LCD Specification

LCD Group

LQ035Q3DG01 LCD Module

Product Specification October 2007

QVGA LCD Module featuring 450 nits brightness with 500:1 contrast. Full Specifications Listing

SHADD	SPEC No.	LCY-W-07X04
SHARP	FILE No.	
MOBILE LIQUID CRYSTAL DISPLAY GROUP	ISSUE	Oct.24.2007
SHARP CORPORATION	PAGE	Pages 28
	APPLICABLE	DIVISION
		CHINA DESIGN CENTER
SPECIFICATION		
	SHARP CORPORATION	MOBILE LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION PAGE APPLICABLE MOBILE LCE WUXI SHARI

DEVICE SPECIFICATION for

TFT LCD Module

 $(320 \times RGB \times 240 \text{ dots})$

Model No.

LQ035Q3DG01

These parts have corresponded with the RoHS directive.

□CUSTOMER'S APPROVAL	
DATE	PRESENT BY
	YAMAM
BY	

PRESENTED Comomo ()

YAMAMOTO.KUNIHIKO

GENERAL MANAGER MOBILE LCD CHINA DESIGN CENTER WUXI SHARP

To a state of the				DOC. First issue	Oct. 24. 2007
	RECORDS (OF REVISIO	<u>DN</u>	Model No.	LQ035Q3DG01
LIP. N	DEE DAGE	T		Spec. No.	LCY-W-07X04 CHECK
DATE	REF.PAGE PARAGRAPH DRAWING No.	REVISED NO.	SUMI	MARY	AND
Oct. 24.2007			First	Issue	APPROVAL K. Gamanoto
,					
1					
-					
		,			

NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs, such as:

- Personal computers
- · Office automation
- · Telecommunication equipment

- Test and measurement equipment
- Industrial control
- · Personal Digital Assistant

- Audio visual and multimedia equipment
- · Consumer electronics

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment(i.e. aircraft, trains, automobiles, etc.)
- Traffic signals
- · Gas leakage sensor breakers
- Alarm equipment
- Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- · Military and space applications
- · Nuclear power control equipment
- Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

1. Applicable Scope

This specification is applicable to TFT-LCD Module "LQ035Q3DG01".

2. General Description

This module is a color active matrix LCD module incorporating amorphous silicon TFT (<u>T</u>hin <u>F</u>ilm <u>T</u>ransistor). It is composed of a color TFT-LCD panel, driver IC, Input FPC, a back light unit.

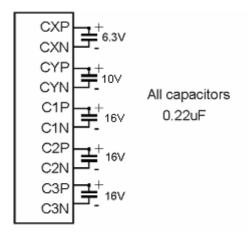
Graphics and texts can be displayed on a $320 \times RGB \times 240$ dots panel with about 262k colors by supplying 18bit data signals (6bit \times RGB), four timing signals, 3wires 9bit serial interface signals, logic (Typ. +3.3V), analog (Typ. +3.3V) supply voltages for TFT-LCD panel driving and supply voltage for back light.

3. Mechanical (Physical) Specifications

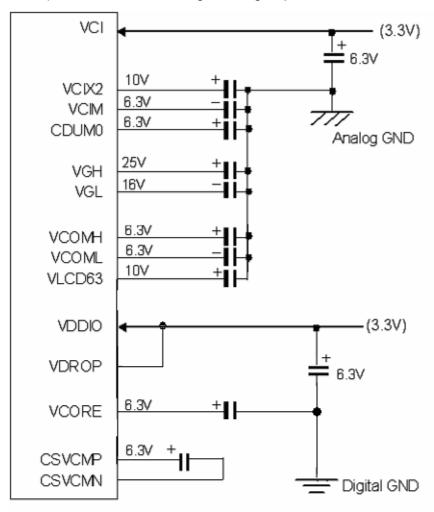
Item	Specifications	Unit
Screen size	8.8 (3.5" type) diagonal	cm
Active area	70.56 (H) × 52.92 (V)	mm
Divol former	320 (H) × 240 (V)	pixel
Pixel format	1 Pixel = R+G+B dots	-
Pixel pitch	0.2205 (H) × 0.2205 (V)	mm
Pixel configuration	R,G,B vertical stripes	-
Display mode	Normally white	-
Unit outline dimensions *	76.9 (W) × 63.9 (H) × 3.5 (D)	mm
Mass	Approx.33	g
Surface treatment	Anti glare	-

^{*}The above-mentioned table indicates module sizes without some projections and FPC. For detailed measurements and tolerances, please refer to 17. Outline Dimensions.

4. Input Terminal Names and Functions


Recommendation CN: [HIROSE] FH26G-67S-0.3SHBW(05)

.555	Tidation on	. [: ::: 🔾	3EJ F1120G-073-0.3311BW(03)	
Pin No.	Symbol	I/O	Description	Remarks
1	LED_C (-)	-	Power supply for LED (Low voltage)	
2	LED_A(+)	-	Power supply for LED (High voltage)	
3	DGND1	-	Digital Ground	
4	NC	-	Not connected	Note 1
5	NC	-	Not connected	Note 1
6	NC	-	Not connected	Note 1
7	NC	-	Not connected	Note 1
8	AGND1	-	Analog Ground	
9	V_{GH}	-	Connect to a Stabilizing capacitor	Note 3
10	C2P	-	Connect a Booster capacitor to C2N	Note 2
11	C2N	-	Connect a Booster capacitor to C2P	
12	C1P	-	Connect a Booster capacitor to C1N	
13	C1N	-	Connect a Booster capacitor to C1P	
14	V_{GL}	-	Connect a Stabilizing capacitor to GND	Note 3
15	C3N	-	Connect a Booster capacitor to C3P	Note 2
16	C3P	-	Connect a Booster capacitor to C3N	
17	AGND2	-	Analog Ground	
18	V_{CIX2}	-	Connect a Stabilizing capacitor to GND	Note 3
19	CYP	-	Connect a Booster capacitor to CYN	Note 2
20	CYN	-	Connect a Booster capacitor to CYP	
21	V _{CI}	-	Booster input voltage pin	Note 3
22	NC	-	Not connected	Note 1
23	AGND3	-	Analog Ground	
24	V_{CIM}	-	Connect a Stabilizing capacitor to GND	Note 3
25	CXP	-	Connect a Booster capacitor to CXN	Note 2
26	CXN	-	Connect a Booster capacitor to CXP	
27	TEST	0	TEST	Note 1
28	RESB	I	System reset	
29	DGND2	-	Digital Ground	
30	V_{DDIO}	-	Voltage input pin for logic I/O	
31	V _{CORE}	-	Connect a Stabilizing capacitor to GND	Note 3
32	DGND3	-	Digital Ground	
33	SHUT	I	Sleep mode control	
34	CSB	1	Chip select pin of serial interface	
35	SDI	1	Data input pin in serial mode	
36	SCK	I	Clock input pin in serial mode	
37	V_{DROP}		Connect a Stabilizing capacitor	
38	DEN	I	Display enable	
39	B5	I	BLUE data signal(MSB)	
40	B4	I	BLUE data signal	
41	В3	1	BLUE data signal	


Pin No.	Symbol	I/O	Description	Remarks
42	B2	I	BLUE data signal	
43	B1	I	BLUE data signal	
44	В0	I	BLUE data signal(LSB)	
45	G5	I	GREEN data signal(MSB)	
46	G4	I	GREEN data signal	
47	G3	I	GREEN data signal	
48	G2	I	GREEN data signal	
49	G1	I	GREEN data signal	
50	G0	I	GREEN data signal(LSB)	
51	R5	I	RED data signal(MSB)	
52	R4	I	RED data signal	
53	R3	I	RED data signal	
54	R2	I	RED data signal	
55	R1	I	RED data signal	
56	R0	I	RED data signal(LSB)	
57	VSYNC	I	Frame synchronization signal	
58	HSYNC	1	Line synchronization signal	
59	DOTCLK	I	Dot-clock signal	
60	CDUM0	-	Connect a Stabilizing capacitor to GND	Note 3
61	DGND4	-	Digital Ground	
62	V _{LCD63}	-	Connect a Stabilizing capacitor to GND	Note 3
63	V_{COMH}	-	Connect a Stabilizing capacitor to GND	
64	V_{COML}	-	Connect a Stabilizing capacitor to GND	
65	DGND5	-	Digital Ground	
66	CSVCMP	-	Connect a Stabilizing capacitor to CSVCMN	Note 3
67 CSVCMN -			Connect a Stabilizing capacitor to CSVCMP	

Note 1) this pin should be opened.

Note 2) Booster Capacitors

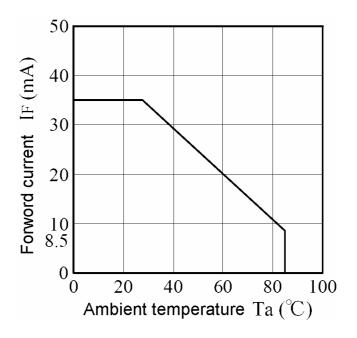
Note 3) Stabilization and charge sharing Capacitors

Remark:

All capacitors 2.2uF

(2.2uF is preferred for better display quality and power consumption)

5. Absolute Maximum Ratings


Item	Symbol	Conditions	Rated value	Unit	Remarks
Input voltage	VI	Ta = 25°C	-0.3 ~ V _{DDIO} +0.3	V	Note 1
Logic I/O power supply voltage	V_{DDIO}	Ta = 25°C	-0.3 ~ +4.0	V	
Analog power supply voltage	V _{CI}	Ta = 25°C	AGND-0.3 ~ +5.0	V	
Temperature for storage	Tstg	-	-30 ~ +80	°C	Note 2
Temperature for operation	Торр	-	-20 ~ +70	°C	Note 3
LED input electric current	I _{LED}	Ta _{LED} = 25°C	35	mA	
LED electricity consumption	P _{LED}	Ta _{LED} = 25°C	123	mW	

- Note 1) RESB, SHUT, CSB, SDI, SCK, DEN, B5~B0, G5~G0, R5~R0, VSYNC, HSYNC, DOTCLK
- Note 2) Humidity: 95%RH Max. (Ta≦40°C)

Maximum bulb temperature under 39°C (Ta>40°C) See to it that no dew will be condensed.

- Note 3) Panel surface temperature prescribes.
- Note 4) Power consumption of one LED (Ta LED = 25°C). (use 7 pieces LED)

 Ambient temperature and the maximum input are fulfilling the following operating conditions.

Ambient temperature of LED and the maximum input

6. Electrical Characteristics

6-1. TFT LCD Panel Driving

 $Ta = 25^{\circ}C$

It	em	Symbol	Min.	Тур.	Max.	Unit	Remarks
Logic I/O	DC voltage	V_{DDIO}	+3.0	+3.3	+3.6	V	
power supply	DC Current	I _{VDDIO}	-	0.20	0.35	mA	Note 1
Analog	DC voltage	V _{CI}	+3.0	+3.3	+3.6	V	
power supply	DC Current	I _{VCI}	-	8.0	12.0	mA	Note 1
Permis	sive input	V _{RFVDDIO}	-	-	100	mVp-p	Note 2
Ripple	voltage	V _{RFVCI}	-	-	100	mVp-p	Note 2
Logic	High	V _{IH}	0.8 V _{DDIO}	-	V_{DDIO}	V	Note 3
Input Voltage	Low	V _{IL}	0	-	0.2 V _{DDIO}	٧	Note 3
Logic inp	out Current	I _{IH} / I _{IL}	-1	-	1	μΑ	Note 3

Note 1)
$$V_{DDIO} = V_{CI} = +3.3V$$

Current situation for I_{VDDIO} : Black & White checker flag pattern

Current situation for I_{CI}: All black pattern

Note 2)
$$V_{DDIO} = V_{CI} = +3.3V$$

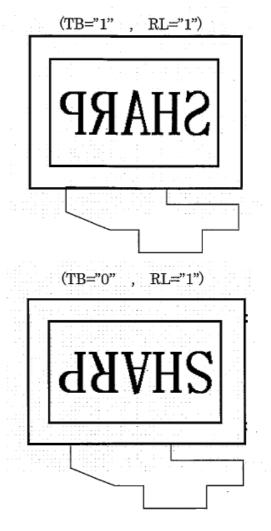
Note 3) RESB, SHUT, CSB, SDI, SCK, DEN, B5~B0, G5~G0, R5~R0, VSYNC, HSYNC, DOTCLK

6-2. Register Setting

This register setting is for DOTCLK=5MHz. If LCD module is moved other frequency, please conform display quality.

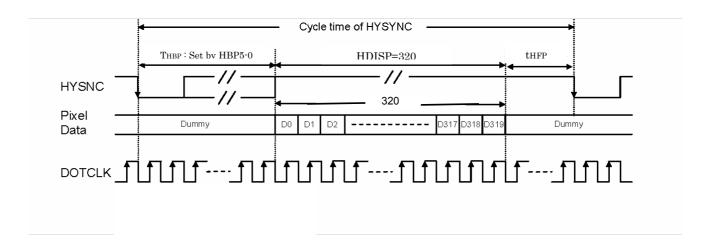
Reg. #	Register	Data (Gamma 2.2)	Remark			
R01 h	Driver output control	2xEF h	Note1			
R02 h	LCD drive AC control	0300 h				
R03 h	Power control (1)	787E h				
R0B h	Frame cycle control	DC00 h				
R0C h	Power control (2)	0005 h				
R0D h	Power control (3)	0002 h				
R0E h	Power control (4)	2900 h				
R0F h	Gate scan starting Position	0000 h				
R16 h	Horizontal Porch	9F86 h	Note2			
R17 h	Vertical Porch	0002 h	Note3			
R1E h	Power control (5)	0000 h				
R2E h	Gamma control(1)	B945 h				
R30 h	Gamma control (2)	0301 h				
R31 h	Gamma control (3)	0107 h				
R32 h	Gamma control (4)	0000 h				
R33 h	Gamma control (5)	0100 h				
R34 h	Gamma control (6)	0707 h				
R35 h	Gamma control (7)	0006 h				
R36 h	Gamma control (8)	0604 h				
R37 h	Gamma control (9)	0103 h				
R3A h	Gamma control (10)	0D0F h				
R3B h	Gamma control (11)	0D04 h				
R28 h	Power control (6)	0006 h				
R2C h	Power control (7)	C88C h				

Note 1)


Driver Output Control (R01h)(POR=2xEFh)

		DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	/	1	0	0	1	0	1	0	TB	RL	1	1	1	0	1	1	1	1
	РО	R	0	0	1	0	1	0	Х	Х	1	1	1	0	1	1	1	1

 $\ll \text{Vertical and Horizontal inversion function(TB}, \;\; \text{RL}) \gg$

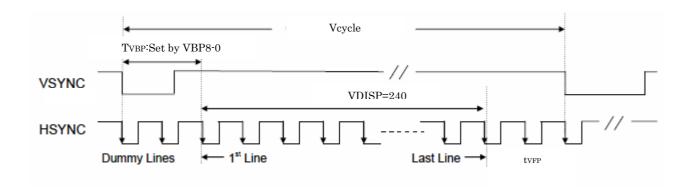

Note 2)

Horizontal Porch(R16h)(POR=9F86h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	1	0	0	1	1	1	1	1	1	0	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
PC)R	1	0	0	1	1	1	1	1	1	0	0	0	0	1	1	0

HBP5-0: Set the delay period from falling edge of HSYNC to first valid line.

, 0. 00 0	o: eet the delay period from family edge of the first to met vand inte											
HBP5	HBP4	HBP3	HBP2	HBP1	HBP0	No. of clock cycle of DOTCLK						
0	0	0	0	0	0	2						
0	0	0	0	0	1	3						
0	0	0	0	1	0	4						
0	0	0	0	1	1	5						
0	0	0	1	0	0	6						
		:	: Step = 1 :									
1	1	1	1	1	0	64						
1	1	1	1	1	1	65						


Note 3)

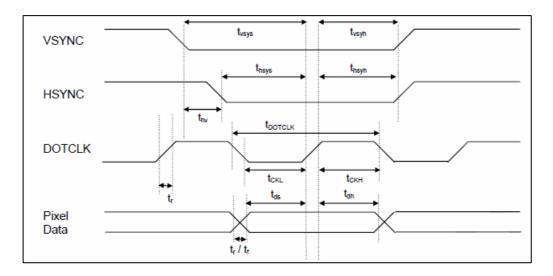
Vertical Porch(R17h)(POR=0002h)

R/V	V DC	IB15	`IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	VBP8	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
	POR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

VBP8-0 : Set the delay period from falling edge of VSYNC to first valid line.

VBP8	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	No. of clock cycle of HSYNC
0	0	0	0	0	0	0	0	0	0(CAD=0 の場合のみ)
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1	0	2
				:					:
				:					Step = 1
				:					:
1	0	0	1	1	1	1	1	0	319
1	0	0	1	1	1	1	1	1	320
1	0	1	*	*	*	*	*	*	Reserved
1	1	*	*	*	*	*	*	*	Reserved

6-3. Back light driving

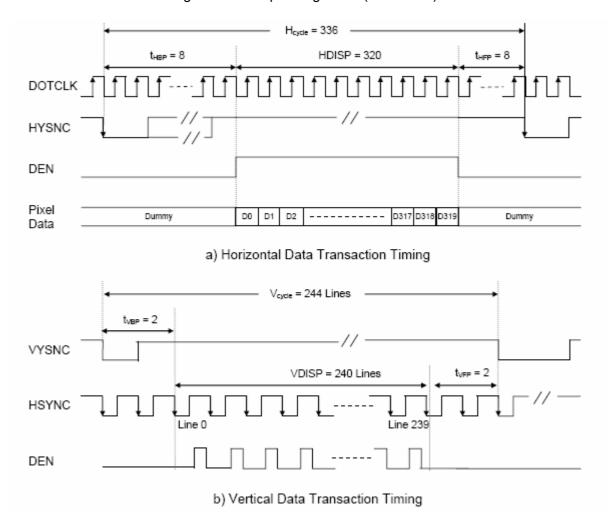

The back light system has 7 LEDs

Used LED: NSSW008C[Nichia Corporation]

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Rated Voltage	V_{BL}	-	22.4	24.5	V	
Rated Current	ΙL	-	20	-	mA	Ta _{LED} =25°C
Power consumption	W∟	-	448	-	mW	

7. Timing characteristics of input signals

7-1. Pixel Clock Timing

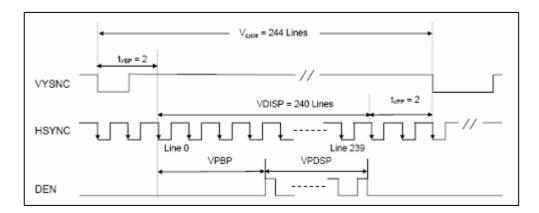


Ch	aracteristics	Symbol	Min	Тур	Max	Unit
DOTCLK	Frequency	f _{DOTCLK}	-	5.0	8.0	MHz
	Period	t _{DOTCLK}	125	200	-	nSec
	High Period	t _{CKH}	62	-	-	nSec
	Low Period	t _{CKL}	62	ı	-	nSec
Data	Setup Time	t _{ds}	30	ı	-	nSec
	Hold Time	t _{dh}	30	ı	-	nSec
Vsync	Setup Time	t _{vsys}	20	ı	-	nSec
	Hold Time	t _{vsyh}	20	ı	-	nSec
Hsync	Setup Time	t _{hsys}	20	1	-	nSec
	Hold Time	t _{hsyh}	20	ı	-	nSec
Phase differe	t _{hv}	0	-	320	t _{DOTCLK}	
Falling edge						
Reset Pulse	t _{RES}	10	-	-	nSec	
Rise / Fall Tir	t _r /t _f	20	-	100	nSec	

Note: External clock source must be provided to DOTCLK pin.

The module will not operate If absent of the clocking signal.

7-2. Data Transaction Timing in Normal Operating Mode (262k color)

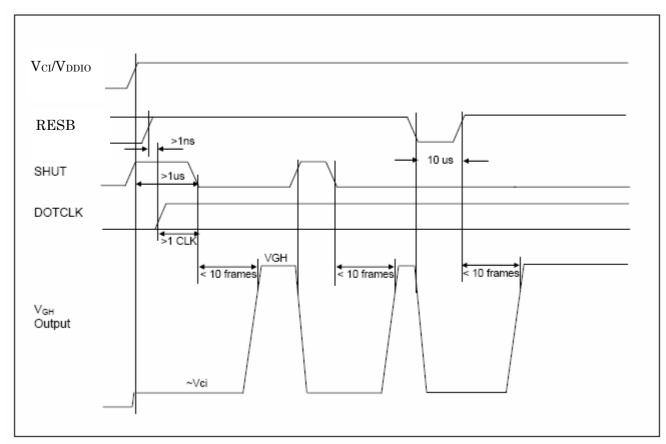


Charac	teristics	Symbol	Min	Тур	Max	Unit
DOTCLK	Frequency	f _{DOTCLK}	-	5.0	8.0	MHz
	Period	t _{DOTCLK}	125	200	-	ns
HSYNC	Frequency	f _h	-	14.9	18.18	kHz
	Cycle	H _{cycle}	-	336	-	clock
VSYNC	Frequency	f _v	50	60.1	65	Hz
	Cycle	V _{cycle}	-	244	-	line
Horizontal Back	Porch	t _{HBP}	-	8 -		clock
Horizontal Front	Porch	t _{HFP}	-	8	-	clock
Horizontal Data	Start Point	t _{HBP}	-	8	-	clock
Horizontal Blank	ing Period	t _{HBP} +t _{HFP}	-	16	-	clock
Horizontal Displa	ay Area	HDISP	-	320	-	clock
Vertical Back Po	orch	t _{VBP}	ı	2	ı	line
Vertical Front Po	t _{VFP}	ı	2	ı	line	
Vertical Data Sta	t _{VBP}	-	2	-	line	
Vertical Blanking	Period	t _{HBP} +t _{HFP}	-	4	-	line
Vertical Display	Vertical Display Area			240	-	line

The formula of setting for control signals: f_{DOTCLK} , t_{HBP} , t_{HFP} , t_{VBP} , t_{VFP}

$$\begin{split} &\text{fv=}60\!\pm\!5\text{Hz}\\ &\text{fv=}~f_{\text{DOTCLK}}\text{/(}~V_{\text{cycle}}\!\times\!H_{\text{cycle}}\text{)}\\ &V_{\text{cycle}}\!\!=\!\!240\!+t_{\text{VBP}}+t_{\text{VFP}}\\ &H_{\text{cycle}}\!\!=\!\!320\!+t_{\text{HBP}}\!+t_{\text{HFP}}~\leqq\!512 \end{split}$$

7-3. Synchronization Signals Timing in Power Save Mode (8 color)


Charac	teristics	Symbol	Min	Тур	Max	Unit
DOTCLK	Frequency	f _{DOTCLK}	-	5.0	8.0	MHz
	Period	t _{DOTCLK}	125	200	-	ns
HSYNC	Frequency	f _h	-	14.9	18.18	kHz
VSYNC	Frequency		50	60.1	65	Hz
	Cycle	V_{cycle}	ı	244	-	line
Vertical Partial E	Back Porch	VPBP	0	-	239	line
Vertical Active A	rea	VPDSP	1	ı	240	line
Vertical Back Po	t _{VBP}	ı	2	-	line	
Vertical Front Po	t _{VFP}	- 1	2	-	line	
Vertical Display	Area	VDISP	-	240	-	line

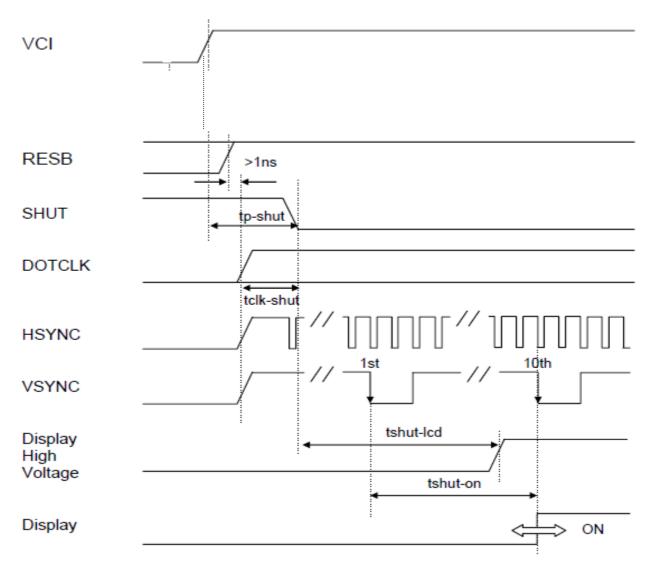
Note: When entered to 8-color display mode, the RGB graphie data through the interface pin RR5,GG5 and BB5 are valid within the Vertical Active Area. Data "0" will be displayed the Vertical Active Area.

The formula of setting for control signals: f_{DOTCLK} , t_{HBP} , t_{HFP} , t_{VBP} , t_{VFP}

$$\begin{split} &\text{fv=}60\pm5\text{Hz} \\ &\text{fv=} f_{\text{DOTCLK}} / (\text{ V}_{\text{cycle}} \times \text{ H}_{\text{cycle}}) \\ &\text{V}_{\text{cycle}} \text{=} 240 + t_{\text{VBP}} + t_{\text{VFP}} \\ &\text{H}_{\text{cycle}} \text{=} 320 + t_{\text{HBP}} + t_{\text{HFP}} \leq 512 \end{split}$$

7-4. V_{GH} Output against SHUT & RESB

VGH Output against SHUT & RESB

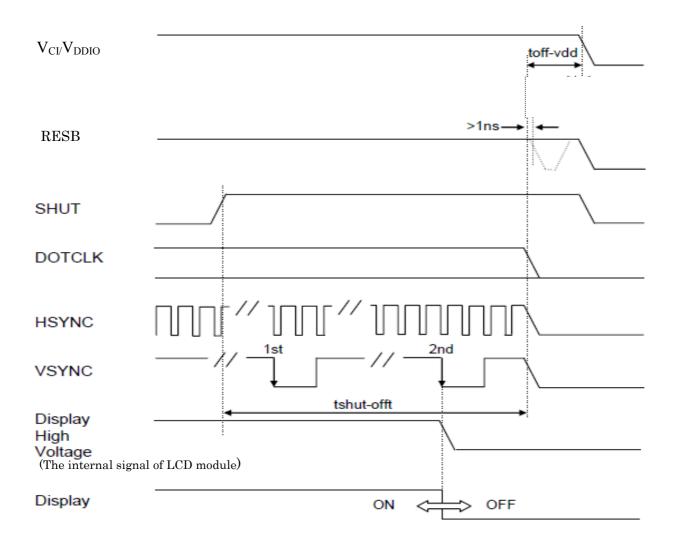

Notel:	The minimum	cycle time o	f SHUT is 10 +	+ 2 frames.
--------	-------------	--------------	----------------	-------------

Note2: DOTCLK must be provided for boosting of $V_{\rm GH}$. The above timing diagram assumed voltages and DOTCLK are continuous supplied after power on.

Note3: V_{GH} will be forced to V_{Ci} at the low stage of | RESB.

Note4: The minimum pulse width of RESET is 10us.

7-5. Power Up Sequence

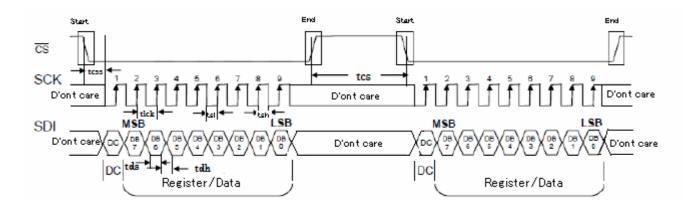


Characteristics	Symbol	Min	Тур	Max	Units
V _{DDEXT} / V _{DDIO} on to falling edge of SHUT	tp-shut	1	-	-	μsec
DOTCLK	tclk-shut	1	-	-	clk
Falling edge of SHUT to LCD power on	tshut-lcd	-	-	164	msec
Falling edge of SHUT to display start		-	-	10	frame
1 line: 336 clk	tshut-on				
1 frame: 244 line	tsiiut-Oii	-	164	-	msec
DOTCLK = 5.0MHz					

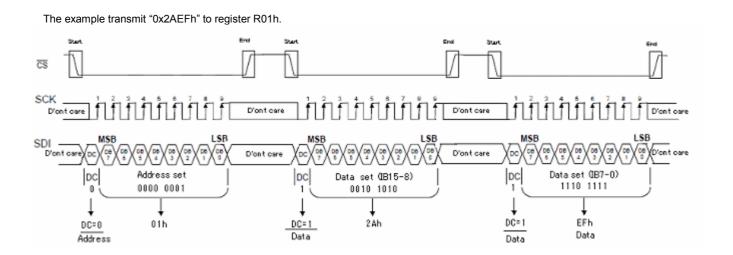
Note1: It is necessary to input DOTCLK before the falling edge of SHUT.

Note2: Display starts at 10th falling edge of VSYNC after the falling edge of SHUT.

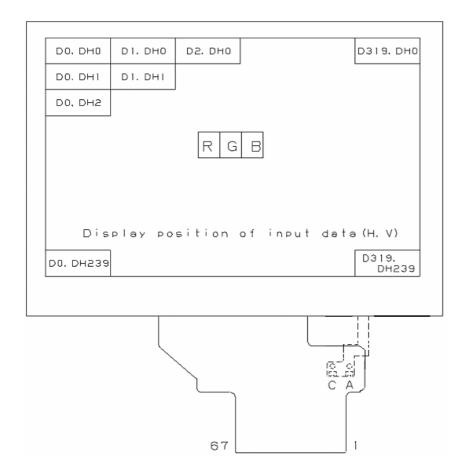
7-6. Power Down Sequence


Characteristics	Symbol	Min	Тур	Max	Units
Rising edge of SHUT to display off 1 line: 336 clk	4-14 - 66	2	-	-	frame
1 frame: 244 line DOTCLK = 5.0 MHz	tshut-off	32.8	-	-	msec
Input-signal-off to V _{DDEXT} / V _{DDIO} off	toff-vdd	1	-	-	μsec

Note1: DOTCLK must be maintained at least 2 frames after the rising edge of SHUT.


Note2: Display become off at the 2nd falling of VSYNC after the falling edge of SHUT.

Note3: IF RESET(RES) signal is necessary for power down, provide it after the 2-frames-cycle of the SHUT period.


7-7. SPI Interface Timing Diagram & Transaction Example (9 bit)

Chara	cteristics	記号	Min	Тур	Max	単 位
Serial Clock	Frequency	fclk	-	-	20	MHz
	Cycle Time	tclk	50	ı	-	ns
	Low Width	tsl	25	I	-	ns
	High Width	tsh	25	-	-	ns
Chip Select	Setup Time	tcss	0	ı	-	ns
	Hold time	tcsh	10	I	-	ns
	High Delay Time	tcsd	20	ı	-	ns
Data	Setup Time	tds	5	- 1	-	ns
	Hold Time	tdh	10	-	_	ns

7-8. Input Data Signals and Display Position on the screen

Please refer to Input Terminal Names and Functions

8. Input Signals, Basic Display Colors and Gray Scale of Each Color

8. In	put Signa	ais, Bas	IC DIS	spiay	Cold	ors ar	nd Gr	ay S												 1
	Colors &			1	1					Date	sign	al			1	1		1	1	
	Gray	Gray	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	В0	B1	B2	В3	B4	B5
	Scale	Scale	LSB					MSB	LSB					MSB	LSB					MSB
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
B	Green	_	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
asic	Cyan	_	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Basic Color	Red	_	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
or	Magenta	_	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(-)	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ìray	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	仓	\rightarrow				l					`	L					`	V		
ile o	Û	\(\)				l					`	L					,	V		
f Re	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
ă	Û	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	仓	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Sca	仓	\				l					`	l		ı		I	,	V	ı	
	Û	\				l					,	L					,	V		
of Green	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
ěn	Ţ.	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Gray Scale of Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
/ Sc	û Darker	V				l l						ι ν		1		1		ι ν	1	<u>'</u>
ale (Ŷ	\				l						l L						V		
of BI		GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
ue	Brighter	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
		GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Dide	0303	U	U	U	U	U	U	U). I U	_								

0: Low level voltage, 1: High level voltage

Each basic color can be displayed in 64 gray scales from 6 bit data signals.

According to the combination of 18 bit data signals, the 262k color display can be achieved on the screen.

9. Optical Characteristics

$Ta = 25^{\circ}C$	VDDIO	= +3.3V	$V_{CI} =$: +3 3V

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing angle range (With Wide View)	Horizontal	θ21	CR≧10	-	70	-	deg.	[Note1,4]
		θ22		-	70	-	deg.	
	Vertical	θ11		-	60	-	deg.	
		θ12		-	65	-	deg.	
Contrast ratio		CR	Optimum viewing angle	300	500	-		[Note2,4]
Response	Rise	Tr	θ=0°	-	8	20	ms	【Note3,4】
Time	Decay	Td		ı	20	40	ms	
Chromaticity of		х		0.26	0.31	0.36		F3
White		у		0.29	0.34	0.39		【Note4】
Luminance of white		XL1		350	450	-	cd/m²	I _{LED} =20mA

^{*} The optical characteristics measurements are operated under a stable luminescence (I_{LED} = 20mA) and a dark condition. (Refer to Fig.9-1)

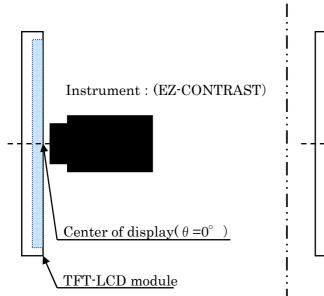


Fig 9-1 characteristics measurements of viewing angle/Response time

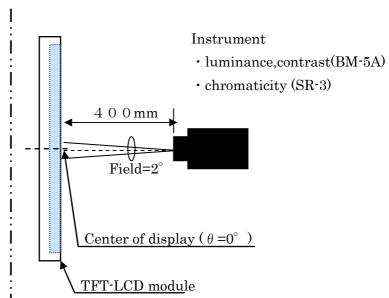
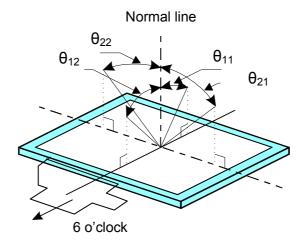



Fig 9-2 characteristics measurements of luminance, contrast and chromaticity

[Note 1] Definitions of viewing angle range


[Note 2] Definition of contrast ratio

The contrast ratio is defined as the following

 $Contrast\ ratio\ (CR) = \frac{Luminance\ (brightness)\ with\ all\ pixels\ white}{Luminance\ (brightness)\ with\ all\ pixels\ black}$

[Note 3] Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "Black" and "White"

[Note 4] This shall be measured at center of the screen.

10 Handling of modules

- 10-1. Inserting the FPC into its connector and pulling it out
 - 1) Be sure to turn off the power supply and the signals when inserting or disconnecting the cable.
- 2) Please insert for too much stress not to join FPC in the case of insertion of FPC.

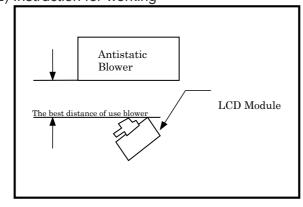
10-2. About handling of FPC

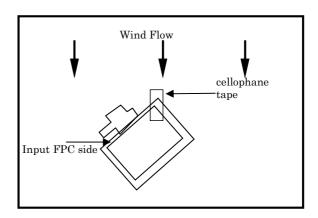
- 1) The bending radius of the FPC should be more than 1.4mm, and it should be bent evenly.
- 2) Do not dangle the LCD module by holding the FPC, or do not give any stress to it.

10-3. Mounting of the module

- 1) The module should be held on to the plain surface. Do not give any warping or twisting stress to the module.
- 2) Please consider that GND can ground a modular metal portion etc. so that static electricity is not charged to a module.

10-4. Cautions in assembly / Handling pre cautions


As the polarizer can be easily scratched, be most careful in handling it.


1) Work environments in assembly.

Since removing laminator may causes electrostatic charge that tends to attract dust, the following work environment would be desired.

- a) Floor: Conductive treatment having $1M\Omega$ resistance onto floor's tile
- b) The room free from dust coming from outdoor environment, and put an adhesive mat at entrances.
- c) Humidity from 50% to 70% and temperature from 15°C to 27°C are desirable.
- d) Worker should ware conductive shoes, conductive fatigue, conductive glove and earth wrist band.

2) Instruction for working

- a) Wind direction of an antistatic blower should slightly downward to properly blow the module.The distance between the blower and the module shouldbe the best distance of use blower. Also, pay attention to the direction of the module.
- b) To prevent polarizer from scratching, adhesive tape (cellophane tape) should be stuck at the part of laminator sheet, which is closed to blower. [See the above]
- c) Pull slowly adhesive tape to peel the laminator off, with spending more than 5 second.
- d) The module without laminator should be moved to the next process to prevent adhesion of dust.

- 3) How the remove dust on the polarizer
 - a) Blow out dust by the use of an N2 blower with antistatic measures taken. Use of an ionized air Gun is recommendable.
 - b) When the panel surface is soiled, wipe it with soft cloth.
- 4) In the case of the module's metal part (shield case) is stained, wipe it with a piece of dry, soft cloth. If rather difficult, give a breath on the metal part to clean better.
- 5) If water dropped, etc. remains stuck on the polarizer for a long time, it is apt to get discolored or cause stains. Wipe it immediately.
- 6) As a glass substrate is used for the TFT-LCD panel, if it is dropped on the floor or hit by something hard, it may be broken or chipped off.
- 7) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.

10-5. Others

- 1) Regarding storage of LCD modules, avoid storing them at direct sunlight-situation.
- 2) If stored at temperatures below the rated values, the inner liquid crystal may freeze, causing cell destruction. At temperatures exceeding the rated values for storage, the liquid crystal may become isotropic liquid, making it no longer possible to come back to its original state in some cases.
- 3) If the LCD is broken, do not drink liquid crystal in the mouth. If the liquid crystal adheres to a hand or foot or to clothes, immediately cleanse it with soap.
- 4) If a water drop or dust adheres to the polarizer, it is apt to cause deterioration. Wipe it immediately.
- 5) Be sure to observe other caution items for ordinary electronic parts and components.

11. Reliability test items

No.	Test item	Conditions			
1	High temperature storage test	Ta = 80°C 240h			
2	Low temperature storage test	Ta = -30°C 240h			
3	High temperature & high humidity operation test	Ta = 40°C; 95%RH 240h (No condensation)			
4	High temperature operation test (Panel Surface)	Ta =70°C 240h			
5	Low temperature operation test	Tp = -20°C 240h			
6	Vibration test (non- operating)	Frequency range: 10 to 55Hz Stroke: 1.5mm Sweep time: 1minutes Test period: 2 hours for each direction of X,Y,Z			
7	Shock test	Direction: ±X, ±Y, ±Z, Time: Third for each direction. Impact value: 980m/s², Action time 6ms			
8	Thermal shock test	Ta=-20°C to 70°C /10 cycles (30 min) (30min)			

[Note] Ta = Ambient temperature, Tp = Panel temperature

[Check items]

In the standard condition, there shall be no practical problems that may affect the display function.

12. Display Grade

The standard regarding the grade of color LCD displaying modules should be based on the delivery inspection standard.

13. Delivery Form

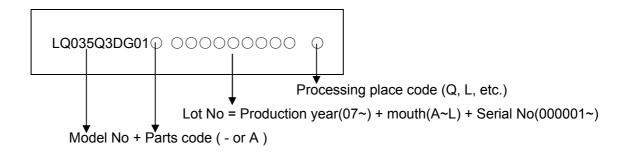
13-1. Carton storage conditions

1) Carton piling-up: Max 8 rows

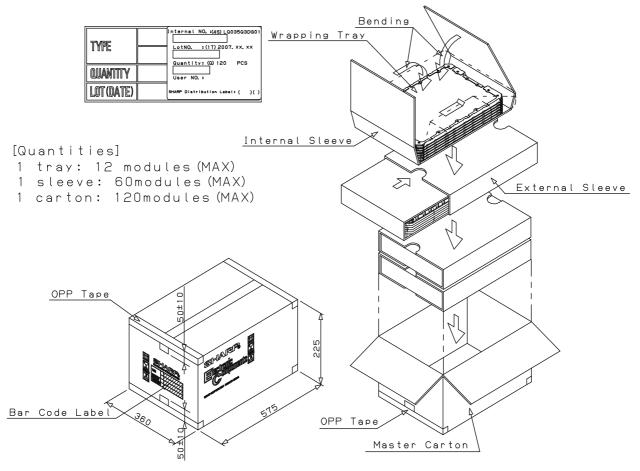
2) Environments

Temperature: 0~40°C

Humidity: 65% RH or less (at 40°C)

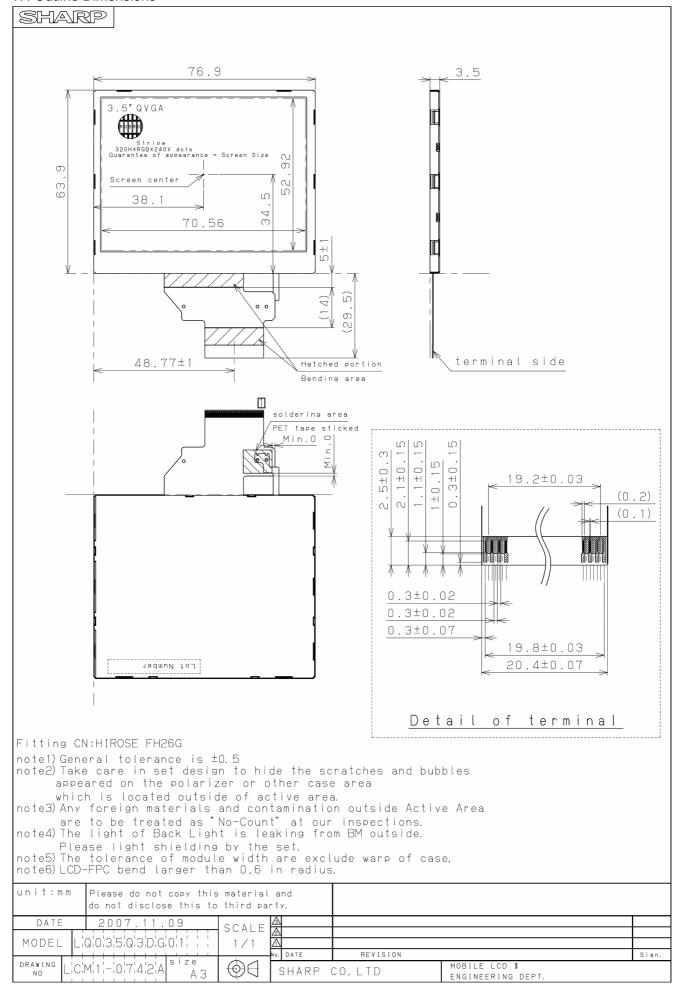

There should be no dew condensation even at a low temperature and high humidity.

3) Packing form: 15. LCD module packing carton


*Cartons are weak against damp, and they are apt to be smashed easily due to the compressive pressure applied when piled up. The above environmental conditions of temperature and humidity are set in consideration of reasonable pile-up for storage.

14. Lot No. marking

The lot No. will be printed on every module by ink-jet. The indication style is shown as below drawing.


15. LCD module packing carton

16. Others

- 1 Disassembling the module can cause permanent damage and you should be strictly avoided.
- 2 Please be careful that you don't keep the screen displayed fixed pattern image for a long time, since retention may occur.
- 3 If you pressed down a liquid crystal display screen with your finger and so on, the alignment disorder of liquid crystal will occur. And then It will become display fault.
 - Therefore, be careful not to touch the screen directly, and to consider not stressing to it.
- 4 If any problem arises regarding the items mentioned in this specification sheet or otherwise, it should be discussed and settled mutually in a good faith for remedy and/or improvement.

17. Outline Dimensions

LCD Specification

LCD Group

NORTH AMERICA

Sharp Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 www.sharpsma.com

TAIWAN

Sharp Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

Sharp Microelectronics of China

CHINA

(Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 Head Office: No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai

Email: smc@china.global.sharp.co.jp

200131 P.R. China

EUROPE

Sharp Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

Sharp Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

KOREA

Sharp Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819

JAPAN

Sharp Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

HONG KONG

Sharp-Roxy (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk Shenzhen Representative Office: Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. Suggested applications (if any) are for standard use; See Important Restrictions for

limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or responsible in any way, for any incidental or consequential economic or property damage.