PREPARED BY : DATE	SH.	ARP	SPEC No. LCY-99160A FILE No. ISSUE: MAR. 31, 2000
APPROVED BY : DATE	TFT LIQUID CRY SHARP CORPORAT	STAL DISPLAY GROUP ION	PAGE: 20 pages APPLICABLE GROUP TFT LIQUID CRYSTAL DISPLAY GROUP
· ·			
DEVICE T MOD	SPECIFICATION FOR FT-LCE EL No. LQ0390	Dmodu Q2DS53	le
CUSTOMER'S	APPROVAL		
_UATA _BY		PRESENTED _BYS. YASUD DIVISION DEVELOPM TFT DIVIS TFT LIQU SHARP COL	A DEPUTY GENERAL MANAGER ENT ENGINEERING DEPT. II SION J ID CRYSTAL DISPLAY GROUP RPORATION

SHARP <u>RECORDS OF REVISION</u>

MODEL No: LQ039Q2DS53

SPEC No : LCY-99160

	NO.	PAGE	SUMMARY	NOTE
1999. 10. 27	LCY-99160	-	-	l st Issue
2000. 03. 31	LCY-99160A	7	Table 7-2 :	Added
			Lamp current :	
			MIN 1.5[mArms] , MAX 5.5[mArms]	
			•••••	

.

LCY-99160A -1

NOTICE

This publication is the proprietary of SHARP and is copyrighted with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs, such as: Personal computers / Office automation / Telecommunication equipment Test and measurement equipment / Industrial control / Audio visual and multimedia equipment Consumer electronics

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

Transportation control and safety equipment(i.e., aircraft, trains, automobiles, etc.)

Traffic signal / Gas leakage sensor breakers

Alarm equipment / Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

Military and space applications / Nuclear power control equipment Medical equipment for life support

Contact a SHARP representative in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative, if there are any questions about the contents of this publication.

(1) Application

This specification applies to color TFT-LCD module, LQ039Q2DS53.

(2) Overview

This module is a color reflective and active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor), named HR-TFT (High Reflective TFT). It is composed of a color TFT-LCD panel, driver ICs, an FPC, a front light, a touch panel and a back sealed casing. It isn't composed control circuit. Graphics and texts can be displayed on 320 x 3 x 240 dots panel with 262,144 colors by supplying.

Optimum view angle is 12 o'clock. An inverted display mode is selective in the vertical or the horizontal direction.

(3) Mechanical specifications

Table 3			
Parameter	Specifications	Units	Remarks
Screen size (Diagonal)	9.84 [3.9"] Diagonal	cm	
Active area	79.2 (H) x 58.32 (V)	mm	
Touch panel active area	81.2 (H) x 60.32 (V)	m	
Pixel format	320(H) x 240(V) (1 pixel = R+G+B dots)	pixels	
Pixel pitch	0.248 (H) x 0.243 (V)	mm	
Pixel configuration	R,G,B vertical stripe		
Unit outline dimension	105.4(W) x 73.86(H) x 5.55(D)	mm	[Note3-1]
Mass	78± 5	g	
Surface hardness	ЗН		
(Touch panel)			

[Note 3-1]

Excluding protrusion. For detailed measurements and tolerances, please refer to Fig. 1.

(4) Pixel configuration

•

(5) Input/Output terminal

5-1)TFT-LCD panel driving section

Table 5-1

Pin No.	Symbol	I/O	Description	Remarks
1	VDD	-	Power supply of gate driver(high level)	
2	VCC	-	Power supply of gate driver(logic high)	
3	MOD	I	Control signal of gate driver	[Note5-1]
4	MOD	I	Control signal of gate driver	[Note5-1]
5	U/L	I	Selection for vertical scanning direction	[Note5-2]
6	SPS	I	Start signal of gate driver	
7	CLS	T	Clock signal of gate driver	
8	VSS	-	Power supply of gate driver(logic low)	
9	VEE	-	Power supply of gate driver(low level)	
10	VEE	-	Power supply of gate driver(low level)	
11	VCOM	I	Common electrode driving signal	
12	VCOM	I	Common electrode driving signal	
13	SPL	I/O	Sampling start signal	
14	RO	I	RED data signal(LSB)	
15	Rl	I	RED data signal	
16	R2	I	RED data signal	
17	R3	I	RED data signal	
18	R4	I	RED data signal	
19	R5	I	RED data signal(MSB)	
20	G0	T	GREEN data signal(LSB)	
21	GI	I	GREEN data signal	
22	G2	I	GREEN data signal	
23	G3	I	GREEN data signal	
24	G4	I	GREEN data signal	
25	G5	I	GREEN data signal(MSB)	
26	B 0	I	BLUE data signal(LSB)	
27	Bl	I	BLUE data signal	
28	B2	<u> </u>	BLUE data signal	
29	B3	I	BLUE data signal	
30	B 4	I	BLUE data signal	
31	B5	I	BLUE data signal(MSB)	···
32	VSHD		Power supply of digital	
33	DGND	-	Ground(digital)	
34	PS	I	Power save signal	
35	LP	I	Data latch signal of source driver	
36	DCLK	I	Data sampling clock signal	
37	LBR	I	Selection for horizontal scanning direction	[Note5-3]

Pin No.	Symbol	I/O	Description	Remarks
38	SPR	1/O	Sampling start signal	
39	VSHA		Power supply(Analog)	
40	V0	I	Standard voltage to generate gray scale voltage	
41	VI	I	Standard voltage to generate gray scale voltage	
42	V2	I	Standard voltage to generate gray scale voltage	
43	V3	Ι	Standard voltage to generate gray scale voltage	
44	V4	I	Standard voltage to generate gray scale voltage	
45	V5	I	Standard voltage to generate gray scale voltage	
· 46	V6	· I	Standard voltage to generate gray scale voltage	
47	V7	I	Standard voltage to generate gray scale voltage	
48	V8	I	Standard voltage to generate gray scale voltage	
49	V9	I	Standard voltage to generate gray scale voltage	
50	AGND	-	Ground(Analog)	

[Note5-1]See section (7-1)-(A) "*Cautions when you turn on or off the power supply".

[Note5-2]Selection for vertical scanning direction

U/L	Scanning direction (Pixel configuration)
High	Normal scanning (X, 1)
-	↓ ↓
	(X, 240)
Low	Inverted scanning (X, 1)
}	Î
	(X, 240)

[Note5-3]Selection for horizontal scanning direction

LBR	SPL	SPR	Scanning direction (Pixel configuration)
High	Input	Output	Normal scanning (1,Y) to (320,Y)
Low	Output	Input	Inverted scanning (1,Y) to (320,Y)

5-2) Front light driving section

Table 5-2

Pin No.	Symbol	I/O	Description	Remark
LI	VLI	I	Power supply for fluorescent tube (High voltage)	
L2	VL2	Ι	Power supply for fluorescent tube (Low voltage)	[Note5-4]

[Note5-4]L2 terminal should be connected to either GND voltage terminal of DC/AC inverter.

5-3) Touch panel driving section

Table 5-3

Pin No.	Symbol	I/O	Description	Remark
T 1	YI	-	Lower electrode Y (12 o'clock side)	
T2	X2	-	Upper electrode X (right side)	
Т3	¥2	-	Lower electrode Y (6 o'clock side)	
T4	XI	-	Upper electrode X (left side)	

(6) Absolute Maximum Ratings

Table 6

Parameter	Symbol	Condition	Ratings	Unit	Remark
Power Supply(Source/Analog)	VSHA	Ta=25°C	-0.3 ~ +7.0	v	
Power Supply(Source/Digital)	VSHD	Ta=25°C	-0.3 ~ +7.0	v	
Power Supply (Gate)	VDD	Ta=25°C	-0.3 ~ +35.0	v	
Power Supply (Gate)	VEE-VSS	Ta=25°C	-0.3 ~ +35.0	v	
Power Supply (Gate)	VCC-VSS	Ta=25°C	-0.3 ~ +7.0	v	
Power Supply (Gate)	VDD-VEE	Ta=25°C	-0.3 ~ +35.0	v	
-	(VSS)				
Input Voltage (Analog)	VIA	Ta=25°C	-0.3 ~ VSHA+0.3	V	[Terminal 1]
Input Voltage (Digital)	VID	Ta=25°C	-0.3 ~ VSHD+0.3	v	[Terminal 2]
Input Voltage (Touch Panel)	VIT	Ta=25°C	0~+7.0	v	[Note6-1]
Input Current (Touch Panel)	пт	Ta=25°C	28	mA	[Note6-2]
Operating Temperature	Торр	-	0~50	°C	[Note6-3]
(Panel Surface)					
Storage Temperature	Tstg	-	-25 ~ 70	°C	[Note6-4]

[Terminal 1] V0,V1,V2,V3,V4,V5,V6,V7,V8,V9

[Terminal 2] MOD,U/L,SPS,CLS,SPL,R0~R5,G0~G5,B0~B5,LP,DCLK,LBR,SPR,PS

[Note6-1]Terminal of touch panel (X1, X2, Y1, Y2,) are applied.

[Note6-2]Humidity: 95%RH Max.(at Ta \leq 40°C). Maximum wet-bulb temperature is less than 39°C (at Ta>40°C). Condensation of dew must be avoided.

LCY-99160A -6

GND=0V

(7)Electrical characteristics

7-1) Recommended operating conditions

A) TFT-LCD panel driving section

Table 7-1

Par	ameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
Supply voltage for so	VSHA	+4.5	+5.0	+5.5	v		
Supply voltage for so (Digital)	ource driver	VSHD	+3.0	+3.3	+3.6	v	
Standard input volta	ze	V0~V9	0	•	VSHA	v	[Note 7-1]
	High voltage	VDD	+14.5	+15.0	+15.5	v	
Sunnly voltage	Logic high voltage	VCC	VSS+VSHD	VSS+VSHD	VSS+VSHD +0.1	v	[Note 7-2]
for gate driver	Logic low voltage	VSS	-14.3	-15.0	-15.7	v	
	Low voltage (AC)	VEEAC	-	VCOMAC	-	Vр-р	[Note 7-3]
	Low voltage (DC)	VEEDC	-9.5	-9.0	-8.5	v	[Note 7-3]
Input voltage for sou	rce driver (Low)	VILS	GND	-	0.3VSHD	v	[Note 7-4]
Input voltage for sour	ce driver (High)	VIHS	0.8VSHD	-	VSHD	v	[Note 7-4]
Input current for sou	rce driver (Low)	IILS	-	-	40	μA	[Note 7-4]
		Insi	-	-	40	μΛ	[Note 7-5]
Input current for sour	ce driver (High)	IIHS2	-	-	800	μA	[Note 7-6]
Input voltage for gate	VILG	GND	-	0.2VSHD	v	[Note 7-7]	
Input voltage for gate	VIHG	0.8VSHD	-	VSHD	v	[Note 7-7]	
Input current for gate driver (Low)		ĬILG	_	-	2	μА	[Note 7-7]
Input current for gate driver (High)		IIHG	-	-	2	μA	[Note 7-7]
Common electrode	AC component	VCOMAC	-	±2.5	±2.6	Vp-p	[Note 7-8]
driving signal	DC component	VCOMDC	+0.4	+1.4	+2.4	v	[Note 7-8]

*Cautions when you turn on or off the power supply

. .

(a) Turn on or off the power supply with simultaneously or the following sequence.

Turn on -- VSHD and VSHA first, then VCC, then VSS, then VEE , then VDD.

Turn off --- VDD first, then VEE, then VSS, then VCC, then VSHD and VSHA

and it is held until more than double vertical periods after VCC is turned on completely. After then, give it HIGH level voltage until power off.

[Note 7-1] These are standard input voltages for gray scale. When VCOM is alternated polarity, these

voltage should be alternated polarity. V0(black) is different polarity alternating signal of

VCOM. V9(white) is the same polarity alternating signal of VCOM. Center voltage of each

standard input voltage shift positive way for LCD characteristics (namely V0 shifts positive first,

then V1, then V2, then V3, then V4, then V5, then V6, then V7, then V8, and then V9).

This sift amount is adjusted so as to no flicker

of each standard input voltage after DC bias voltage of VCOM and V0 is adjusted.

[Note 7-2] It must be kept that $3.0V \le (VCC-VSS) \le 3.6V$.

(1) must be held high voltage until turning off the power supply. (Connect Pin No.3 and No.4 terminals to the same signal.)

[Note 7-3] The same phase and amplitude with VCOM. VEEDC is center of VEE.

[Note 7-4]DCLK,SPL,SPR,LBR,LP,PS,R0~R5,G0~G5 and B0~B5 terminals are applied.

[Note 7-5]DCLK,SPL,SPR,LBR,LP,R0~R5,G0~G5 and B0~B5 terminals are applied.

[Note 7-6]PS terminal is applied.

[Note 7-7]MOD,CLS,SPS and U/L terminals are applied.

[Note 7-8]VCOMAC should be alternated on VCOMDC every 1 horizontal period and 1 vertical period. VCOMDC bias is adjusted so as to minimize flicker or maximum contrast every each module .

B) Front light driving section

Table	7-2
Table	1-2

Table 7-2					<u>.</u>	Ta=25°C
Parameter	Symbol	MIN	TYP	MAX	Units	Remarks terminal
Lamp voltage	VL	270	300	330	Vrms	(at 5.0mArms)
Lamp current	IL	1.5	5.0	5.5	mArms	
Frequency	fL	30	-	70	kHz	
Kick-off voltage	Vs	•	-	550	Vrms	(Ta=25°C)
•		-	-	850	Vrms	(Ta=0°C)
Power consumption	WL	-	1.5	-	w	[Note 7-9]

[Note 7-9]Calculated reference value(IL x VL)

7-2) Timing Characteristics of input signals

Table 7-3 AC Characteristics (1) (VSHA=+5V, VSHD=+3.3V, $Ta=25^{\circ}C$)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Remark
Clock frequency of source driver		fCK	4.5	-	6.8	MHz	
Rising time of clock		Ter	-	-	20	ns	
	Falling time of clock	Tcf	-	-	20	ns	DCLK
	Pulse width (High level)	Tcwh	40	-	-	ns	
Source	Pulse width (Low level)	Tcwl	40	-	-	ns	
driver	Frequency of start pulse	fsp	12.5	-	20	kHz	
	Setup time of start pulse	Tsusp	15	-	-	ns	SPL,SPR
	Hold time of start pulse	Thsp	10	-	-	ns	
	Pulse width of start pulse	Twsp	-	-	1.5/fCK	ns	[Note 7-10]
Set up time of data		Tsud	15	-		ns	R0~R5,G0~G5,
Hold time	Hold time of data		10	-	-	ns	B0~B5
	Clock frequency	fcls	12.5	-	20	kHz	
	Pulse width of clock	Twh	5	-	(1/fclk)-45	μs	CLS
	Rising time of clock	Trcl	-	-	100	ns	CL3
A .	Falling time of clock	Tfcl		-	100	ns	
Gate	Frequency of start pulse	fsps	50		78	Hz	
anver	Setup time of start pulse	Tsu	100	-	-	ns	
	Hold time of start pulse	Th	300	•	-	ns	SPS
	Rising time of start pulse	Trsp	-	-	100	ns	
	Falling time of start pulse	Tfsp	-	-	100	ns	

[Note 7-10] There must be only one up-edge of DCLK (includes Tsusp and Thsp time) in the period of SPL(or SPR)="Hi".

LCY-99160A -8

SHARP

.

Table /-4 AC Characteristics (2)									
	Parameter	Symbol	Min.	Typ. Max.		Unit	Remark		
LP	Setup time (CK)	Tsulpck	20	-	-	ns			
	Hold time (CK)	Thlpck	20	-	1	ns			
Source	LP, High level width	Twlp	20	-	-	ns			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
SPL,S	SPL,SPR input								

AC Characteristics (2) ~ *

7-3) Power consumption

Measurement condition : SPS=60Hz,CLS=15.73kHz,SPL(SPR)=15.73kHz,DCLK=6.3MHz

The term of PS="Lo" in one horizontal period --- 44µsec(280DCLK) T2=25°C

			0 11			MAN	TTuit	Domoska	
Para	meter	Symbol	Conditions	MIN	IYP	MAA		Remarks	
Source	Analog	ISHA	VSHA=+5.0V	-	15	24	mA	[Note 7-11]	
current	Digital	ISHD	VSHD=+3.3V	-	3.0	5.0	mA	[Note 7-11]	
Gate	High	IDD	VDD=+15.0V	-	0.15	0.45	mA	[Note 7-12]	
current	Low	IEE	VEE=-9.0±2.5V	-	-0.1	-0.3	mA	[Note 7-12	
	Logic High	ICC	VCC=-11.7V	-	0.05	0.15	mA	[Note 7-12	
	Logic Low	ISS	VSS=-15.0V	-	-0.2	-0.6	mA	[Note 7-12	

[Note 7-11] Vertical stripe pattern alternating 21 gray scale (GS21) with 42 gray scale (GS42) every 1 dot.

[Note 7-12]64-Gray-bar vertical pattern (GS0 ~ GS63 for horizontal way)

8. Input Signals, Basic Display Color and Gray Scale of Each Color

	Table 8																			
	Colors &						Dat	a sigr	al											
	Gray scale	Gray Scale	R0	RI	R2	R3	<u>R4</u>	R5	G0	Gl	G2	G3	<u>G4</u>	G5	BO	Bl	B 2	B 3	B4	B5
	Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue		0	0	0	0	0	0	0	0	0	0	0	0	1	<u>l</u>	1	1	1	1
	Green	-	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Cyan	-	0	0	0	0	0	0	1	1	1	1	1	1	_1	1	1	1	1	1
colo	Red	-	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
• •	Magenta	-	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	-	1	1	1	1	1	1	1	1	1	l	1	1	0	0	0	0	0	0
	White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0_	0	0	0	0
Gra	Darker	GS2	0	_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V Sca	Û	\checkmark			1	,					1	/					1	,		
lle of	Ţ.	\checkmark			1	/					1	/					1	, <u> </u>		
red	Brighter	GS6 1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0_	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Згау	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Scal	Û	\checkmark			Ŷ	,					Ļ	,					4	,		
e of	Û	\checkmark			1	•					1	,					1			
reet	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
_	Û	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Û	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Gray	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Scal	Û	\checkmark			1			ſ			$\mathbf{\Psi}$		_	T		_	1			
eofi	Û	\checkmark	ψ		¥					<u> </u>										
bleu	Brighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
	Û	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Bleu	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	I	1	1

0 : Low level voltage 1 : High level voltage

Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of total 18 bit data signals, the 262,144-color display can be achieved on the screen.

A

(9)Optical characteristics

9-1)Not driving the front light condition

Table	11

Table 11							1a=4	25°C
Parameter		Symbol	Condition	Min	Тур	Max	Unit	Remarks
Viewing an	ngle	θ21,22		35	50	-	degree	[Note 9-1,2,8]
range	-	θ11	CR≥1.2	35	50	-	degree	
		θ12		35	50	-	degree	
Contrast ratio		CRmax		4	5	-		[Note 9-2,5]
				(10)	(20)			[Note 9-2,3]
Response	Rise	τr	a an	-	30	60	ms	[Note 9-3,4]
time	Fall	τd	θ =0°	-	50	100	ms	
White chromaticity		x		(0.26)	(0.30)	(0.33)		[Note 9-5]
		у	y		(0.34)	(0.39)		
Reflection	ratio	R		8	11	-	%	[Note 9-3,6]

* The measuring method of the optical characteristics is shown by the following figure.

* A measurement device is Otsuka luminance meter LCD5000.(With the diffusion reflection unit.)

Measuring method (a) for optical characteristics

.

.

9-2)Driving the front light condition

Table 12				Ta=25°C				
Parameter		Symbol	Condition	Min	Тур	Max	Unit	Remarks
Viewing a	ngle	θ21,22		50	60	-	degree	[Note 9-1,2]
range		0 11	CR≥2	35	40	-	degree	
		θ12		35	40	-	degree	
Contrast ratio		Crmax		7	11	-		[Note 9-2]
Response	Rise	τr		-	30	60	ms	[Note 9-3]
time	Fall	τd	θ = 0°	-	50	100	ms	
White chro	maticity	x		(0.26)	(0.28)	(0.33)		
•	•	. y	_	(0.28)	(0.31)	(0.39)		
Brightness		Y	$\theta = 0^{\circ}$	25	40	•	(cd/m2)	
-			IL=5.0mA					
Lamn life t	ime	LL	IL=5.0mA	10000	-	-	hour	[Note 9-7]

* The measuring method of the optical characteristics is shown by the following figure.

* A measurement device is TOPCON luminance meter BM-5(A).(Viewing cone 1) Photodetector(including luminosity facter)

Measuring method (c) for optical characteristics

.

White

[Note 9-1] Viewing angle range is defined as follows.

[Note 9-5] A measurement device is Minolta CM-2002.

[Note 9-6] Definition of reflection ratio

Light detected level of the reflection by the LCD module Reflection ratio = Light detected level of the reflection by the standard white board

[Note 9-7] The lamp life time is defined as a time when brightness not to become under 50% of

the original value.

[Note 9-8] These values are under the condition of measuring method(a) with a diffusion light source.

(10) Touch panel characteristics

Table	10

Parameter	Min.	Тур.	Max.	Unit	Remark
Input voltage	-	5.0	-	v	
Resistor between terminals(X1-X2)	200	320	600	Ω	Provisional
Resistor between terminals(Y1-Y2)	400	560	1000	Ω	specification
Accuracy of detecting dimension			±1.0	%	
Line linearity(X direction)	-	-	1.5	%	
Line linearity(Y direction)	-	-	1.5	%	
Insuration resistance	20	-		MΩ	at DC25V
Minimum tension for detecting		24		g	<u> </u>

(11) Display quality

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standards for TFT-LCD.

(12) Mechanical characteristics

12-1) External appearance

See Fig. 1

- 12-2) FPC (for LCD panel) characteristics
 - (a) Specific connector

FH12-50S-0.5SH (HIROSE)

(c) Bending endurance of the bending slits portion(See Fig.1)

No line of the FPC is broken for the bending test (Bending radius =0.6mm and angle =90°) in 30 cycles.

(13)Handling Precautions

13-1) Insertion and taking out of FPC

Be sure insert and take out of the FPC into the connector of the set after turning off the power supply on the set side.

13-2) Handling of FPC

The FPC shall be bent only slit portion. The bending slit shall be bent uniformly on the whole slit portion with bending radius larger than 0.6mm ,and the direction is only inner side (back side of the module). Don't bend it outer side (display surface side). Don't give the FPC too much force, for example, hanging the module with holding FPC.

13-3) Handling of lead wire of CCFT

(a) Don't pull GND line for CCFT in order to avoid the trouble on CCFT.

(b) Handle with care not to scratch the lead wire of CCFT or FPC by the edge of metal case.

13-4) Installation of the module

On mounting the module, be sure to fix the module on the same plane. Take care not to warp or twist the module.

13-5) Precaution when mounting

- (a) The polarizer can be easily scratched. Handle it with sufficient care.
- (b) If water droplets and oil attaches to it for a long time, discoloration and staining occurs. Wipe them off

LCY-99160A -16

immediately.

- (c) Glass is used for the TFT-LCD panel and touch panel. If it is dropped or bumped against a hard object, it may be broken. Handle it with sufficient care.
- (d) As the CMOS IC is used in this module, pay attention to static electricity when handling it. Take a measure for grounding on the human body.

13-6) Others

- (a) The liquid-crystal is deteriorated by ultraviolet rays. Do not leave it in direct sunlight and strong ultraviolet rays for many hours.
- (b) If it is kept at a temperature below the rated storage temperature, it becomes coagulated and the panel may be broken. Also, if it is kept at a temperature above the rated storage temperature, it becomes isotropic liquid and does not return to its original state. Therefore, it is desirable to keep it at room temperature as much as possible.
- (c) If the LCD breaks, don't put internal liquid crystal into the mouth. When the liquid crystal sticks to the hands, feet and clothes, wash it out immediately.
- (d) Wipe off water droped or finger grease immediately. Long contact with water may cause discoloration or spots.
- (e) Observe general precautions for all electronic components.
- (f) VCOM must be adjusted on condition of your final product. No adjustment causes the deterioration for display quality.
- (g) Static image should not be displayed more than 5 minutes in order to prevent from occurrence of residual image.

(14) Forwarding form

- (a) Piling number of cartons: MAX 16
- (b) Package quantity in one cartons: 20 pcs.
- (c) Carton size: 420 mm(W) x 360 mm(D) x 120mm(H)
- (d) Total mass of 1 carton filled with full modules: 2500 g
- Fig.2 shows packing form.

.

(15) Reliability Test Conditions for TFT-LCD Module

Table 15

No.	Test items	Test conditions
1	High temperature storage test	Ta=+70°C 240h
2	Low temperature storage test	Ta=-25°C 240h
3	High temperature and high humidit	Tp=+40°C, 95%RH 240h
	operating test	(But no condensation of dew)
4	High temperature operating test	Tp=+50°C 240h
5	Low temperature operating test	Tp=0°C 240h
6	Electro static discharge test	$\pm 200 \vee \cdot 200 \text{pF}(0\Omega)$ 1 time for each terminals
7	Shock test	980 m/s ² , 6 ms
		$\pm X$, $\pm Y$, $\pm Z$ 3 times for each direction
		(JIS C0041, A-7 Condition C)
8	Vibration test	Frequency range: 10Hz~55Hz
		Stroke: 1.5 mm Sweep: 10Hz~55Hz
		X,Y,Z 2 hours for each direction (total 6 hours)
		(JIS C0040, A-10 Condition A)
9	Heat shock test	Ta=-25°C ~+70°C / 5 cycles
		(1h) (1h)
10	Point activation test	Hit it 1,000,000 times with a silicon rubber of R8 HS 60.
	(Touch panel)	Hitting force : 250g
		Hitting speed : 3 times per second
11	Writing friction resistance test	Write according to the right illustration in the under -
	(Touch panel)	mentioned conditions:
		Pen : 0.8R Polyacetal stylus
		Load : 250gf
		Speed : 3 strokes per second
		Stroke : 35mm
		Frequency : 50000 times x 4 pieces
		Testing apparatus : shown in Fig (I)

[Note]Ta = Ambient temperature, Tp = Panel temperature [Check items]

(a) Test No.1~9

In the standard condition, there shall be no practical problems that may affect the display function.

(b) Test No.10-No.11

The measurements after the tests satisfy (10) Table 10. (Touch panel characteristics)

(16) Others

16-1) Indication of serial number

The serial number is shown on a label. Attached location is shown in Fig.1 (Outline Dimensions).

Indicated contents of the label

16-2) Used Regulation of Chemical Substances Breaking Ozone Stratum

Substances with the object of regulating : CFCS, Carbon tetrachloride, Halon

1,1,1-Trichloro ethane (Methyl chloroform)

- (a) This LCD module, Constructed part and Parts don't contain the above substances.
- (b) This LCD module, Constructed part and Parts don't contain the above substances in processes of manufacture.
- 16-3) If some problems arise about mentioned items in this document and other items, the user of the TFT-LCD module and Sharp will cooperate and make efforts to solve the problems with mutual respect and good will.

LCY-99160-19

LCY-99160A -20

