PREPARED BY:	DATE		SPEC. No. LCY-98102C
ADDROUED DV.	DITE	SHARP	FILE No. ISSUE: Jun. 17, 2004
APPROVED BY:	DATE	MOBILE LIQUID CRYSTAL DISPLAY GROUP	PAGE: 24 pages
		SHARP CORPORATION	APPLICABLE GROUP
		SPECIFICATION	MOBILE LCD DESIGN CENTER I
	\mathbf{D}	EVICE SPECIFICATION	1 FOR
	-	EVICE SPECIFICATION TFT-LCD modu MODEL No. LQ056A3C	le

☐ CUSTOMER'S APPROVAL	
DATE	
	PRESENTED
ВҮ	BY Hiroshi Hamada
	H. Hamada
	Department General manager
	Engineering Department I
	Mobile LCD Design Center I
	Mobile Liquid Crystal Display Group
	SHARP CORPORATION

NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved.

Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for AV use.

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- · Alarm equipment
- · Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- Military and space applications
- · Nuclear power control equipment
- · Medical equipment for life support

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

MODEL No. : LQ056A3CH01 RECORDS OF REVISION

MODEL N	O. : LQU56A3UH	T		CORDS OF REVISION	I
SPEC No.	DATE	REVISE	PAGE		NOTE
LCY-98102	Sep. 3.'98			1	1 st Issue
LCY-98102A	Nov. 9.'99	A	8	(8)Optical characteristics	2 nd Issue
				Lamp Life Time 10000 hour →25000 hour (Ta=25°C)	
				Lamp lead wire color RED→ORANGE(high voltage	
				side)]	
LCY-98102B	July.16.'00	В	_	Change the glass thickness of the panel.	3 rd Issue
				$(1.1 \text{ mm} \rightarrow 0.7 \text{ mm})$	
			2	Change the mass by the above change.	
				ı	
				$(260\pm10\mathrm{g}\rightarrow\mathrm{MAX}\;220\mathrm{g})$	
LCY-98102C	Jun.17.'04	С	13	Revision mark of the label is "T".	4 th Issue
				1	•••••
				, 1 	
				1	
				1	,
				1	
	·	<u> </u>		i I	
		<u> </u>		1	***************************************
				1	••••••
				J	•••••
				1	***************************************
		-		I	
	••••••			1	***************************************
•••••					
				1 1	,
				1	
				1	***************************************
				1	
				1	
		ļ		1	
				1	
		ļ		1	
				1	
				1 	•••••
			***************************************		·····
			••••••	1 	
				1	
				1	

C O N T E N T S

	Page
(1) Introduction	2
(2) Features	2
(3) Construction and Outline	2
(4) Module geometry	2
(5) Input/Output terminal	3
(6) Absolute maximum ratings	4
(7) Electrical characteristics	5
(8) Optical characteristics	8
(9) Mechanical characteristics	10
(10) Display quality	11
(11) Handling instructions	11
(12) Shipping requirements	13
(13) Reliability test conditions	13
(14) Others	13
Attached Figures	
Fig 1.Illustration of TFT-LCD panel	15
Fig 2.Construction of TFT-LCD module	16
Fig 3.Outline dimensions of TFT-LCD module	17
Fig 4. Recommended circuit of TFT-LCD module	18
Fig 5.Input/Output signal waveforms	19
Fig 6.Optical characteristics	22
Fig 7.Packing form	23
Attached sheets	
(Appendix-1) Adjusting method of optical common	24
electrode DC bias voltage	

(1)Introduction

The SHARP Color TFT-LCD module is an active matrix LCD (Liquid Crystal Display) produced by making the most of Sharp's expertise in liquid-crystal and semiconductor technologies.

The active device is amorphous silicon TFT (Thin Film Transistor). The module accepts full color video signal conforming to the NTSC(M) system standards.

Module geometry(Mechanical specification): Table 1

(2)Features

- By adopting an active matrix drive, a picture with high contrast is realized.
- Through the use of TN-normally white mode, an image with highly natural color reproduction is realized.
- The 5.6" screen produces a high resolution image that is composed of 74,880 pixel elements in a stripe arrangement.
- Built-in video interface circuit (including chroma demodulator, picture tone, video AGC circuit) and control circuit responsive to composite video signal.
- · Also responsive to standard analog RGB video signals.
- · An anti-glare (AG) surface polarization plate is used.
- · Viewing angle: 6 o'clock
- · An inverted video display in the vertical as well as horizontal directions is possible.
- · An external clock mode is available.

(3) Construction and Outline

- · The construction form figure :See Fig.2
- · Outline dimensions of TFT-LCD module : See Fig. 3
- The module consists of a TFT-LCD panel, drivers, control PWB mounted with electronic circuits, backlight, frame, front and rear shielding cases.

(4) Module geometry (Mechanical specification)

Table 1

Parameter	Specification	Unit	Remarks
Display format	7 4,8 8 0	Pixels	
	960(H) × 234(V)	dots	
Active area	114.2(H) × 83.5 (V)	mm	
Screen-size	14 [5.6"]	cm	
(Diagonal)			
Dot pitch	$0.119(H) \times 0.357(V)$	mm	
Dot configuration	R·G·B Stripe configuration		
Outline dimension	$140.0(W) \times 102.7(H) \times 17.0(D)$	mm	【Note 4-1】
Mass	MAX 220	g	

[Note 4 - 1] This measurement is typical, and see Fig.3 for the details.

(5) Input / Output terminal 5-1)TFT-LCD panel driving section

Table 2

Pin No.	Symbol	i/o	Description	Remarks
1	HSY	i/o	Input/output horizontal sync. signal (low active)	【Note5-1】
2	VSY	i/o	Input/output vertical sync. signal (low active)	【Note5-2】
3	CLK	i/o	Input/output clock signal	【Note5-3】
4	GND	-	Ground	
5	HVRV	i	Turning the direction of horizontal and vertical scanning	[Note5-4]
6	GAM	i	adjusting terminal	【Note5-5】
7	VSW	i	Selection signal of two sets of video signals	【Note5-6】
8	CLKC	i	Selection for input/output direction of HSY,VSY,CLK	【Note5-7】
9	Vcdc	i	DC bias voltage adjusting terminal of common electrode driving signal	[Note5-8]
1 0	VSH	i	Positive power supply voltage	
1 1	VBS	i	Composite video signal	[Note5-9]
1 2	BRT	i	Brightness adjusting terminal	【Note5-10】
1 3	CNT	i	Contrast adjusting terminal	【Note5-10】
1 4	COL	i	Color gain adjusting terminal	【Note5-10】
1 5	TIN	i	Tint adjusting terminal	【Note5-10】
1 6	VSL	i	Negative power supply voltage	
1 7	V R	i	Color video signal (Red)	
1 8	V G	i	Color video signal (Green)	
1 9	V B	i	Color video signal (Blue)	
2 0	GND	i	Ground	
2 1	SAM	i	Terminal for sampling mode change	【Note5-11】
2 2	TEST	-	This shall be electrically opened during operation	
2 3	TEST	-	This shall be electrically opened during operation	
2 4	TEST	-	This shall be electrically opened during operation	

'High' and 'Low' refer to table 5 [digital input voltage].

[Note5-1] When CLKC='High', this terminal outputs horizontal sync. signal in phase with VBS. When CLKC='Low', this terminal will be external horizontal sync. input terminal.

[Note5-2] When CLKC='High', this terminal outputs vertical sync. signal in phase with VBS. When CLKC='Low', this terminal will be external vertical sync. input terminal.

[Note5-3] When CLKC='High', this terminal outputs 'Low' voltage level. When CLKC='Low', this terminal will be external clock input terminal.

[Note5-4] When this terminal is 'High', it will be normal and when it is 'Low', it will display reversely on horizontal and vertical direction.

[Note5-5] characteristic adjusted by the DC voltage supplied to the pin.

It is adjusted to the optimum value on shipping, but, they can be re-adjusted by external circuit.

[Note5-6] When this terminal is 'High', composite video signal (pin No.11) is selected and when it is 'Low', RGB signal set (pin No.17 through 19) is selected.

[Note5-7] When this terminal is 'High', HSY,VSY,CLK terminals are output mode. When this terminal is 'Low', HSY,VSY,CLK terminals are input mode.

[Note5-8] This terminal is applicable to the DC bias voltage adjusting terminal of common electrode driving signal. If power supply voltage is typical, it is not necessary to re-adjust it, so use it in the open condition. However, in the case that power supply voltage is changed, or power supply voltage is reduced, please adjust it externally to get the best contrast with a resistor you add to this terminal, or semifixed resistor, VCDC, in module.

[Note5-9] Similarly in case of RGB input, apply composite video signal for sync. separator.

[Note5-10] Brightness, Contrast, Color, Tint, are adjusted by the DC voltage supplied to each pin.

(contrast, color gain, and tint are not available for RGB signal input)

They are adjusted to the optimum value on shipping, but, they can be re-adjusted by external circuit.

[Note5-11] This terminal is to switch sampling mode. It is the <u>independent</u> data-sampling timing at RGB dots when SAM is 'High' and it is the <u>simultaneous</u> data-sampling timing at RGB dots when SAM is 'Low'.

5-2) Functional maching and Input/Output mode

Table 3

	CLKC	C ="Hi"	CLKC ="Lo"					
Terminal	SAM="Hi" SAM="Lo"		SAM="Hi"	SAM="Lo"				
HSY	Output	Output	Input	Input				
VSY	Output	Output Output		Input				
CLK	Output "Lo"	Output"Pixelclock"	Input "Dot clock"	Input"Pixel clock"				

5-3) Backlight driving section

Table 4

Terminals	NO.	symbol	i/o	function	note
CN1	1	VL1	i	Input terminal(hi voltage side)	
	2	VL2	i	Input terminal(low voltage side)	【NOTE 5-12】

[Note 5-12] Low Voltage side of DC/AC inverter for backlight driving connects with ground of inverter circuit.

(6) Absolute maximum ratings

Table 5

GND = OV, Ta = 25

Parameter		Symbol	MIN	MAX	Unit	Remarks
Positive power su	ipply voltage	V SH	- 0.3	+ 9.0	V	
Negative power s		VSL	- 6.0	+ 0.3	V	
Analog input sign	nals	Vi	-	2.0	V p-	【 Note 6-1 】
					р	
Digital input sign	nals	٧I	- 0.3	+ 5.4	V	【 Note 6-2 】
Digital output sig	gnals	VO	- 0.3	+ 5.4	V	【 Note 6-3 】
DC bias voltage	of common electrode	V CDC	0	+ 5.4	V	
driving signal						
Adjusting termin	Adjusting terminal voltage		- 0.3	+ 5.1	V	【 Note 6-4 】
Storage temperature		Tstg	- 3 0	+ 8 0		【 Note 6-5 】
Operating	Surface of panel	Top1	- 10	+ 8 0		[Note 6-5,6,7]
temperature	Environment	Top2	- 10	+ 7 0		【Note 6-7,8】

[Note 6-1] VBS, VR, VG, VB terminals(Video signal)

[Note 6-2] HSY, VSY, CLK, CLKC, HVRV, VSW, SAM, terminals

[Note 6-3] HSY, VSY, CLK, terminals

[Note 6-4] GAM0, BRT, CNT, COL, TIN terminals

[Note 6-5] The temperature of panel surface must not exceed this rating to the heat of backlight system.

[Note 6-6] Maximum wet-bulb temperature must be less than 58 . No dew condensation.

 $\$ Note 6-7 $\$ The operating temperature assure only driving. Contrast, response time, the other display quality is judgment at 25 $\$.

[Note 6-8] The temperature around considering that the backlight lighting-up generates heat. (The reference value)

$(7) Electrical\ characteristics$

7-1)Recommended operating conditions A)TFT-LCD panel driving section

Table 6

GND=0V, Ta=25

		1 ab.	ie u			GIND-UV, Ta-23
	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
ipply voltage	Vsh	+7.8	+8.0	+8.2	V	
upply voltage	Vsl	- 5.2	- 5.0	- 4.8	V	
Amplitude	VBS	0.7	1.0	2.0	Vp-p	【Note7-1】
	Vi	-	0.7	-	Vp-p	【Note7-2】
DC	Vidc	-0.1	0	+1.0	V	[Note7-3]
component						
Hi	Vih	+3.5	-	+5.0	V	【Note7-4】
Lo	Vil	0	-	+1.5	V	
	Voh	+3.5	-			【Note7-5】
Lo			-		V	
frequency					kHz	CLKC=High
pulse width	HI(N)	4.2	4.7	5.2	μs	for VBS terminal
rising time	rHI1	-	-	0.5	μs	【Note7-6】
falling time	fHI1	-	-	0.5	μs	
frequency	fV(N)	fH/284	fH/262	fH/258	Hz	CLKC=High
pulse width	VI(N)	-	3H	-	μs	for VBS terminal
rising time	rVI	-	-	0.5	μs	【Note7-7】
falling time	fVI	-	-	0.5	μs	
	fCLI	18.2	18.9	19.6		SAM='High'
1 3	fCLI	6.0	6.8			SAM='Low'
Hi pulse width	WH	20.0	-	-	ns	CLKC=Lo
Lo pulse width	WL	20.0	-	-	ns	【Note7-8】
rising time	rCLI	-	-	5.0	ns	
falling time	fCLI	-	-	5.0	ns	
	fHI	fCLI/1230	fCLI/1200	fCLI/1170	Hz	SAM='High'
1 3	fHI	fCLI/465	fCLI/435	fCLI/405	Hz	SAM='Low'
pulse width	HI	1.0	4.7	8.4	μs	CLKC=Lo
rising time	rHI2	-	-	0.05	μs	【Note7-9】
falling time		-	-	0.05	μs	
		50	fHI/262			CLKC=Lo
	VI	1H	3H			【Note7-10】
		-	-			
			-	-		CLKC=Lo
			-	-		[Note7-11]
			-	-		CLKC=Lo
			-	-		[Note7-12]
f common			+1.5			DC component
DC bias voltage of common electrode driving signal		, 3.0	. 1.0	. 5.0	•	[Note7-13]
		 				†
Terminal voltage applicable to		+2.0	+2.2	+2.3	V	
	upply voltage Amplitude DC component Hi Lo Hi Lo frequency pulse width rising time falling time falling time falling time frequency pulse width rising time falling time frequency Hi pulse width rising time falling time frequency Hi pulse width rising time falling time falling time falling time falling time frequency pulse width rising time falling time frequency pulse width rising time falling time frequency pulse width rising time falling time frequency pulse width rising time falling time frequency	pply voltage Vsl Amplitude VBS Vi DC Vidc component Hi Vih Lo Vil Hi Voh Lo Vol frequency fH(N) pulse width HI(N) rising time rHI1 falling time fVI falling time fVI falling time fVI frequency fCLI ff CLI Hi pulse width WH Lo pulse width WL rising time rCLI falling time fCLI frequency fHI frequency fV(N) pulse width VI(N) rising time rVI falling time fVI frequency fCLI ff CLI Hi pulse width WH Lo pulse width HI rising time rCLI falling time fCLI frequency fHI frequency fVI pulse width VI rising time rHI2 falling time rHI2 falling time fCLI frequency fVI pulse width VI rising time rHI2 frequency fVI pulse width VI rising time rVI2 falling time rVI2	Symbol MIN. Pinch Pinc	Poly voltage Vsh +7.8 +8.0	Symbol MIN. TYP. MAX. Pply voltage Vsh +7.8 +8.0 +8.2 Pply voltage Vsh -5.2 -5.0 -4.8	Symbol MIN. TYP. MAX. Unit pply voltage Vsh +7.8 +8.0 +8.2 V voltage Vsl -5.2 -5.0 -4.8 V V

[Note7-1] VBS terminal (composite video signal)

[Note7-2] VR,VG,VB terminals (RGB signals for analog display) Input impedance : >10k

[Note7-3] VBS,VR,VG,VB terminals

[Note7-4] VSW,HVRV,SAM terminals

[Note7-5] HSY, VSY terminals

[Note7-6] VBS (horizontal sync. component)

[Note7-7] VBS (vertical sync. component)

[Note7-8] CLK (input mode)

[Note7-9] HSY (input mode)

[Note7-10] VSY (input mode)

[Note7-11] In case of CLKC='Low', it shows the phase difference from HSY to CLK. In case, HSY will be taken at the rise timing of CLk.

[Note7-12] In case of CLKC='Low', it shows the phase difference from VSY to HSY. In case, VSY will be taken at the rise timing of HSY.

B) Backlight driving section

Table 7 Ta=25

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
Lamp voltage	VL7	560	620	680	Vrms	IL=6.5mArms
Lamp current	IL	3.0	6.5	7.0	mArms	normal operation
Lamp frequency	FL	30	-	60	kHz	
Kick-off voltage	Vs	-	-	1300	Vrms	25
Kick-off voltage	Vs	-	-	1380	Vrms	-10

(Inverter: HIU-288 Harison Electric co. ltd.)

Input impedance: 75

Input impedance: >10k

Load resistance: >60k

The attention item

As for the inverter, use the one of the sine wave without the occurrence of the spike wave in both positive negative wave objects.

7-2)Power consumption

Table 8 Ta=25

Parameter	Symbol	Voltage	MIN.	TYP.	MAX.	Unit	Remarks
Positive supply current	Ish	Vsh=+8.0V	-	150	200	mA	
Negative supply current	Isl	Vsl= - 5.0V	-	-50	-75	mA	
	Ws		-	1.45	1.98	W	【Note7-15】
Lamp current	Wl	normal	-	4.03	4.76	W	【Note7-16】
_		driving					

[Note7-15] Excluding backlight section.

[Note7-16] Reference data by calculation. (IL \times VL)

7-3)Input/Output signal timing chart

Table 9

VSH=+5.3V,GND=0V CLKC='High', NTSC:fH=15.73kHz,fv=60Hz

Damanatan		Ch-1	1				D
Parameter		Symbol	MIN	TYP	MAX	Unit	Remarks
Horizontal sync.	pulse width	HS2	3.3	4.3	3.2	μs	f=fH【Note7-17】
output [HSY]	phase difference	pd	0.5	1.45	2.4	μs	【Note7-18】
	rising time	rHO	-	-	0.5	μs	CL=10pF
	falling time	fHO	-	-	0.5	μs	
Vertical sync.	pulse width	VS	-	4H	-	μs	1H=1/fH
output [VSY]	phase difference	VHO	-	11.0	28.0	μs	【Note7-19】
	rising time	rVO	-	-	2.0	μs	CL=10pF
	falling time	fVO	-	-	2.0	μs	
Vertical sync.	odd field	PV1	-	1H	-	μs	【Note7-20】
phase difference	even field	PV2	-	0.5H	-	μs	

[Note7-17] Variable by variable resister (H-POS) in a module.

[Note7-18] variable range by variable resister (H-POS) in a module.

Adjustment: $pd = 1.4 \pm 0.5 \mu s$

[Note7-19] Synchronized with HSY, based on falling timing of HSY.

[Note7-20] VSY signal delays.

7-6) Display time range

(1) Internal clock mode (CLKC='High')

Displaying the following range within video signals.

(a) Horizontally : 12.2 $\sim 63~\mu\,s$ from the falling edge of HSY. (SAM='High')

: 12.3 \sim 62.9 μ s from the falling edge of HSY. (SAM='Low')

(b) Vertically $: 20 \sim 253 \, \text{H}$ from the falling edge of VSY.

(2) External clock mode (CLKC='Low')

Displaying the following range within video signals.

(a) Horizontally : 205 ~ 1164 clk from the falling edge of HSY. (SAM='High')

: 84 \sim 403 clk from the falling edge of HSY. (SAM='Low')

(clk means input external clock.)

(b) Vertically $: 20 \sim 253 \, \text{H}$ from the falling edge of VSY.

Table 11 Ta=25

Parameter Symbol		Condition	Min	Тур	Max	Unit	Remarks		
Viewing angle range		11		30	-	-	° (degree)	【Note 8-1,2,3】	
		12	CR 10	10	-	-	° (degree)		
		2		45	-	-	° (degree)		
Contrast i	ratio		CRmax	Optimal	100	-	-		【Note 8-2,3】
Response	Rise		r	= 0 °	-	30	60	ms	【Note 8-2,4】
time	Fall		d		-	50	100	ms	
Luminance		Y	IL=6.5mArms	225	300	-	cd/m²	【 Note 8-5 】	
White chromaticity		X	IL=6.5mArms	0.263	0.313	0.363		【Note 8-5】	
		y	IL=6.5mArms	0.279	0.329	0.379			
Lamp life	time	+25	-	continuation	25,000	-	-	hour	【Note 8-6】
		-10	-	intermission	2,000	-	-	time	【Note 8-7】

DC/AC inverter for external connection shown in following.

Harison Co.: HIU-288

[Note 8-1] Viewing angle range is defined as follows.

Fig.() definition for viewing angle

[Note 8-2] Applied voltage condition:

- (1) VCDC is adjusted so as to attain maximum contrast ratio.
- (2) Brightness adjusting voltage (BRT) is open.
- (3) Input video signal of standard black level and 100% white level.

[Note 8-3] Contrast ratio is defined as follows:

Photodetector output with LCD being "white"

Contrast ratio(CR)=

Photodetechor output with LCD being "black"

[Note 8-4] Response time is obtained by measuring the transition time of photodetector output, when input signals are applied so as to make the area "black" to and from "white".

【Note 8-5】 Measured on the center area of the panel at a viewing cone 1° by TOPCON luminance meter BM-7.(After 30 minutes operation) DC/AC inverter driving frequency:49kHz

[Note 8-6] Lamp life time is defined as the time when the brightness of the panel not to become less than 50% of the original value.

(operation conditions)

Current dimming: lamp current IL=3.0 ~ 6.5mArms

PWM dimming 100%~5%

[Note 8-7] The intermittent cycles is defined as a time when brightness not to become under 50% of the original value under the condition of following cycle.

(9) Mechanical characteristics

9-1) External appearance

Do not exist extreme defects. (See Fig. 3)

9-2) Panel toughness

The panel shall not be broken, when 19N is pressed on the center of the panel by a smooth sphere having 15 mm diameter.

Caution: In spite of very soft toughness, if, in the long-term, add pressure on the active area, it is possible to occur the functional damage.

9-3) Input/output connector performance

A)Input/output connectors for the operation of LCD module (24 pin)

1)Applicable FPC refer the below Fig.().

2) Terminal holding force: More than 0.9N/pin

(Each terminal is pulled out at a rate of 25 ± 3mm/min.)

3)Insertion/pulling: contact resistance is not twice larger than the durability initial value after applicable FPC is inserted and pulled out 20 times.

No.	Name	Materials
1	Base material	Polyimide or equivalent material(25 µ m thick)
2	Copper foil	Copper foil(35 µ m thick) Solder plated over 2 µ m
3	Cover lay	Polyimide or equivalent material
4	Reinforcing plate	Polyester polyimide or equivalent material(188 µ m thick)

Fig.() FPC applied to input/output connector (1.0mm pitch)

B) I/O connector of backlight driving circuit

Symbol	Used Connector	Corresponding connector	Manufacture
CN1	BHR-02(8.0)VS-1N	SM02(8.0)B-BHS-TB (wire on board)	JST
		SM02(8.0)B-BHS-1N (wire on board)	JST
		BHMR-03V (wire to wire)	JST

(10) Display quality

The display quality of the color TFT-LCD module shall be in compliance with the incoming Inspection Standard.

(11) Handling instructions

11-1) Mounting of module

The TFT-LCD module is designed to be mounted on equipment using the mounting tabs in the four corners of the module at the rear side.

On mounting the module, as the M2.6 tapping screw (fastening torque is 0.3 through $0.5N\cdot m$) is recommended, be sure to fix the module on the same plane, taking care not to wrap or twist the module.

To pushing module, (ex. touching switch etc.) causes disordered image.

so taking care not to conduct directly for LCD module.

Please power off the module when you connect the input/output connector.

11-2) Precautions in mounting

Polarizer which is made of soft material and susceptible to flaw must be handled carefully.

Protective film (Laminator) is applied on the surface to protect it against scratches and dirts.

It is recommended to peel off the laminator immediately before the use, taking care of static electricity.

Precautions in peeling off the laminator

A) Working environment

When the laminator is peeled off, static electricity may cause dust to stick to the polarizer surface. To avoid this, the following working environment is desirable.

- a) Floor: Conductive treatment of 1M or more on the tile (conductive mat or conductive paint on the tile)
- b) Clean room free from dust and with an adhensive mat on the doorway
- c) Advisable humidity:50% ~ 70% Advisable temperature:15 ~ 27
- d) Workers shall wear conductive shoes, conductive work clothes, conductive gloves and an earth band.

B) Working procedures

- a) Direct the wind of discharging blower somewhat downward to ensure that module is blown sufficiently. Keep the distance between module and discharging blower within 20 cm. (See Fig. (.)
- b) Attach adhensive tape to the laminator part near discharging blower so as to protect polarizer against flaw. (See Fig. ().)
- c) Peel off laminator, pulling adhesive tape slowly to your side taking 5 or more second.
- d) On peeling off the laminator, pass the module to the next work process to prevent the module to get dust.
- e) Method of removing dust from polarizer
 - Blow off dust with N2 blower for which static electricity preventive measure has been taken.
 - Since polarizer is vulnerable, wiping should be avoided.
 But when the panel has stain or grease, we recommend to use adhesive tape to softly remove them from the panel.

When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it

with soft dry cloth. For stubborn dirties, wipe the part, breathing on it.

Wipe off water drop or finger grease immediately. Long contact with water may cause discoloration or spots.

TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Handle with care.

Since CMOS LSI is used in this module, take care of static electricity and earth your body when handling.

Fig.()

11-3) Precautions in adjusting module

Adjusting volumes on the rear face of the module have been set optimally before shipment. Therefore, do not change any adjusted values.

If adjusted values are changed, the specifications described here may not be satisfied.

11-4) Caution of product design

The LCD module shall be protected against water salt-water by the waterproof cover.

Please take measures to interferential radiation from module,

to do not interfere surrounding appliances.

11-5) Others

Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours; liquid crystal is deteriorated by ultraviolet rays.

Store the module at a temperature near the room temperature. At lower than the rated storage temperature, liquid crystal solidifies, causing the panel to be damaged. At higher than the rated storage temperature, liquid crystal turns into isotropic liquid and may not recover.

The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around. If LCD panel breaks, there may be a possibility that the liquid crystal escapes from the panel. Since the liquid crystal is injurious, do not put it into the eyes or mouth. When liquid crystal sticks to hands, feet or clothes, wash it out immediately with soap.

Observe all other precautionary requirements in handling general electronic components.

(12)Shipping requirements

12-1) Packing form is shown in Fig.7.

12-2) Carton storage condition

Number of layers of cartons in pile: 10 layers max.

Environmental condition:

• Temperature 0 to 40

• Humidity 60 %PH or less (at 40)

No dew condition even at a low temperature and high humidity

· Atmosphere Harmful gases such as acid and alkali which corrode electronic

components and wires must not be detected.

• Storage period About 3 months

· Opening of package To prevent TFT-LCD module from being damaged by static

electricity ,adjust the room humidity to 50 %PH or higher and provide an appropriate measure for electrostatic earthing before

opening the package.

(13) Reliability test conditions

Reliability test conditions for the TFT-LCD module are shown in Table 9.

(14) Others

14-1)Indication of lot number

The lot number is shown on a label. Attached location is shown in Fig.3 (Outline Dimensions). Indicated contents of the label

Module name model No. lot No.

contents of lot No. the 1st figure production year (ex. 1998 : 8) the 2nd figure production month 1,2,3, ,9,X,Y,Z the 3rd ~ 8th figure serial No. 000001 ~ the 9th figure revision marks A,B,C, \cdots ,T, \cdots ,Z

Reliability Test Conditions for TFT-LCD module Table 9

No	Test items	Test condition
1	High temperature	Ta=+80 240h
	storage test	
2	Low temperature	Ta= - 30 240h
	Storage test	
3	High temperature	$Tp=+40 (90 \sim 95\%RH) 240h$
	And high humidity	
	Operating test	
4	High temperature	Tp=+80 240h
	Operating test	
5	Low temperature	Ta= - 10 240h
	Operating test	
6	Electrostatic	± 200V· 200pF(0), Once for each terminal
	Discharge test	
7	Shock test	980m/s ² • 6ms, ± X, ± Y, ± Z 3 times for each direction
		(JIS C0041, A-7 Condition C)
8	Vibration test	Frequency range : 10 ~ 55Hz
		Stroke : 1.5mm.
		Sweep : 10Hz ~ 55Hz ~ 10Hz
		2 hours for each direction of X, Y,Z (6 hours in total)
		(JIS C7021, A-10 Condition A)
9	Heat shock test	-30 ~ +80 ,200cycles
	Trout Silvoit Cost	(1h) (1h)

Ta = Ambient temperature Tp = Panel temperature

[Evaluation result criteria]

Under a display quality test conditions with normal operation state, there shall be no change which may affect practical display function.

Fig.1. Illustration of TFT-LCD panel

Fig.2. Construction of TFT-LCD module

General tolerance is ± 0.5 .

Fig.3. Outline dimensions of TFT-LCD module

Fig.5-B Input / Output signal waveforms (CLKC='Hi')

 $\begin{array}{ll} Brightness & : Less \ then \ 5000 cd/m^2 \\ Wave \ length & : To \ be \ cut \ less \ than \ 400 nm \end{array}$

 $Fig. 6.\ Optical\ characteristics$

Fig.7. Packing form

(Appendix)

Adjusting Method of Optimum Common electrode DC Bias Voltage

To obtain optimum DC bias Voltage of common electrode driving signal, photo-electric devices are very effective, and the accuracy is within 0.1V.

(in visual examination method, the accuracy is about 0.5V because of the difference among individuals.)

To obtain optimum common electrode DC bias voltage, there is a measurement method as follows:

Measurement of flicker method

DC bias voltage is adjusted so as to minimize NTSC:60Hz(30Hz)/PAL:50Hz(25Hz)flicker.

Fig.A. Measurement system

《Measurement of flicker》

Photo-electric output voltage is measured by an oscilloscope at a system shown in Fig.A DC bias voltage must be adjusted so as to minimize the 60Hz(30Hz)[NTSC]/50Hz(25Hz)[PAL] flicker with DC bias voltage changing slowly.(Fig.B)

DC bias: Optimum

Fig.B. Waveforms of flickers