	SHARP	SPEC No. LD-20302A
K. Foyota		FILE No.
PPROVED BY	MOBILE LIQUID CRYSTAL DISPLAY GROUP	ISSUE Apr.3.2008
H. Jaluachi	SHARP CORPORATION	PAGE Pages 28 APPLICABLE DIVISION
	SPECIFICATION	MOBILE LCD DIVISION III MOBILE LCD GROUP
	SPECIFICATION	
	DEVICE SPECIFICATION for TFT LCD Module (320 × RGB × 240 dots) Model No. LQ035Q3DW0	2
These parts h customer's appro DATE	ave corresponded with the	RoHS directive.
CUSTOMER'S APPRO		
CUSTOMER'S APPRO	VAL PRESENTI	ED
CUSTOMER'S APPRO	VAL PRESENTI	
CUSTOMER'S APPRO	VAL PRESENTH BY K. SHIONO Department	ED Shiwne General manager
CUSTOMER'S APPRO	VAL PRESENTH BY K. SHIONO Department Engineerin	ED Shi ung
CUSTOMER'S APPRO	VAL PRESENTI BY K. SHIONO Department Engineerin Mobile LCD Mobile Lice	ED Shirm General manager ng Department

RECORDS OF REVISION

MODEL No: LQ035Q3DW02

SPEC No :LD-20302A

	NO.	PAGE	SUMMARY	NOTE
2008. 04. 03		-	-	1st Issue

NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs, such as:

- Personal computers
 Office automation
 Telecommunication equipment
- Test and measurement equipment
 Industrial control
 Personal Digital Assistant
- Audio visual and multimedia equipment
 Consumer electronics

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- · Transportation control and safety equipment(i.e. aircraft, trains, automobiles, etc.)
- Traffic signals
 Gas leakage sensor breakers
- Alarm equipment
 Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- Military and space applications
 Nuclear power control equipment
- Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

1. Applicable Scope

This specification is applicable to TFT-LCD Module "LQ035Q3DW02".

2. General Description

This module is a color active matrix LCD module incorporating amorphous silicon TFT (<u>Thin Film Transistor</u>). It is composed of a color TFT-LCD panel, driver IC, Input FPC, a back light unit. Graphics and texts can be displayed on a 320 × RGB × 240 dots panel with about 262k colors by supplying 18bit data signals (6bit × RGB), four timing signals, 3wires 9 / 24bit serial interface signals, logic (Typ. +3.3V),analog (Typ. +3.3V) supply voltages for TFT-LCD panel driving and supply voltage for back light.

3. Mechanical (Physical) Specifications

Item	Specifications	Unit
Screen size	8.8(3.5" type) diagonal	cm
Active area	70.56 (H) × 52.92 (V)	mm
Divel formet	320 (H) × 240 (V)	pixel
Pixel format	1 Pixel = R+G+B dots	-
Pixel pitch	0.2205 (H) × 0.2205(V)	mm
Pixel configuration	R,G,B vertical stripes	-
Display mode	Normally black	-
Unit outline dimensions *	76.9(W) × 63.9 (H) × Max3.5(D)	mm
Mass	Approx.33	g
Surface treatment	Anti glare	-

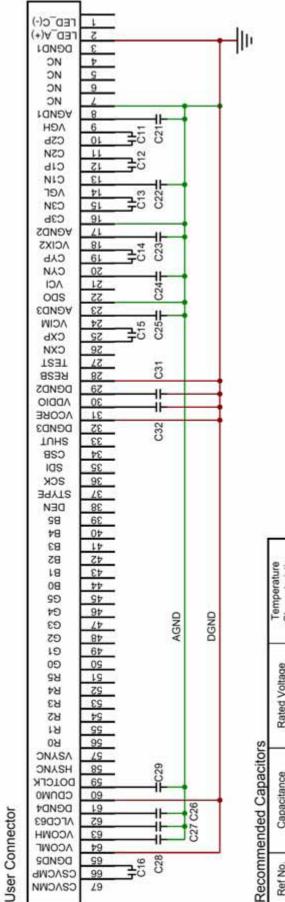
*The above-mentioned table indicates module sizes without some projections and FPC. For detailed measurements and tolerances, please refer to 17. Outline Dimensions.

4. Input Terminal Names and Functions

Recommendation CN : [HIROSE] FH26G-67S-0.3SHBW(05)

Pin No.	Symbol	I/O	Description	Remarks
1	LED_C (-)	-	Power supply for LED (Cathode: Low voltage)	
2	LED_A(+)	_	Power supply for LED (Anode: High voltage)	
3	DGND1	-	Digital Ground	
4	NC	-	Not connected	
5	NC	-	Not connected	
6	NC	_	Not connected	
7	NC	_	Not connected	
8	AGND1	-	Analog Ground	
9	V _{GH}	_	Connect to a Stabilizing capacitor	Note 3
10	C2P	-	Connect a Booster capacitor to C2N	Note 2
11	C2N	-	Connect a Booster capacitor to C2P	
12	C1P	-	Connect a Booster capacitor to C1N	
13	C1N	-	Connect a Booster capacitor to C1P	
14	V _{GL}	-	Connect a Stabilizing capacitor to GND	Note 3
15	C3N	-	Connect a Booster capacitor to C3P	Note 2
16	C3P	-	Connect a Booster capacitor to C3N	
17	AGND2	-	Analog Ground	
18	V _{CIX2}	-	Connect a Stabilizing capacitor to GND	Note 3
19	CYP	-	Connect a Booster capacitor to CYN	Note 2
20	CYN	-	Connect a Booster capacitor to CYP	
21	V _{CI}	-	Booster input voltage pin	Note 3
22	SDO	0	Data output pin in serial mode	
23	AGND3	-	Analog Ground	
24	V _{CIM}	-	Connect a Stabilizing capacitor to GND	Note 3
25	CXP	-	Connect a Booster capacitor to CXN	Note 2
26	CXN	-	Connect a Booster capacitor to CXP	
27	ID	0	ID	Note 1
28	RESB	Ι	System reset	
29	DGND2	-	Digital Ground	
30	V _{DDIO}	-	Voltage input pin for logic I/O	
31	V _{CORE}	-	Connect a Stabilizing capacitor to GND	Note 3
32	DGND3	-	Digital Ground	
33	SHUT	Ι	Sleep mode control	
34	CSB	Ι	Chip select pin of serial interface	
35	SDI	Ι	Data input pin of serial interface	
36	SCK	Ι	Clock input pin of serial interface	
37	STYPE	Ι	9bit / 24bit select pin of serial interface	'L'=24bit / 'H'=9bi
38	DEN	Ι	Display enable signal	
39	B5	Ι	BLUE data signal(MSB)	
40	B4	Ι	BLUE data signal	
41	B3	Ι	BLUE data signal	

Pin No.	Symbol	I/O	Description	Remarks
42	B2		BLUE data signal	
43	B1	I	BLUE data signal	
44	В0	Ι	BLUE data signal(LSB)	
45	G5	I	GREEN data signal(MSB)	
46	G4	I	GREEN data signal	
47	G3	I	GREEN data signal	
48	G2	Ι	GREEN data signal	
49	G1	Ι	GREEN data signal	
50	G0	I	GREEN data signal(LSB)	
51	R5	Ι	RED data signal(MSB)	
52	R4	Ι	RED data signal	
53	R3	I	RED data signal	
54	R2	Ι	RED data signal	
55	R1	Ι	RED data signal	
56	R0	I	RED data signal(LSB)	
57	VSYNC		Frame synchronization signal	
58	HSYNC		Line synchronization signal	
59	DOTCLK	I	Dot-clock signal	
60	CDUM0	-	Connect a Charge sharing capacitor to GND	Note 4
61	DGND4	-	Digital Ground	
62	V _{LCD63}	-	Connect a Stabilizing capacitor to GND	Note 3
63	V _{COMH}	-	Connect a Stabilizing capacitor to GND	
64	V _{COML}	-	Connect a Stabilizing capacitor to GND	
65	DGND5	-	Digital Ground	
66	CSVCMP	-	Connect a Charge sharing capacitor to CSVCMN	Note 4
67	CSVCMN	-	Connect a Charge sharing capacitor to CSVCMP	


Note 1) ID pin connects with VDDIO on an FPC.

Note 2) Booster Capacitors.

Note 3) Stabilization and charge sharing Capacitors.

Note 4) Charge sharing Capacitors

External recommended condenser

tors	
Capacitors	
mmended Ca	
Recomm	

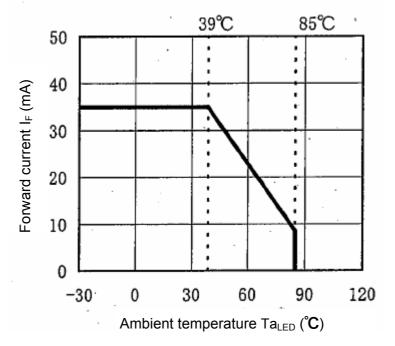
Ref No.	Capacitance	Rated Voltage	Temperature Characteristic
C11	0.22 µF	16 V	B (JIS) or X5R (EIA)
C12	0.22 µF	16 V	B (JIS) or X5R (EIA)
C13	0.22 µF	16 V	B (JIS) or X5R (EIA)
C14	0.22 µF	10 V	B (JIS) or X5R (EIA)
C15	0.22 µF	6.3 V	B (JIS) or X5R (EIA)
C16	2.2 µF	6.3 V	B (JIS) or X5R (EIA)
C21	2.2 µF	25 V	B (JIS) or X5R (EIA)
C22	2.2 µF	16 V	B (JIS) or X5R (EIA)
C23	2.2 µF	10 V	B (JIS) or X5R (EIA)
C24	2.2 µF	6.3 V	B (JIS) or X5R (EIA)
C25	2.2 µF	6.3 V	B (JIS) or X5R (EIA)
C26	2.2 µF	10 V	B (JIS) or X5R (EIA)
C27	2.2 µF	6.3 V	B (JIS) or X5R (EIA)
C28	2.2 µF	6.3 V	B (JIS) or X5R (EIA)
C29	2.2 µF	6.3 V	B (JIS) or X5R (EIA)
C31	2.2 µF	6.3 V	B (JIS) or X5R (EIA)
C32	22 uF	63V	B (JIS) or X5R (EIA)

Surround/shield by AGND to avoid noise coupling to other pins. Also aware the PCB design to avoid other components to be affected by noise on those dcdc pins. C1N/P, C2N/P, C3N/P, CXN/P, CYN/P are high voltage switching lines on FPC. [Note]

5. Absolute Maximum Ratings

Item	Symbol	Conditions	Rated value	Unit	Remarks
Input voltage	VI	Ta = 25°C	-0.3 ~ V _{DDIO} +0.3	V	Note 1
Logic I/O power supply voltage	V _{DDIO}	Ta = 25°C	-0.3 ~ +4.0	V	
Analog power supply voltage	V _{CI}	Ta = 25°C	AGND-0.3 ~ +5.0	V	
Temperature for storage	Tstg	-	-25 ~ +70	°C	Note 2
Temperature for operation	Торр	-	-10 ~ +70	°C	Note 3
LED input electric current	I _{LED}	Ta = 25°C	35	mA	
LED electricity consumption	P _{LED}	Ta = 25°C	123	mW	Note 4

Note 1) RESB, SHUT, CSB, SDI, SCK, STYPE, DEN, B5~B0, G5~G0, R5~R0, VSYNC, HSYNC, DOTCLK


Note 2) Humidity: 95%RH Max. (Ta \leq 40°C)

Maximum bulb temperature under 39°C (Ta>40°C) See to it that no dew will be condensed.

Note 3) Panel surface temperature prescribes.

Note 4) Power consumption of one LED ($Ta_{LED} = 25^{\circ}C$). (use 7 pieces LED)

Ambient temperature and the maximum input are fulfilling the following operating conditions.

Ambient temperature of LED and the maximum input

6. Electrical Characteristics

Ta = 25°C Symbol Min. Тур. Max. Unit Remarks Item DC voltage +3.0 +3.3 +3.6 V_{DDIO} V Logic I/O power supply DC Current 0.55 0.95 Note 1 -IVDDIO mΑ +3.0 +3.3 +3.6 DC voltage V_{CI} V Analog power supply DC Current I_{VCI} -9.5 12 Note 1 mΑ 100 Note 2 V_{RFVDDIO} -_ mVp-p Permissive input Ripple voltage 100 V_{RFVCI} _ Note 2 _ mVp-p High VIH $0.8 V_{DDIO}$ Note 3 -V_{DDIO} V Logic Input Voltage Low V_{IL} 0 $0.2 \: V_{\text{DDIO}}$ Note 3 -V 1 Logic input Current I_{IH} / I_{IL} -1 Note 3 μA

6-1. TFT LCD Panel Driving

Note 1) $V_{DDIO} = V_{CI} = +3.3V$

Current situation for I_{VDDIO} : Black & White checker flag pattern Current situation for I_{CI} : All white pattern

Note 2) $V_{DDIO} = V_{CI} = +3.3V$

Note 3) RESB, SHUT, CSB, SDI, SCK, STYPE, DEN, B5~B0, G5~G0, R5~R0, VSYNC, HSYNC, DOTCLK

6-2. Power up sequence

$V_{DDIO} / V_{CI} ON$ (hold RESB = "L")

$$\downarrow$$

Wait min. 80us

 \downarrow

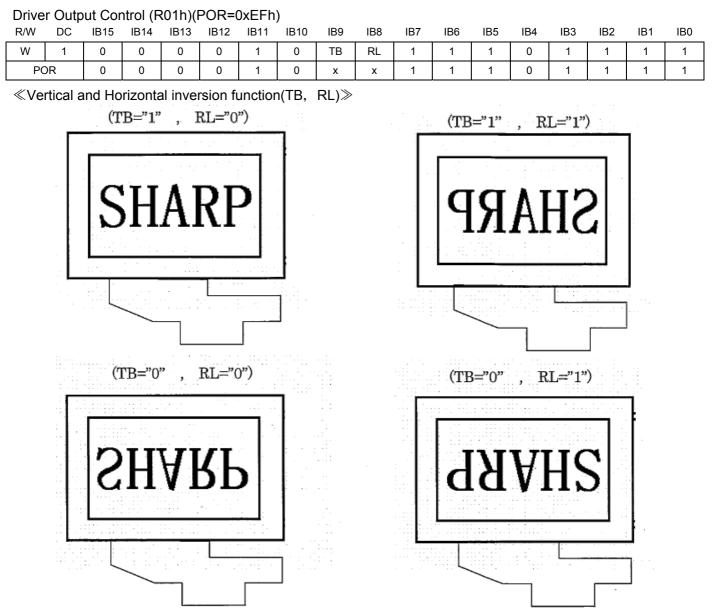
Hard Reset (RESB "L" \rightarrow "H")

↓ Display Data Start (VSYNC, HSYNC, DOTCLK)

\downarrow
Enter the Sleep Mode

Reg. #	Register	Data	Remark
R11h	Power control (8)	0001 h	Note 2

↓ Register setting


	Register sett	ng	
Reg. #	Register	Data (Gamma 2.2)	Remark
R01 h	Driver output control	0xEF h	Note 1
R02 h	LCD drive AC control	0300h	
R03 h	Power control (1)	0A0E h	
R0B h	Frame cycle control	D000 h	
R0C h	Power control (2)	0005 h	
R0D h	Power control (3)	000F h	
R0E h	Power control (4)	2E00 h	
R12 h	Input data format	006x h	Note 3
R16 h	Horizontal Porch	9F86 h	Note 4
R17 h	Vertical Porch	0002 h	Note 5
R1E h	Power control (5)	0000 h	
R28 h	Power control (6)	0006 h	
R2A h	Power control (7)	0187 h	
R30 h	Gamma control (1)	0006 h	
R31 h	Gamma control (2)	0207 h	
R32 h	Gamma control (3)	0000 h	
R33 h	Gamma control (4)	0107 h	
R34 h	Gamma control (5)	0707 h	
R35 h	Gamma control (6)	0005 h	
R36 h	Gamma control (7)	0107 h	
R37 h	Gamma control (8)	0707 h	
R3A h	Gamma control (9)	1F00 h	
R3B h	Gamma control (10)	0000 h	

↓ Exit the Sleep Mode

Reg. #	Register	Data	Remark
R11h	Power control (8)	0000 h	

↓ Wait 10 frames time ↓ Display On

Note 1)

Note 2)

mode Control (R11h)(POR=0x0x h)

R	R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
,	W	1	0	0	0	0	0	0	0	СМ	0	0	0	0	0	0	0	SHUT
	PC	R	0	0	0	0	0	0	0	х	0	0	0	0	0	0	0	x

CM : CM = "0", 262K-color mode. CM = "1", 8 color mode.

SHUT : SHUT ="0", normal mode. SHUT ="1", sleep mode.

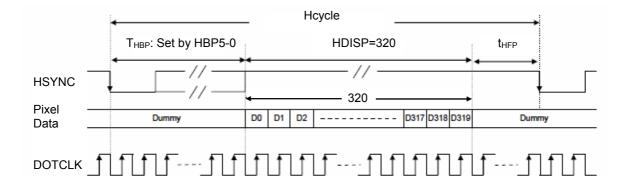
Note 3)

mode Control (R12h)(POR=006x h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	IF1	IF0	CM1	IFS1	IFS0	0	0
PC	DR	0	0	0	0	0	0	0	0	0	1	1	0	0	х	0	0

R12h	DEN mode	HV SYNC mode
0060h	Yes	No
0064h	No	Yes

In the case of a DEN mode, more than Vertical Porch = 2 and Horizontal Porch = 4.

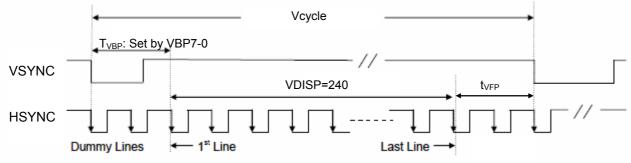

Note 4)

Horizontal Porch(R16h)(POR=9F86h)

R/\	W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	/	1	1	0	0	1	1	1	1	1	1	0	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
	PO	R	1	0	0	1	1	1	1	1	1	0	0	0	0	1	1	0

HBP5-0: Set the delay period from falling edge of HSYNC to first valid line.

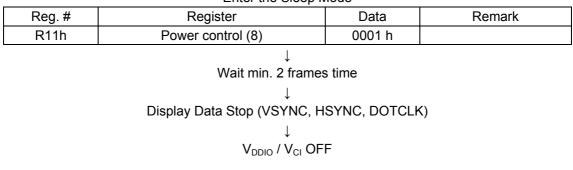
HBP5	HBP4	HBP3	HBP2	HBP1	HBP0	No. of clock cycle of DOTCLK
0	0	0	0	0	0	2
0	0	0	0	0	1	3
0	0	0	0	1	0	4
0	0	0	0	1	1	5
0	0	0	1	0	0	6
		:	:			:
		:	:			Step = 1
		:	:			:
1	1 1 1 1 1 0		0	64		
1	1	1	1	1	1	65



Note 5)

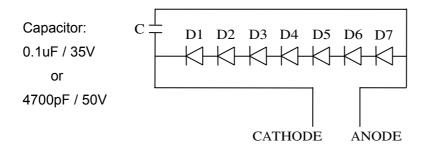
Vertical Porch(R17h)(POR=0002h) R/W IB15 IB14 IB13 IB12 IB1 IB0 DC IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 W 0 0 0 0 0 0 0 0 VBP7 VBP6 VBP5 VBP4 VBP3 VBP2 VBP1 VBP0 1 POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

VBP8-0 : Set the delay period from falling edge of VSYNC to first valid line.


 	VBP7 VBP6 VBP5 VB					.ge e.		
VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	No. of clock cycle of HSYNC
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
				:				:
				:				Step = 1
			:	:				:
1	1	1	0	1	1	1	1	239
1 1 1 1		1	0	0	0	0	240	
1	1	1	1	*	*	*	*	Reserved

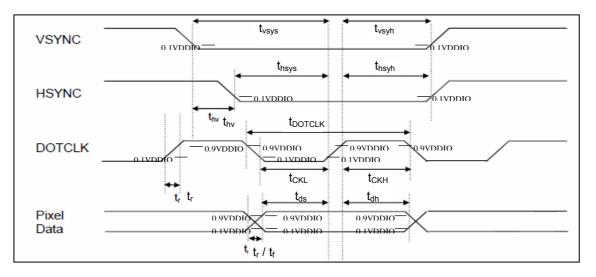
6-3. Power down sequence

↓ Enter the Sleep Mode

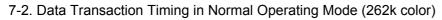

6-3. Back light driving

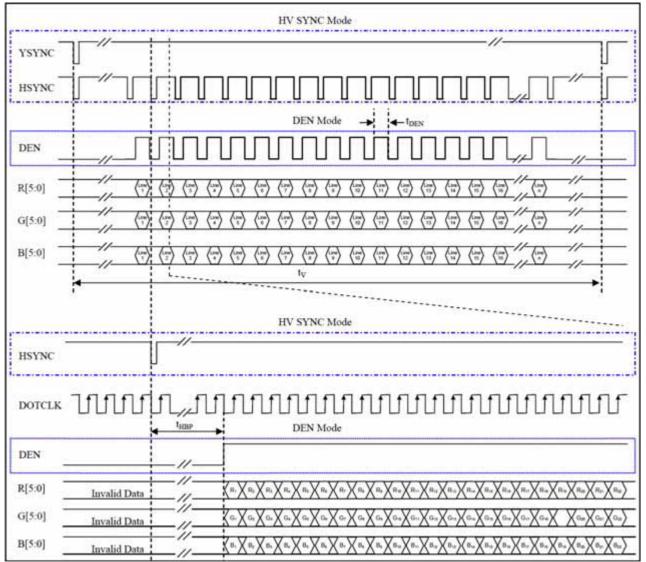
The back light system has 7 LEDs

Used LED : NSSW006T[[NICHIA]	[Luminance: A18 \sim A22,	Chromaticity:a62,a67,bj2,bj7]
----------------------	----------	-----------------------------	-------------------------------

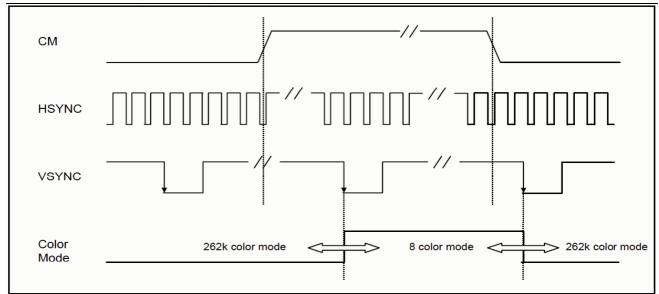

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Rated Voltage	V _{BL}	-	22.4	24.5	V	
Rated Current	١L	-	20	-	mA	Ta=25°C
Power consumption	WL	-	448	-	mW	

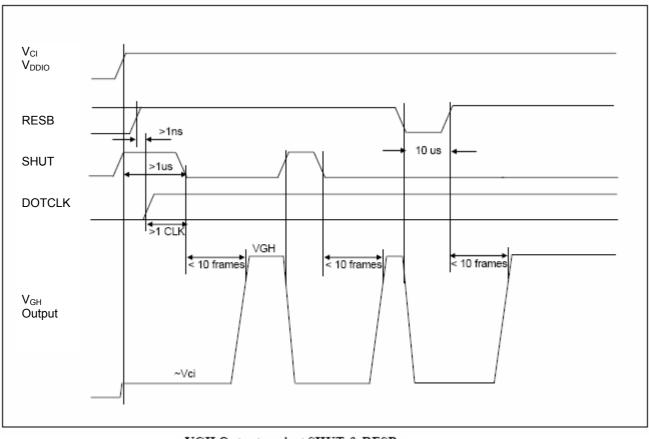
[LED-FPC circuit]




7. Timing characteristics of input signals

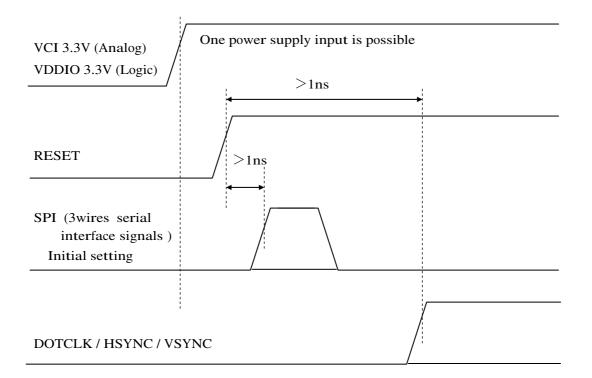
7-1. Pixel Clock Timing

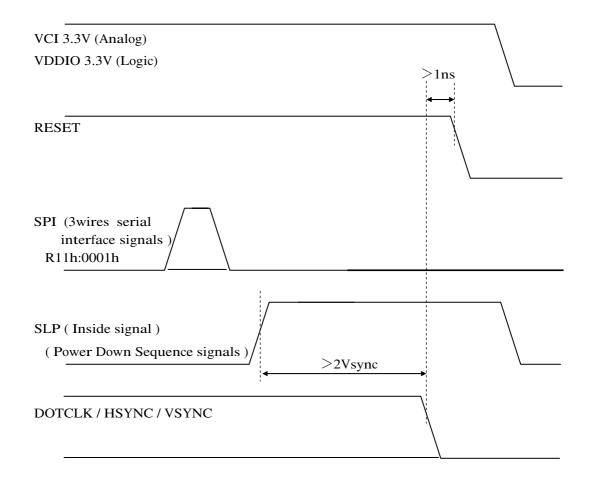

Ch	aracteristics	Symbol	Min	Тур	Max	Unit
DOTCLK	Frequency	f DOTCLK	-	5.0	8.0	MHz
	Period	t _{DOTCLK}	125	200	-	nSec
	High Period	t _{CKH}	16	-	-	nSec
	Low Period	t _{CKL}	16	-	-	nSec
Data	Setup Time	t _{ds}	10	-	-	nSec
	Hold Time	t _{dh}	10	-	-	nSec
Vsync	Setup Time	t _{vsys}	5	-	-	nSec
	Hold Time	t _{vsyh}	5	-	-	nSec
Hsync	Setup Time	t _{hsys}	5	-	-	nSec
	Hold Time	t _{hsyh}	5	-	-	nSec
Phase differe	nce of Sync signal	t _{hv}	0	-	320	t _{DOTCLK}
Falling edge						
Reset Pulse	Nidth	t _{RES}	2.5	_	_	nSec
Rise / Fall Tir	ne	t _r /t _f	5	-	25	nSec



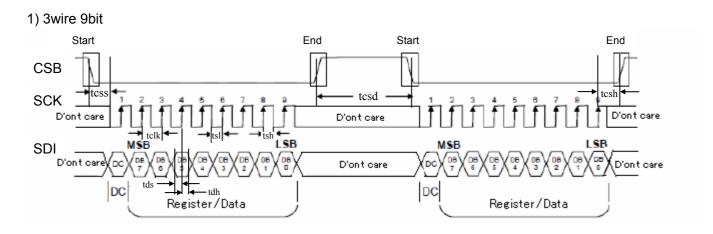
	Characteristics	Symbol	HV SYNC	DEN	Unit
			MODE	MODE	
D	OTCLK Frequency	1/t _{DOTCLK}	5	5	MHz
HSYNC	Period	t _H	336	336	t _{DOTCLK}
	Horizontal Display Area	t _{data}	320	320	t _{DOTCLK}
	Horizontal Back Porch	t _{HBP}	8	-	t _{DOTCLK}
	Horizontal Front Porch	t _{HFP}	8	-	t _{DOTCLK}
	Data Enable Period	t _{DEN}	-	320	t _{DOTCLK}
VSYNC	Period	t∨	244	244	t _H
	Vertical Display Area	t _{AL}	240	240	t _H
	Vertical Back Porch	t _{VBP}	2	-	t _H
	Vertical Front Porch	t _{VFP}	2	-	t _H

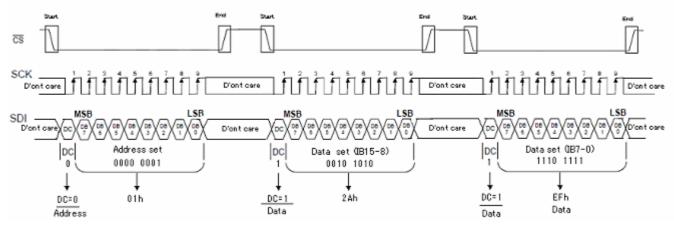
7-3. Synchronization Signals Timing in Power Save Mode (8 color)


7-4. V_{GH} Output against SHUT & RESB


VGH Output against SHUT & RESB

- Note1: The minimum cycle time of SHUT is 10 + 2 frames.
- Note2: DOTCLK must be provided for boosting of V_{GH}. The above timing diagram assumed voltages and DOTCLK are continuous supplied after power on.
- Note3: V_{GH} will be forced to V_{CI} at the low stage of RESB.
- Note4: The minimum pulse width of RESET is 10us.


7-5. Power Up Sequence


7-6. Power Down Sequence

7-7. SPI Interface Timing Diagram & Transaction Example

The example transmit "2AEFh" to register R01h.

2) 3wire 24bit

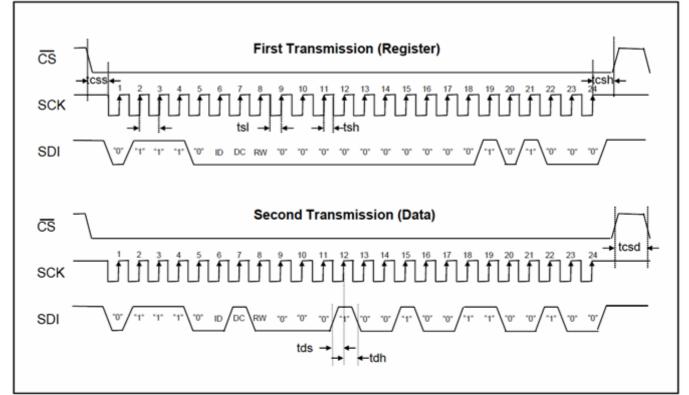
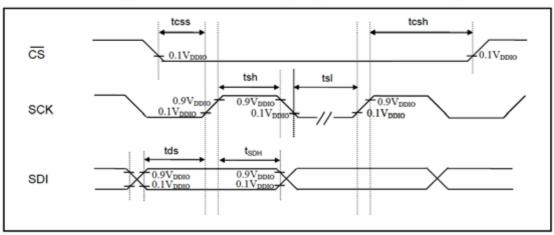
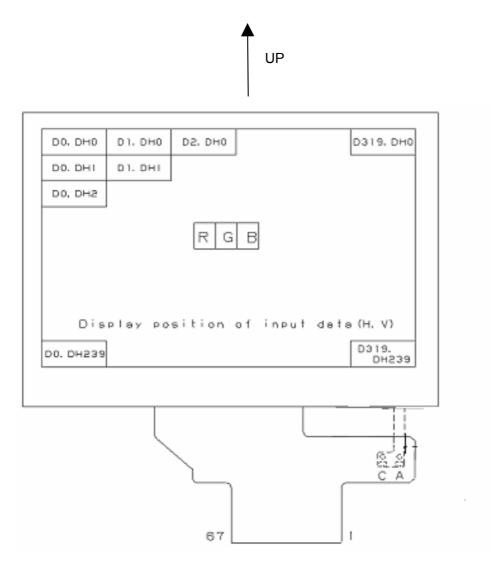




Figure 15-6 - SPI Interface Timing Diagram & Transaction Example

Charao	cteristics	記 号	Min	Тур	Max	単 位
Serial Clock	Frequency	fclk	-	-	20	MHz
	Cycle Time	tclk	50	-	-	ns
	Low Width	tsl	25	-	-	ns
	High Width	tsh	25	-	-	ns
Chip Select	Setup Time	tcss	0	-	-	ns
	Hold time	tcsh	10	-	-	ns
	High Delay Time	tcsd	20	-	-	ns
Data	Setup Time	tds	5	_	-	ns
	Hold Time	tdh	10	-	-	ns

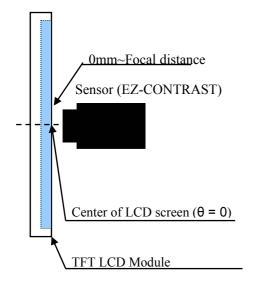
7-8. Input Data Signals and Display Position on the screen

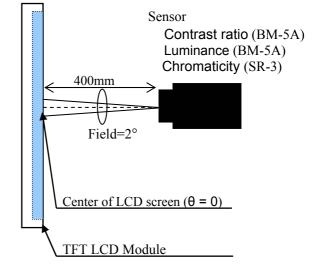
Please refer to 4. Input Terminal Names and Functions

Please refer to 17. Outline Dimensions.

LD-20302A -19

8. Input Signals, Basic Display Colors and Gray Scale of Each Color


0. 11	Colors &			piay	0010	<u>10 ui</u>		uy O			sign									
	Gray	Gray	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	B0	B1	B2	В3	B4	B5
	Scale	Scale	LSB			l		MSB	LSB					MSB	LSB		l		1	MSB
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
B	Green	_	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
asic	Cyan	_	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Basic Color	Red	I	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
or	Magenta	_	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	—	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sca	仓	\checkmark				r					`	L					`	r		
le of	Û	\checkmark				r					``	L					``	r		
^r Re	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
đ	Û	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	仓	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Scal	Û	\rightarrow				r					``	L					``	r		
	Û	\rightarrow				r					``	L					``	r		
of Green	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
ne	Û	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Gray Scale of Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Sca	仓	\rightarrow				r					```	ŀ						r		·
ile o	Û	\checkmark				r					、	L					、	r		
f Blu	Brighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
le	g	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Blue	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
L						1		I		(). 10	w le	vel v	oltad	e 1	Hia	h lev	el v	oltag	e


Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of 18 bit data signals, the 262k color display can be achieved on the screen.

9. Optical Characteristics

					Ta = 25	Ta = 25°C, V _{DDIO} = +3.3V, V _{CI} = +3.3V		
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing angle range (Wide View)	Horizontal	θ21	CR≧10	-	80	-	deg.	【Note1,4】
		θ22		-	80	-	deg.	
	Vertical	θ11		-	80	-	deg.	
		θ12		-	80	-	deg.	
Contrast ratio		CR	Optimum viewing angle	100	500	-		[Note2,4]
Response	Rise	Tr	-	-	15	30	ms	[Note3,4]
Time	Decay	Тd		-	15	30	ms	
Chromaticity of		х	θ=0°	0.26	0.31	0.36	-	[Note4]
White		у		0.29	0.34	0.39	-	
Luminance of white		XL1		350	450	-	cd/m²	I _{LED} =20mA 【Note4】

* The optical characteristics measurements are operated under a stable luminescence (I_{LED} = 20mA) and a dark condition. (Refer to Fig.9-1 and Fig.9-2)

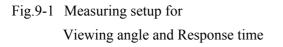
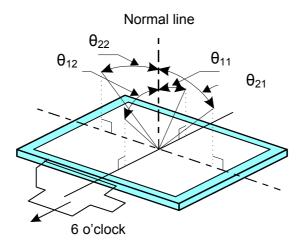
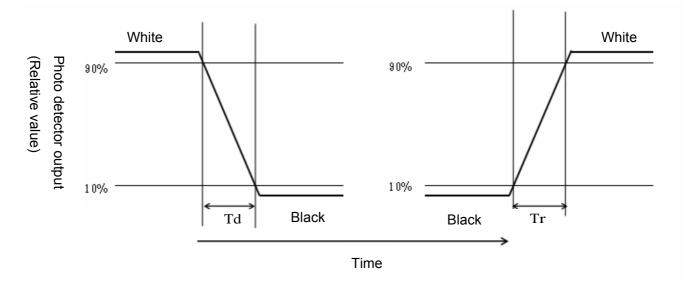



Fig.9-2 Measuring setup for Luminance, Chromaticity and Contrast ratio

[Note 1] Definitions of viewing angle range

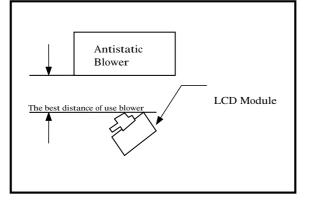


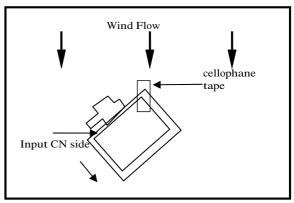
[Note 2] Definition of contrast ratio

The contrast ratio is defined as the following Contrast ratio (CR) = $\frac{\text{Luminance (brightness) with all pixels white}}{\text{Luminance (brightness) with all pixels black}}$

[Note 3] Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "Black" and "White"




[Note 4] This shall be measured at center of the screen.

- 10 Handling of modules
- 10-1. Inserting the FPC into its connector and pulling it out
- 1) Be sure to turn off the power supply and the signals when inserting or disconnecting the cable.
- 2) Please insert for too much stress not to join FPC in the case of insertion of FPC.
- 10-2. About handling of FPC
- 1) The bending radius of the FPC should be more than 1.4mm, and it should be bent evenly.
- 2) Do not dangle the LCD module by holding the FPC, or do not give any stress to it.
- 10-3. Mounting of the module
- 1) The module should be held on to the plain surface. Do not give any warping or twisting stress to the module.
- 2) Please consider that GND can ground a modular metal portion etc. so that static electricity is not charged to a module.
- 10-4. Cautions in assembly / Handling pre cautions

As the polarizer can be easily scratched, be most careful in handling it.

- Work environments in assembly. Since removing laminator may causes electrostatic charge that tends to attract dust, the following work environment would be desired.
 - a) Floor: Conductive treatment having 1MΩ resistance onto floor's tile
 - b) The room free from dust coming from outdoor environment, and put an adhesive mat at entrances.
 - c) Humidity from 50% to 70% and temperature from 15°C to 27°C are desirable.
 - d) Worker should ware conductive shoes, conductive fatigue, conductive glove and earth wrist band.
- 2) Instruction for working

a) Wind direction of an antistatic blower should slightly downward to properly blow the module. The distance between the blower and the module should

be the best distance of use blower. Also, pay attention to the direction of the module.

- b) To prevent polarizer from scratching, adhesive tape (cellophane tape) should be stuck at the part of laminator sheet, which is closed to blower. [See the above]
- c) Pull slowly adhesive tape to peel the laminator off, with spending more than 5 second.
- d) The module without laminator should be moved to the next process to prevent adhesion of dust.

- 3) How the remove dust on the polarizer
 - a) Blow out dust by the use of an N2 blower with antistatic measures taken. Use of an ionized air Gun is recommendable.
 - b) When the panel surface is soiled, wipe it with soft cloth.
- 4) In the case of the module's metal part (shield case) is stained, wipe it with a piece of dry, soft cloth. If rather difficult, give a breath on the metal part to clean better.
- 5) If water dropped, etc. remains stuck on the polarizer for a long time, it is apt to get discolored or cause stains. Wipe it immediately.
- 6) As a glass substrate is used for the TFT-LCD panel, if it is dropped on the floor or hit by something hard, it may be broken or chipped off.
- 7) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.

10-5. Others

- 1) Regarding storage of LCD modules, avoid storing them at direct sunlight-situation.
- 2) If stored at temperatures below the rated values, the inner liquid crystal may freeze, causing cell destruction. At temperatures exceeding the rated values for storage, the liquid crystal may become isotropic liquid, making it no longer possible to come back to its original state in some cases.
- 3) If the LCD is broken, do not drink liquid crystal in the mouth. If the liquid crystal adheres to a hand or foot or to clothes, immediately cleanse it with soap.
- 4) If a water drop or dust adheres to the polarizer, it is apt to cause deterioration. Wipe it immediately.
- 5) Be sure to observe other caution items for ordinary electronic parts and components.

11. Reliability test items

No.	Test item	Conditions						
1	High temperature storage test	Leaves the module at Ta=+70°C for 240h						
2	Low temperature storage test	Leaves the module at Ta=-25°C for 240h						
3	High temperature & high humidity operation test	Operates the module at Ta=+40°C; 95%RH for 240h (No condensation)						
4	High temperature operation test	Operates the module with +70°C at panel surface for 240h						
5	Low temperature operation test	Operates the module at Ta=10°C for 240h						
6	Vibration test (non- operating)	Frequency range: 10 to 55Hz Stroke: 1.5mm Sweep time: 1minutes Test period: 2 hours (40 minutes for each direction of X,Y,Z)						
7	Shock test	Impact value: 980m/s², Action time 6ms Direction: ±X, ±Y, ±Z, Time: Third for each direction.						
8	Thermal shock test	Ta=-25°C to 70°C /10 cycles (30 min) (30min)						

[Note] Ta = Ambient temperature, Tp = Panel temperature

[Check items]

In the standard condition, there shall be no practical problems that may affect the display function.

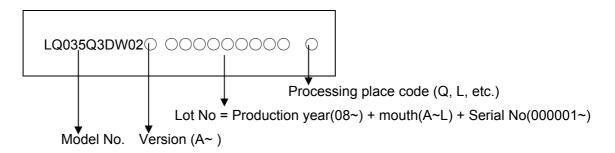
12. Display Grade

The standard regarding the grade of color LCD displaying modules should be based on the delivery inspection standard.

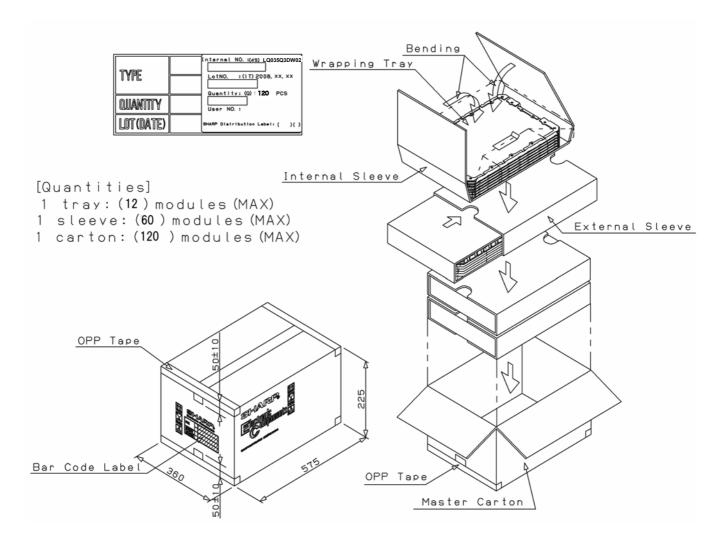
13. Delivery Form

- 1) Carton piling-up: Max 8 rows
- 2) Environments

Temperature: 0~40°C

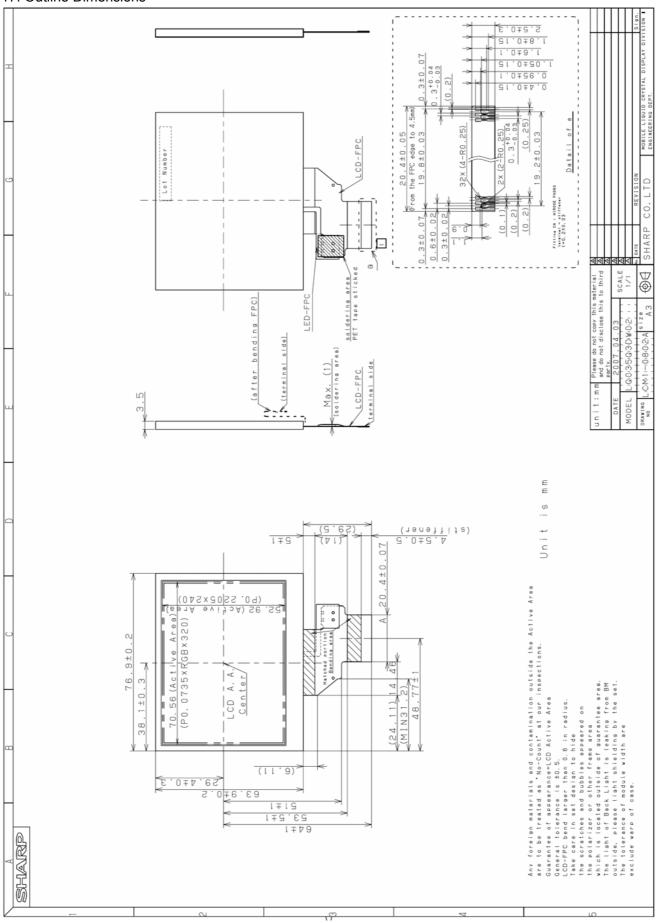

Humidity: 65% RH or less (at 40°C)

There should be no dew condensation even at a low temperature and high humidity.


3) Packing form: 15. LCD module packing carton

14. Lot No. marking

The lot No. will be indicated on individual inkjet. The location is as shown



15. LCD module packing carton

- 16. Others
- 1 Disassembling the module can cause permanent damage and you should be strictly avoided.
- 2 Please be careful that you don't keep the screen displayed fixed pattern image for a long time, since retention may occur.
- 3 If any problem arises regarding the items mentioned in this specification sheet or otherwise, it should be discussed and settled mutually in a good faith for remedy and/or improvement.

17. Outline Dimensions

