFF) | | 19 | DL3 | Display data signal (Lower) | H(ON), L(OFF) | | 20 | M | M signal output for monitor | + | | 21 | VSS | Ground potential | H(ON), L(OFF) | | 22 | DU3 | Display data signal (Upper) | H(ON), L(OFF) | | 23 | DU4 | Display data signal (Upper) | H(ON), L(OFF) | | 24 | DU2 | Display data signal (Upper) | H(ON), L(OFF) | | 25 | DU5 | Display data signal (Upper) | H(ON), L(OFF) | | 26 | DU1 | Display data signal (Upper) | H(ON), L(OFF) | | 27 | VSS | Ground potential | - | | 28 | 0טם | Display data signal (Upper) | H(ON), L(OFF) | | 29 | DU6 | Display data signal (Upper) | H(ON), L(OFF) | | 30 | VSS | Ground potential | - | | 31 | DU7 | Display data signal (Upper) | H(ON), L(OFF) | | | | | | OCCFT Table 6-3 | Pin No | Symbol | Description | Level | |--------|--------------|-----------------------------------|---| | 1 | GND | Ground line (from Inverter) | • | | 2 | NC | NC | <u> </u> | | 3 | HV | High voltage line (from Inverter) | * | | | Pin No 1 2 3 | 1 GND
2 NC | 1 GND Ground line (from Inverter) 2 NC NC | OLCD Used connector: DF9B-31P-1V(HIROSE) Correspondable connector: DF9B-31S-1V(HIROSE) OCCFT Used connector:BHR-03VS-1 (JST) Correspondable connector SM02(8.0)B-BHS(JST) Except above connector shall be out of guaranty. SPEC No. MODEL No. PACE SHARP LC98613 LM9V385 12 Fig.2 Dot chart of display area (1,1)(1,639) (1,640) COLUMN (2, 1)(2,2)(2,639) (2,640); 640 (RGB) ROW 480 dots (<u>479,1)</u> (<u>479,2</u>) (479,639) (479,640) RGB R G BRGB $\mathbb{R}[\mathbb{G}|\mathbb{B}]$ R G B RGBRGBRGB (480,1) (480,2)(480,639) (480,640) RGB DLDIDL 6 5 4 RAR Up Upper SEG Drevers , Upper data(DU0-7) Lower SEG Drivers ,Lower data(DL0-7) SPEC No. MODEL No. PAGE SHARP LC98613 LM9V385 13 LP × 244 pulses YD LP DUO 1st line's 2nd line's 244th line's 1st line's 2nd line's ? display data display data display data display data display data DU7 DLO 241th line's 242th line's 484th line's 242th line's 241th line's display data display data display data display data display data DL7 $XCK \times 640 \times (3/8)$ pulses LP XCK XCK B(1,3) R(1,4) G(1,4) B(1,5) G(1,5) G(1,5) BR(1,6) G(1,6) B(1,6) R(1,7) G(1,7) B(1,7) R(1,8) G(1,8) R(1,9) G(1,9) B(1,9) R(1,10) G(1,10) B(1,11) G(1,11) G(1,14) B(1,14) R(1,15) G(1,15) B(1,16) R(1,16) G(1,16) B(1,16) B(1,11) R(1,12) G(1,12) B(1,12) R(1,13) G(1,13) B(1,13) R(1,14) R(1,1) G(1,1) B(1,1) R(1,2) G(1,2) B(1,2) R(1,3) G(1,3) DU7 DU6 DU5 DU3 DU3 DU2 DU1 ĎŬŌ G(241,14) B(241,15) G(241,15) B(241,15) R(241,16) G(241,16) B(241,16) B(241,3) B(241,4) G(241,4) B(241,4) R(241,5) G(241,5) B(241,5) R(241,6) G(241,6) B(241,6) R(241,7) G(241,7) B(241,7) R(241,8) G(241,8) B(241,8) R(241,9) G(241,9) R(241,9) R(241,10) G(241,10) B(241,11) G(241,11) B(241,11) R(241,12) G(241,12) B(241,12) R(241,13) G(241,13) B(241,13) R(241,14) R(241,1) G(241,1) B(241,1) R(241,2) G(241,2) B(241,2) R(241,3) G(241,3) DL7 DL6 DL5 DL3 DL3 DL1 DL1 DL0 * Electrical and optical characteristics are specified by above condition. Fig. 3 Data input timing chara ### Table 7 Interface timing ratings Ta=25 ℃, VDD=3.3 V±10 % | | | ', | Rating | | Unit | |---------------------------------|-------------------------------|------|--------|----------|-------| | Item | Symbol | MIN. | TYP. | MAX. | Uilli | | Frame cycle *2 | I _{FRM} | 8.3 | | 16.94 | ms | | XCK signal clock cycle | tox | 50 | | | ns | | "H" level clock width | twckh | 20 | | <u> </u> | ns | | "L" level clock width | twckt | 20 | | | ns | | LP signal "H" level pulse width | twi pu | 250 | | <u> </u> | ns | | Data set up time | t _{DS} | 17 | | | ns | | hold time | tox | 23 | | | กร | | YD signal "H" level set up time | tuys | 125 | | <u> </u> | ns | | "H" level hold time | three | 125 | | | ns | | "L" level set up time | teys | 100 | | | пз | | "L" level hold time | tern | 40 | | | กร | | LP allowance time from XCK | t _{LS} | 200 | | | កន | | XCK allowance time from LP | t _{LH} | 200 | | | ns | | Input signal rise/fall time *1 | t _o t _f | | | 13 | пз | - *1 When LCD module is operated by high speed of XCK(Shift clock), (t_{CK} t_{WCKH} -t_{WCKL}) /2 is maximum. - *2 LCD module functions at the minimum frame cycle of 8.33 ms(Maximum frame frequency of 120 Hz). Owing to the characteristics of LCD module, "shadowing" will become more eminent as frame frequency goes up, while flicker will be reduced. - *2 According to our experiments, frame cycle of 8.33 ms Min. or frame frequency of 120 Hz Max. will demonstrate optimum display quality in terms of flicker and "shadowing". But since judgment of display quality is subjective and display quality such as "shadowing" is pattern dependent, it is recommended that decision of frame frequency, to which power consumption of the LCD module is proportional, be made based on your own through testing on the LCD module with every possible patterns displayed on it - The intervals of one LP fall and next must be always the same, and LPs must be input continuously. The intervals must be 70 μ s Max. ### 6. Module Driving Method 6-1. Circuit configuration Fig. 10 shows the block diagram of the module's circuitry. 6-2. Display face configuration The display consists of $640^{\circ} \times 3(R,G,B) \times 480$ dots as shown in Fig. 2. The interface is single panel with double drive to be driven at 1/244duty ratio. 6-3. Input data and control signal The LCD driver is 240 bits LSI, consisting of shift registers, latch circuits and LCD driver circuits. Input data for each row (640×3 R,G,B) will be sequentially transferred in the form of 8 bit parallel data through shift registers from top left of the display together with clock signal (XCK). When input of one row (640×3 R,G,B) is completed, the data will be latched in the form of parallel data corresponding to the signal electrodes by the falling edge of latch signal (LP) then, the corresponding drive signals will be transmitted to the 640×3 lines of column electrodes of the LCD panel by the LCD drive circuits. At this time, scan start-up signal (YD) has been transferred from the scan signal driver to the 1st row of scan electrodes, and the contents of the data signals are displayed on the 1st row of the display face according to the combinations of voltages applied to the scan and signal electrodes of the LCD. While the data of 1st row are being displayed, the data of 2nd row are entered. When data for 640×3 dots have been transferred, they will be latched by the falling edge of LP, switching the display to the 2nd row. Such data input will be repeated up to the 244th row of each display segment, from upper row to lower rows, to complete one frame of display by time sharing method. Simultaneously the same scanning sequence occur at the lower panel. Then data input proceeds to the next display frame. YD generates scan signal to drive horizontal electrodes. Since DC voltage, if applied to LCD panel, causes chemical reaction in LC materials, causing deterioration of the materials, drive wave-form shall be inverted at every display frame to prevent the generation of such DC voltage. Control signal M plays such a role. Because of the characteristics of the CMOS driver LSI, the power consumption of the display module goes up with the clock frequency of XCK. To minimize data transfer speed of XCK clock the LSI has the system of transferring 8 bit parallel data through the 8 lines of shift registers. Thanks to this system the power consumption of the display module is minimized. In this circuit configuration, 8 bit display data shall input to data input pins of DU0-7 and DL0-7. Furthermore, the display module has bus line system for data input to minimize the power consumption with data input terminals of each driver LSI being activated only when relevant data input is fed. Data input for column electrodes and chip select of driver LSI are made as follows: The driver LSI at the left end of the display face is first selected, and the adjacent driver LSI right next side is selected when data of 240 dot (30XCK) is fed. This process is sequentially continued until data is fed to the driver LSI at the right end of the display face. This process is followed simultaneously both at the top and bottom column drivers LSI's. Thus data input will be made through 8 bit bus line sequentially from the left end of the display face. Since this display module contains no refresh RAM, it requires the above data and timing pulse inputs even for static display. The timing chart of input signals are shown in fig. 4 and Table 7. PAGE MODEL No. SPEC No. 18 LM9V385 LC98613 7. Optical Characteristics Following spec are based upon the electrical measuring conditions, on which the contrast of perpendicular direction($\theta x = \theta y = 0$ °) will be MAX.. | | • | ŕ | Ta | ble 8 | Ta = | ± 25 °C, | $V_{DD} = 3.3$ | V, Vcon | -V _ಚ = Vಗಾಖ | |-----------------------|-------|--------|---------------------------|--------------|------|----------|----------------|---------|------------------------| | Parameter | | Symbol | | | MIN. | TYP. | MAX. | Unit | Remark | | Viewing angle range | | θx | | 0 y = 0° | -30 | • | 30 | | Note 1) | | | | θy | Co>5.0 | $\theta = 0$ | -25 | - | 15 | | | | Contrast ratio | | Co | 0 x = 6 | y = 0 ° | | 25 | | | Note2) | | Response | Rise | £ [| $\theta x = \theta y = 0$ | | _ | 350 | 450 | ms | Note3) | | | Decay | 7.4 | -111- | y = 0 ° | - | 1 _ | - | ms | 140[63) | | Module
chromaticit | White | × | · θ x = 6 | y = 0 ° | - | 0.275 | | - | | | | | У | θ x = 6 | y = 0° | - | 0.330 | - | - | | Note 1) The viewing angle range is defined as shown Fig.5. Fig 5 Definition of Viewing Angle Note 2) Contrast ratio is defined as follows: Luminance(brightness) all pixes "White" at Vmax Luminance(brightness) all pixes "dark " at Vmax Vmax is defined in Fig.7. The response characteristics of photo-detector output are measured as shown in Fig.8, assuming that input Note 3) signals are applied so as to select and deselect the dot to be measured, in the optical characteristics test method shown in Fig.8. SPEC No. LC98613 MODEL No. LM9V385 PAGE 19 Measuring Spot Size: \$\phi\$ 10 mm θ x: Angle from "normal" to viewing surface rotated about the horizontal axis. θ y: Angle from "normal" to viewing surface rotated about the vertical axis. Fig. 6 Optical Characteristics Test Method I Fig. 7 Definition of Vmax SPEC No. LC98613 MODEL No. LM9V385 PAGE 20 (Response Measurement) Ta = 25 °C In dark room TOPCON BM7 + quartz fiber (Measuring spot size : ϕ 10 mm, Measuring Field : 2 °) Fig. 8 Optical Characteristics Test Method II SPEC No. | MODEL No. | PAGE | . | LM9V385 | 21 Fig 9 Definition of Response time SPEC No. LC98613 MODEL No. LM9V385 PAGE 22 SPEC No. MODEL No. PAGE LC98613 LM9V385 23 8. Characteristics of Backlight The ratings are given on condition that the following conditions are satisfied. 1) Rating(Note) | Parameter | MIN. | TYP. | MAX. | Unit | |-----------------------|------|------|------|-------| | Brightness | 41 | 60 | = | cd/m² | | Brightness | 51 | 75 | - | cd/m² | | (Without touch panel) | | 140- | | | 2) Measurement circuit: CXA-K0505-VJL(TDK) (at IL = 1.6 mArms) 3) Measurement equipment: BM-7 (TOPCON Corporation) 4) Measurement conditions 4-1. Measurement circuit voltage: DC = 5.0 V, at primary side 4-2. LCD: All digits WHITE, VDD= 3.3 V, Vcon-VSS = Vmax, DU0-7="H"(White), DL0-7="H"(White) Frame Frequency 75 Hz 4-3. Ambient temperature: 25 °C Measurement shall be executed 30 minutes after turning on. 5) Used lamp: FAC1EX/208T2G11/CS/U(TOSHIBA LIGHTING&TECHNOLOGY CORP. Used cable: UL3579,AWG#26 (NISSEI ELECTRIC CO.,LTD or SUMITOMO ELECTRIC INDUSTRIES LTD.) 5-1. Rating (1pc) | Parameter | Symbol | MIN. | TYP. | MAX. | Unit | Remark | | |------------------------|----------------|--------|------|------|-------|-------------|--| | Lamp voltage | V ₁ | • | 590 | - | Vrms | | | | Lamp current | I, | | 1.6 | 2.4 | mArms | *1 | | | Lamp power consumption | P _i | | 1.0 | - | W | *2 | | | Lamp frequency | F. | 45 | • | 100 | kHz | | | | Kick-off voltage | V _s | | - | 1050 | Vms | Ta=25 ℃ | | | 1 | | - | | 1250 | Vrms | Ta=0 ℃ | | | Lamp life time | L | 10 000 | | | h | Ta=25 °C | | | | , | | | | | IL=2.4mArms | | Within no conductor closed. (CCFT only) - *1 It is recommended that IL be not more than 2.4mArms so that heat radiation of CCFT backlight may least affect the display quality. - *2 Power consumption excluded inverter loss. - *3 The circuit voltage(VS) of the inverter should be designed to have some margin, because VS may be increased due to the leak current in case of the LCD module. - *4 Average life time of CCFT will be decreased when LCD is operating at lower and higher temperature. 5-2. Operating life The operating life time is 10 000 hours or more at 2.4 mA. (Operating life with CXA-K0505-VJL or equivalent.) The inverter should meet the following conditions to keep the specified life time of used lamp; Since, symmetric waveform without spike in positive and negative -Output frequency range: 45kHz~100kHz The operating life time is defined as having ended when any of the following conditions occur; $25\pm1^{\circ}\mathrm{C}$ - -When the voltage required for initial discharge has reached 110 % of the initials value. - When the illuminence quantity of light has decreased to 50 % of the initials value. (NOTE) Rating are defined as the average brightness inside the viewing area specified in Fig.11. Fig.11 Measuring points (1-5) SPEC No. MODEL No. LC98613 LM LM9V385 PAGE 25 (NOTE 1) Power ON/OFF cycle time. All signals and power line shall be in accordance with above sequence in case of power ON/OFF. (NOTE 2) Before DISP rise up, the signals of YD, LP, XCK, DATA must be input, and the above condition of "a" must be satisfied. The signals which comply with the interface timing in Fig. 3, Fig. 4, and table 6, must be input. | | POWER ON | | | | | | |--------|-----------------|-------------|--|--|--|--| | Symbol | Allowable value | | | | | | | a | 0 ms MIN. | 1 s MAX. | | | | | | ь | | 100 ns MAX. | | | | | | С | 50 ms MIN. | | | | | | | d | = | 10 ms MAX. | | | | | | | POWER OFF | | | | | |--------|-----------------|----------|--|--|--| | Symbol | Allowable value | | | | | | e | 0 ms MIN. | 1 s MAX. | | | | | f | 0 ms MIN. | 1 s MAX. | | | | | g | 10 ms MIN. | | | | | 10. Applicable inspection standard The LCD module shall meet the following inspection standard: S-U-037 11. Touch Panel Specifications 11.1. Rating 111.1. Maximum voltage and current: 5V 24mA 11.1.2. Operating temperature: 0°C~40°C (Humidity from 20% to 95%, No dew condensation) 11.1.3. Storage temperature: -20°C~70°C (Humidity from 20% to 95%, No dew condensation) 11.2. Electrical Performance 11,2.1. Reistance between terminals: Direction "X"(Film side) :260~690 Ω (TYP.380 Ω) Direction "Y" (Glass side): $250 \sim 800 \Omega$ (TYP.320 Ω) 11.2.2 Linearity Direction "X": 1.5% or less Direction "Y": 1.5% or less 11.2.3. Insulation resistance: DC 25V and 10MQ or more 11.2.4. Chattering: 10msec or less 11.3. Mechanical Performance 11.3.1. Input: finger or special stylus pen 11.3.2. Activation Force: Input with finger: MAX.80gMIN.10g(TYP.25g) Input with stylus: MAX.80gMIN.10g(TYP.35g) 11.3.3. Surface hardness: Hardness of pencil 3H or more 11.4. Optical Performance 11.4.1. Optical clarity: 77%(MIN.) 79%(TYP.)