PREPARED BY: DATE		SPEC No. LD-T130001B
	SHARP	FILE No.
APPROVED BY: DATE		ISSUE: July. 3, 2013
		PAGE :27 pages
	DISPLAY DEVICE BUSINESS GROUP	Development Department II
	SHARP CORPORATION	Display Device Unit V
	SPECIFICATION	Display Device Business Divisio
	DEVICE SPECIFICATION F TFT-LCD Module MODEL No. LQ235D1LW03	e
CUSTOMER'S APPROVAL	PRESENTED <u>BY</u> M.Watanabe Unit Deputy Gene Development Depa	

RECORDS OF REVISION

LQ235D1LW03

SPEC No.	DATE	REVISED		SUMMARY	NOTE
		No.	PAGE		
LD-T130001	Jun.12.2013	-	-	-	1st Issue
LD-T130001A	Jun.20.2013	$\triangle 1$	11	Add 30ms <t8< td=""><td>2nd Issue</td></t8<>	2nd Issue
LD-T130001B	Jul. 3.2013	riangle 2	18	Add Contrast ratio Min.	3rd Issue

1. Application

This specification applies to the color 23.5" TFT-LCD module LQ235D1LW03.

* This specification is proprietary products of SHARP CORPORATION ("SHARP") and includes materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any

means, electronically or mechanically, for any purpose, in whole or in part, without the express written permission of SHARP

* In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

* Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

- * SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in this specification.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD panel incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit and edge-lite LED backlight system etc. Graphics and texts can be displayed on a 1920×RGB×1080 dots panel with about 16 million color by using LVDS RGB (at the case of 8bits) (Low Voltage Differential Signaling) interface, +12V of DC supply voltages. And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit. In the O/S driving technology, signals are being applied to the Liquid Crystal

according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

With this technology, image signals can be set so that liquid crystal response completes within one frame. As a result, motion blur reduces and clearer display performance can be realized

This LCD module also adopts Frame Rate Enhanced Driving method.

With combination of these technologies, motion blur can be reduced and clearer display performance can be realized.

Parameter	Specifications	Unit	
Display size	59.809 (Diagonal)	cm	
	23.547 (Diagonal)	inch	
Active area	521.28(H) x 293.22 (V)	mm	
Pixel Format	1920(H) x 1080 (V)	pixel	
	(1pixel = R + G + B dot)		
Pixel pitch	0.0905(H) x 0.2715 (V)	mm	
Pixel configuration	R,G,B vertical stripe		
Display mode	Normally Black		
Outline Dimensions *1	554.8(W)×319(H)×10.3(D) (*1)	mm	
	Excluded Control PWB		
Mass	2.8Kg		
Surface treatment	Anti Glare Hard Coat 3H Haze 2.0%		

3. Mechanical Specifications

(*1)Outline dimensions are shown in Fig.3

4. Input Terminals

4-1. TFT Panel Driving

CN1 (Interface signals and +12V DC power supply)

Using connector : FI-RNE51SZ-HF (Japan Aviation Electronics Ind., Ltd.)

Mating connector : FI-RE51HL, FI-RE51CL (Japan Aviation Electronics Ind., Ltd.)

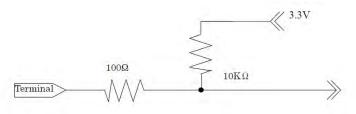
Mating LVDS transmitter : THC63LVD1023 or equivalent device

No	Signal	Note	Remark
1	GND	GND	
2	SDA	[Note 1]	Slave address : B4 / Pull up (3.3[V])
3	SCL	[Note 1]	Slave address : B4 / Pull up (3.3[V])
4	(GSP out)	(Frame sync signal output)	High pulse output / frame [Note 4]
5	(R/W)	(Read/write enable for TCON ROM) (Low : Disenable, High : Enable)	
6	Reserved	Non-connection (default : OPEN)	OPEN
7	SELLVDS	Select LVDS data order [Note2]	Pull down (GND) [Note 3]
8	Reserved	Non-connection (default : OPEN)	OPEN
9	2D/3D	2D/3D mode selection (Low : 2D, High : 3D)	Pull down (GND) [Note 3]
10	Reserved	Non-connection (default : OPEN)	Pull down (GND) [Note 3]
11	GND	GND	
12	AIN0-	Aport (-)LVDS CH0 differential data input	
13	AIN0+	Aport (+)LVDS CH0 differential data input	
13	AIN1-	Aport (-)LVDS CH1 differential data input	
15	AIN1+	Aport (+)LVDS CH1 differential data input	
16	AIN2-	Aport (-)LVDS CH2 differential data input	
17	AIN2+	Aport (+)LVDS CH2 differential data input	
18	GND		
19	ACK-	Aport LVDS Clock signal(-)	
20	ACK+	Aport LVDS Clock signal(+)	
20	GND		
22	AIN3-	Aport (-)LVDS CH3 differential data input	
23	AIN3+	Aport (+)LVDS CH3 differential data input	
23	AIN4-	Aport (-)LVDS CH4 differential data input	
25	AIN4+	Aport (+)LVDS CH4 differential data input	
26	GND		
27	GND		
28	BIN0-	Bport (-)LVDS CH0 differential data input	
29	BIN0+	Bport (+)LVDS CH0 differential data input	
30	BIN1-	Bport (-)LVDS CH1 differential data input	
31	BIN1+	Bport (+)LVDS CH1 differential data input	
32		Bport (-)LVDS CH2 differential data input	
33	BIN2+	Bport (+)LVDS CH2 differential data input	
34	GND		
35		Bport LVDS Clock signal(-)	
36	BCK+	Bport LVDS Clock signal(+)	
37	GND		
38	BIN3-	Bport (-)LVDS CH3 differential data input	
39	BIN3+	Bport (+)LVDS CH3 differential data input	
40	BIN4-	Bport (-)LVDS CH4 differential data input	
41	BIN4+	Bport (+)LVDS CH4 differential data input	
42	GND		
43	GND		
44	GND		
45	GND		
46	GND		
47	Reserved(VCC)	Connected to VCC(+12V) on CPWB	
48	VCC	+12V Power Supply	
49		+12V Power Supply	

50	VCC	+12V Power Supply	
51	VCC	+12V Power Supply	

CN2 (Interface signals)

Using connector : FI-RNE41SZ-HF (Japan Aviation Electronics Ind., Ltd.)

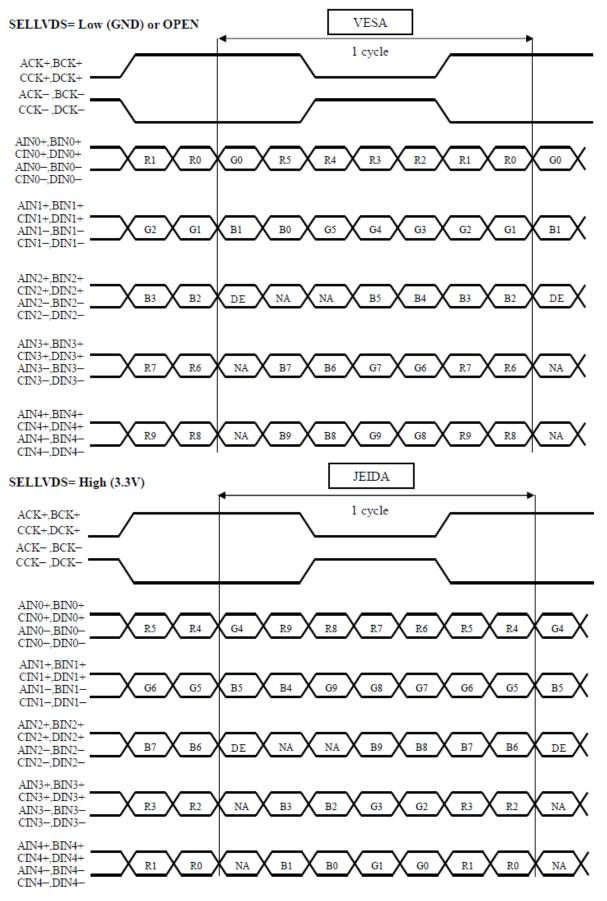

Mating connector : FI-RE41HL, FI-RE41CL (Japan Aviation Electronics Ind., Ltd.)

No	Signal	Note	Remark
1	Reserved (VCC)	+12V Power Supply	
2	Reserved (VCC)	+12V Power Supply	
3	Reserved (VCC)	+12V Power Supply	
4	Reserved (VCC)	+12V Power Supply	
5	Reserved	Non-connection (default : OPEN)	
(OS	Over Shoot driving	D-11 (2.2[37])
6		(Low : OFF, High or open : ON) (default : High)	Pull up (3.3[V])
7	Reserved	Non-connection (default : OPEN)	
8	Reserved	Non-connection (default : OPEN)	
9	GND		
10	CIN0-	Cport (-)LVDS CH0 differential data input	
11	CIN0+	Cport (+)LVDS CH0 differential data input	
12	CIN1-	Cport (-)LVDS CH1 differential data input	
13	CIN1+	Cport (+)LVDS CH1 differential data input	
14	CIN2-	Cport (-)LVDS CH2 differential data input	
15	CIN2+	Cport (+)LVDS CH2 differential data input	
16	GND		
17	CCK-	Cport LVDS Clock signal(-)	
18	CCK+	Cport LVDS Clock signal(+)	
19	GND		
20	CIN3-	Cport (-)LVDS CH3 differential data input	
21	CIN3+	Cport (+)LVDS CH3 differential data input	
22	CIN4-	Cport (-)LVDS CH4 differential data input	
23	CIN4+	Cport (+)LVDS CH4 differential data input	
24	GND		
25	GND		
26	DIN0-	Dport (-)LVDS CH0 differential data input	
27	DIN0+	Dport (+)LVDS CH0 differential data input	
28	DIN1-	Dport (-)LVDS CH1 differential data input	
29	DIN1+	Dport (+)LVDS CH1 differential data input	
30	DIN2-	Dport (-)LVDS CH2 differential data input	
31	DIN2+	Dport (+)LVDS CH2 differential data input	
32	GND		
	DCK-	Dport LVDS Clock signal(-)	
34	DCK+	Dport LVDS Clock signal(+)	
35	GND		
36	DIN3-	Dport (-)LVDS CH3 differential data input	
37	DIN3+	Dport (+)LVDS CH3 differential data input	
38	DIN4-	Dport (-)LVDS CH4 differential data input	
39	DIN4+	Dport (+)LVDS CH4 differential data input	
40	GND		
41	GND		

[Note] GND of a liquid crystal panel drive part has connected with a module chassis.

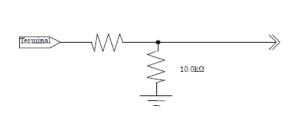
[Note 1] Slave address "B4" is allocated for internal use for TCON board.

The equivalent circuit figure of the terminal



[Note 2] SELLVDS ORDER

	SELLVDS						
DATA	L(GND) or Open [VESA, NS]	H(3.3V) [JEIDA]					
TA0	R0(LSB)	R4					
TA1	R1	R5					
TA2	R2	R6					
TA3	R3	R7					
TA4	R4	R8					
TA5	R5	R9(MSB)					
TA6	G0(LSB)	G4					
TB0	G1	G5					
TB1	G2	G6					
TB2	G3	G7					
	G4	G8					
TB4	G5	G9(MSB)					
TB5	B0(LSB)	B4					
TB6	B1	B5					
TC0	B2	B6					
TC1	B3	B7					
TC2	B4	B8					
TC3		B9(MSB)					
TC4		N/A					
TC5		N/A					
	DE(*)	DE(*)					
	R6	R2					
TD1	R7	R3					
TD2		G2					
	G7	G3					
	B6	B2					
TD5		B3					
	N/A	N/A					
	R8	R0(LSB)					
	R9(MSB)	R1					
TE2	G8	G0(LSB)					
	G9(MSB)	G1					
	B8	B0(LSB)					
	B9(MSB)	B1					
TE6	N/A	N/A					


N/A: Not Available

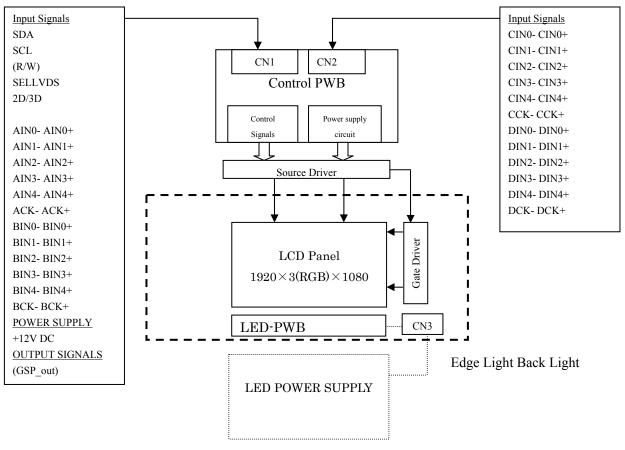
(*)Since the display position is prescribed by the rise of DE(Display Enable)signal, please do not fix DE signal during operation at "High".

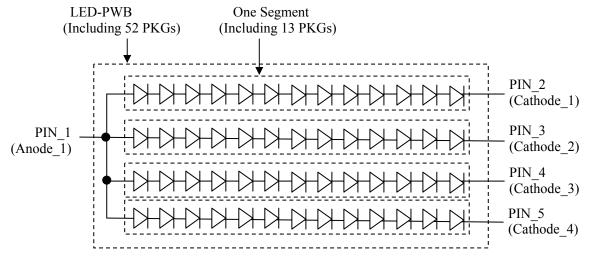
DE: Display Enable, N/A: Not Available (Fixed Low)

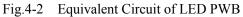
[Note 3] The equivalent circuit figure of the terminal

[Note 4] Optional output signal for goggle / backlight control.

4-2. Interface block diagram




Fig.4-1 block diagram


4-3. Backlight driving

CN3 (DC power supply)

Mating conn	Mating connector : C11405S0000-NH (Cv1Lux Corp.)								
Pin No.	Symbol	Function	Remark						
1	PIN_1	LED Anode 1 terminal							
2	PIN_2	LED Cathode 1 terminal							
3	PIN_3	LED Cathode 2 terminal							
4	PIN_4	LED Cathode 3 terminal							
5	PIN_5	LED Cathode 4 terminal							

Using connector	:	CI1405M1HRL-NH (CviLux Corp.)
Mating connector		CI1405S0000-NH (CviLux Corp.)

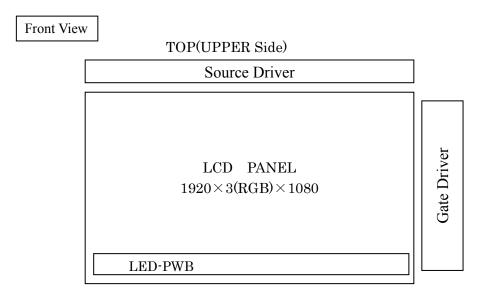


Fig.4-3 Layout of LED-PWB

4.4 The back light system characteristics

The back light system is side-edge type with LED.

The characteristics of LCD are shown in the following table. The value mentioned below is at the case of one LED.

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Life time	T _{LED}	30,000	40,000	-	Hour	

[Note]

LED life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the Ta=25°C (I_{LED} =120mA).

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input Voltage (for Control PWB)	V1	Ta=25°C	-0.3~+3.6	V	[Note 1]
12V supply voltage (for Control PWB)	VCC	Ta=25°C	0~+14.0	V	
Reverse voltage for LED-PWB	V _{LED}	Ta=25°C	3.8	V	[Note 3]
Forward Current for LED-PWB	I _{LED}	Ta=25°C	300	mA	[Note 4]
Storage temperature	Tstg	-	-25~+60	°C	[N-4-2]
Operational Temperature (Ambient)	Tsf		0~+50	°C	[Note 2]

[Note 1] SDA, SCL, R/W, SELLVDS, 2D/3D

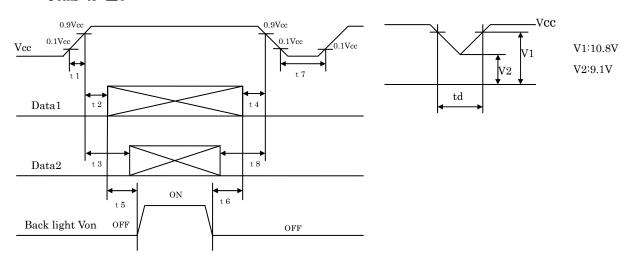
[Note 2] Humidity 95%RH Max.(Ta≦40°C) Maximum wet-bulb temperature at 39 °C or less. (Ta>40°C) No condensation.

[Note 3] Each LED 1 piece.

[Note 4] LED current (I_{LED}) is the value of each Segment.

6. Electrical Characteristics

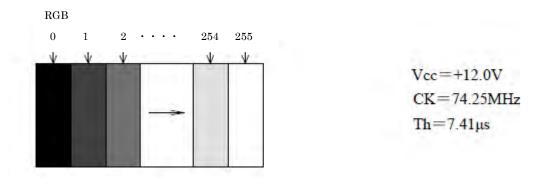
6-1.


5-1. Control	l circuit driv	ving						GND=0V
Parameter			Symbol	Min.	Тур.	Max.	Unit	Remark
+12V	Supply Vo	ltage	VCC	11.4	12.0	12.6	V	[Note1]
Supply Voltage	Current di	ssipation	ICC1		0.6	1.2	А	120Hz [Note2]
voltage			ICC2		0.7	1.4	А	240Hz [Note2]
Input v	Input voltage for LVDS Signal			0	—	2.4	V	
Permissi	ble input rip	ople voltage	VRP		-	100	mVp-p	VCC=+12V
Differen	itial input	High	VTH			100	mV	$V_{CM} = +1.2V$
threshol	threshold voltage Low		VTL	100			mV	
Input Low Voltage		VIL	0		0.8	V	[Note3]	
Input High Voltage			VIH	2.0		3.3	V	
T	erminal Reg	gister	RT		100		Ω	Differential Input

[Note]VCM: Common mode voltage of LVDS driver.

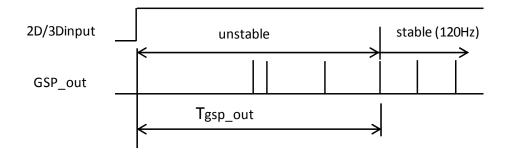
[Note]About the relation between data input and back light lighting, please base on the above-mentioned input sequence. When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

[Note1]


Input voltage sequences $50us < t1 \le 20ms$ 30ms < t2 500ms < t3 0 < t4 $t \ 5 \ge 1s$ t6 > 0 $t7 \ge 1s$ $30ms < t8 \ \bigtriangleup 1$ Dip conditions for supply voltage a) $9.1V \le Vcc \le 10.8V$ td $\le 10ms$ b)Vcc < 9.1VDip conditions for supply voltage is based on input voltage sequence.

* Data1;ACK±, AIN0±, AIN1±, AIN2±, AIN3±, AIN4±, BCK±, BIN0±, BIN1±, BIN2±, BIN3±, BIN4±, CCK±, CIN0±, CIN1±, CIN2±, CIN3±, CIN4±, DCK±, DIN0±, DIN1±, DIN2±, DIN3±, DIN4±
*V_{CM} Voltage pursues the sequence mentioned above
* Data2:SDA,SCL,R/W,SELLVDS,2D/3D

Due to ROM loading, I2C(SDA/SCL) and 2D/3D pin function can start to work after 500mS from power on (0.9VCC) . 2D/3D pin can be switched to 3D after 500mS from power on (0.9VCC) .


[Note 2] Typical current situation: 1024 gray-bar patterns. (Vcc = +12.0V) The explanation of RGB gray scale is seen in section 8.

[Note 3] : SCL, SDA.

[Note 4] : GSP_out stable time at 2D/3D low to high.

			6			
	Symbol	Min.	Тур.	Max.	unit	Remark
2D/3Dinput-GSP_out Stable time	Tgsp_out	100	-	800	ms	Ta=25℃

LD-T130001B-13

6-2. LED driving for back light

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Current	I _{LED}		120	130	mA	[Note 1]
LED Voltage	V _{LED}		42.9	45.5	v	[Note 2]
LED Current(PWM)	I _{LED(PWM)}		260	270	mA	[Note3]
LED Current (PWM) duty	D _{LED}			38	%	[Note4]

[Note1] PIN1-PIN5 (CN3)

LED current (ILED) is the value of each Segment.

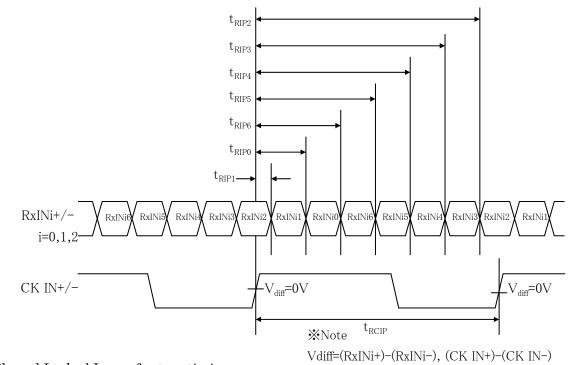
*Please decrease LED heat enough when the LED current is increased more than TYP value.

[Note2] Ta = 25° C, Measurement after 1h has passed since power supply was turned on.

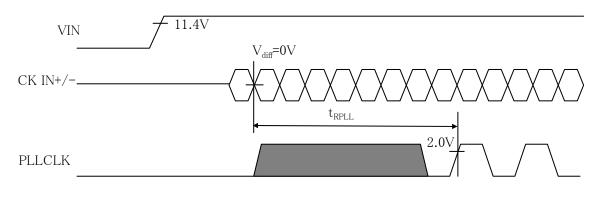
*The products are sensitive to the static electricity and care shall be fully taken when handling the products. Particularly in case that an over-voltage which exceeds the Absolute Maximum Rating of the products shall be applied, the overflowed energy may cause damages to, or possibly result in destruction of the products. Please take absolutely secured countermeasures against static electricity and surge when handling the products.

[Note 3] duty : 1/3、PWM frequency : 120Hz、

[Note4] LED Current : 260mA 、 PWM frequency : 120Hz、 Operational Temperature : $50^{\circ}C(max)$ Panel Surface Temperature : $65^{\circ}C(max)$.


6-3. LVDS

6-3-1.AC characteristics


$Vcc=+11.4V\sim+12.6V, Ta=0^{\circ}C\sim+50^{\circ}C$

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input Data Position 0 (tRCIP=13.48ns)	t _{RIPI}	-0.25	0.0	+0.25	ns
Input Data Position 1 (tRCIP=13.48ns)	t _{RIP0}	$t_{\rm RCIP}/7-0.25$	t _{RCIP} /7	$t_{RCIP}/7+0.25$	ns
Input Data Position 2 (tRCIP=13.48ns)	t _{RIP6}	2 t _{RCIP} /7-0.25	$2 t_{\rm RCIP}/7$	$2 t_{RCIP}/7+0.25$	ns
Input Data Position 3 (tRCIP=13.48ns)	t _{RIP5}	3 t _{RCIP} /7-0.25	$3 t_{\rm RCIP}/7$	$3 t_{RCIP}/7+0.25$	ns
Input Data Position 4 (tRCIP=13.48ns)	t _{RIP4}	4 t _{RCIP} /7-0.25	$4 t_{\rm RCIP}/7$	$4 t_{RCIP} / 7 + 0.25$	ns
Input Data Position 5 (tRCIP=13.48ns)	t _{RIP3}	5 t _{RCIP} /7-0.25	$5 t_{\rm RCIP}/7$	5 t _{RCIP} /7+0.25	ns
Input Data Position 6 (tRCIP=13.48ns)	t _{RIP2}	6 t _{RCIP} /7-0.25	$6 t_{\rm RCIP}/7$	6 t _{RCIP} /7+0.25	ns
Phase Lock Loop Set	t _{RPLL}			10	ms
Input Clock Period	t _{RCIP}		13.48		ns

Timing characteristics of input LVDS

LVDS Phased Locked Loop of set up timing

7. Timing characteristics of input signals

P	arameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency	1/Tc	60	74.25	80	MHz	
Data enable	Horizontal period	TH	515	550	825	CLK	
signal			6.94	7.41	11.1	μ s	
	Horizontal period (High)	THd	480	480	480	CLK	
	Vertical period	TV	1102	1125	1400	Line	
			96.5	120	122.5	Hz	
	Vertical period (High)	TVd	1080	1080	1080	Line	

Timing diagrams of input signal are shown in Fig.7-1

[Note]-When vertical period is very long, flicker and etc. may occur.

-Please turn off the module after it shows the black screen.

-Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.

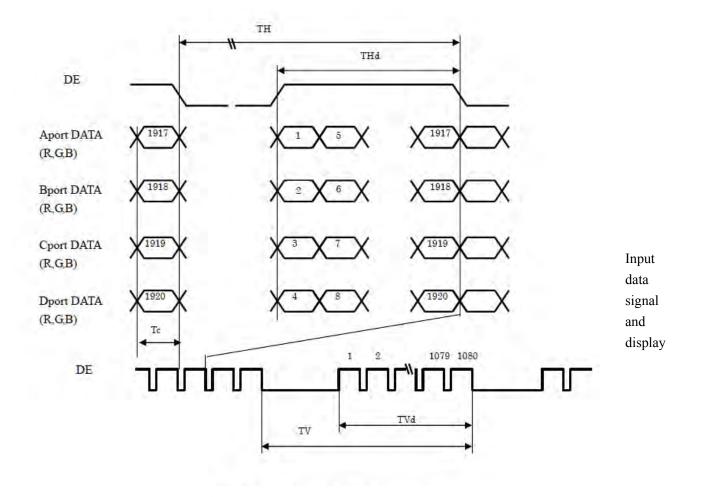
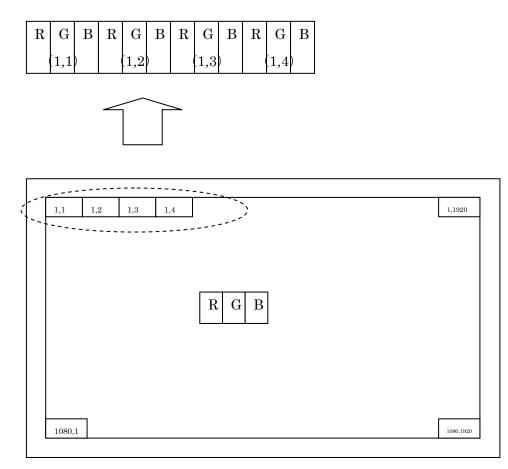



Fig.7-1 Timing characteristics of input signals

position on the screen

Display position of Dat (V,H)

1	1	Signal, Basic Display Colors and Gray Scale of Each Color (at the case of 8bits)																								
	Color & Gray		-								1	D	ata s	ignal	l				1							
	scale	Gray Scale	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	B1	B2	B3	B4	В5	B6	B7
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	1	1	1	1	1	1
в	Green	Ι	0	0	0	0	0	0	0	0	Х	Х	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Cyan	_	0	0	0	0	0	0	0	0	Х	Х	1	1	1	1	1	1	Х	Х	1	1	1	1	1	1
Color	Red	Ι	Х	Х	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
or	Magenta	Ι	Х	Х	1	1	1	1	1	1	0	0	0	0	0	0	0	0	Х	Х	1	1	1	1	1	1
	Yellow	_	Х	Х	1	1	1	1	1	1	Х	Х	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	_	Х	Х	1	1	1	1	1	1	Х	Х	1	1	1	1	1	1	Х	Х	1	1	1	1	1	1
Gr	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	仓	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cale	Darker	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
of F	仓	\leftarrow												``	r							``	r			
Red	Û	\leftarrow					\mathbf{b}							``	r							``	V			
	Brighter	250	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	251	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	252	Х	Х	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	仓	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Green	Darker	2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	仓	\checkmark					\boldsymbol{k}							``	r							``	r			
e of	Û	\checkmark					\mathbf{b}							``	r							``	r			
Gree	Brighter	250	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0
en	Û	251	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	252	0	0	0	0	0	0	0	0	Х	Х	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\sim	仓	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Gray Scale of Blue	Darker	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Sca	仓	\leftarrow												`	r							`	V			
le of	Û	\checkmark													V								r			
Blu	Brighter	250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1
ē	Û	251	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	1
	Blue	252	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	1	1	1	1	1	1

8. Input Signal, Basic Display Colors and Gray Scale of Each Color (at the case of 8bits)

0 : Low level voltage, 1 : High level voltage.

Each basic color can be displayed in 253 gray scales with 8 bit data signals. According to the combination of total 24 bit data signals, the 16-million-color display can be achieved on the screen. (X: don't care)

9. Optical characteristics

The optical measurement at the time of driving on the following conditions is shown in the following table.
Ta=25°C

Paran	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
Viewing al		θ 21 θ 22	CR≧10	70	88	_	Deg	[Note1,2]	
angle range	Vertical	θ 11 θ 12	CK≦10	70	88	_	Deg	Fig9-1,9-3	
Contras	st ratio	CR		3000	5000	—		【Note2】 Fig9-2 △2	
Resp Tir (G to	ne	τdrv		_	4	_	ms	[Note3,4,5] Fig9-1,9-2	
Chromat	ticity of	Х		0.261	0.296	0.331	—		
wh	ite	Y		0.294	0.329	0.364	—		
Chromatic	ity of rod	Х	0 00	0.607	0.637	0.667	—	ILED=120 mA The value of each bar.	
Cinomatic	ity of feu	Y	$\theta = 0^{\circ}$	0.324	0.354	0.384	_		
Chromat	ticity of	Х		0.290	0.320	0.350	_	【Note4】 Fig9-1,9-2	
gre	en	Y		0.596	0.626	0.656	—	11gj-1,j-2	
Chromotio	ity of blue	Х		0.120	0.150	0.180	—		
Chromaticity of blue		Y		0.049	0.079	0.109	—		
Luminance uniformity		δ_{w}		_	1.25	1.43	_	[Note6] Fig9-2 (All white)	
Luminar	nce(DC)			400	450		cd/m ²	[Note4] Fig9-2	
Luminanc	ce(PWM)			250	300		cd/m ²	[Note4] Fig9-2 [Note7]	

*The measurement shall be executed 30 minutes after lighting at rating.

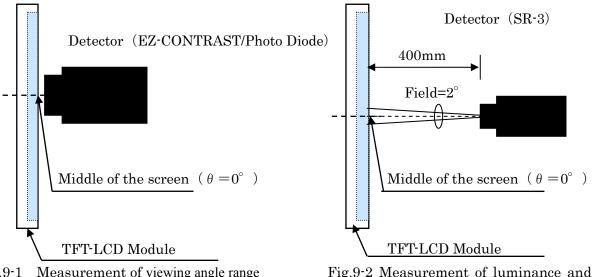


Fig.9-1 Measurement of viewing angle range and Response time.

Viewing angle range: EZ-CONTRAST

/Response time: Photo diode)

Fig.9-2 Measurement of luminance and chromaticity and Contrast.

[Note 1] Definitions of viewing angle range

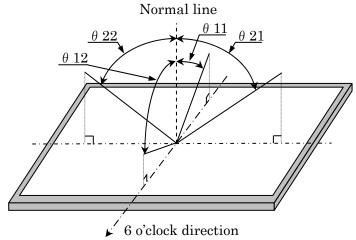


Fig. 9-3 Definitions of viewing angle range

[Note 2] Definition of contrast ratio :

The contrast ratio is defined as the following.

Contrast Ratio (CR) =

Luminance(brightness) with all pixels white

Luminance(brightness) with all pixels black

[Note 3] Definition of response time

The response time of $(\tau d \text{ and } \tau r)$ is defined as the following figure.9-4 and shall be measured by switching the input signal for "any level of gray (0, 64, 128, 192, 255)" and "any level of (0, 64, 128, 192, 255)".

	0	64	128	192	255
0		t r0-64	τ r0-128	τr0-192	t r0-255
64	τ d64-0	/	τ r64-128	τ r64-192	τ r64-255
128	τ d128-0	τ d128-64	/	τ r128-192	τ r128-255
192	τd192-0	τ d192-64	τ d192-128	/	τ r192-255
255	τ d255-0	τ d255-64	aud255-128	τ d255-192	/

t*:x-y...response time from level of gray(x) to level of gray(y) $\tau r = \Sigma(tr:x-y)/10$ $\tau d = \Sigma(td:x-y)/10$ $\tau drv = (\tau r + \tau d)/2$

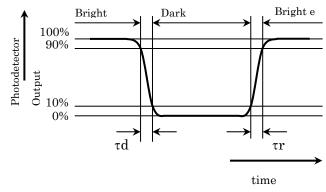
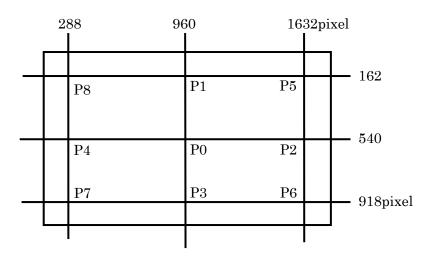


Fig. 9-4 Definitions of response time


[Note 4] This shall be measured at center of the screen.

[Note 5] This value is valid when O/S driving is used at typical input time value.

[Note 6] Definition of Luminance uniformity;

Luminance uniformity is defined as the following with nine measurements.(P0~P8)

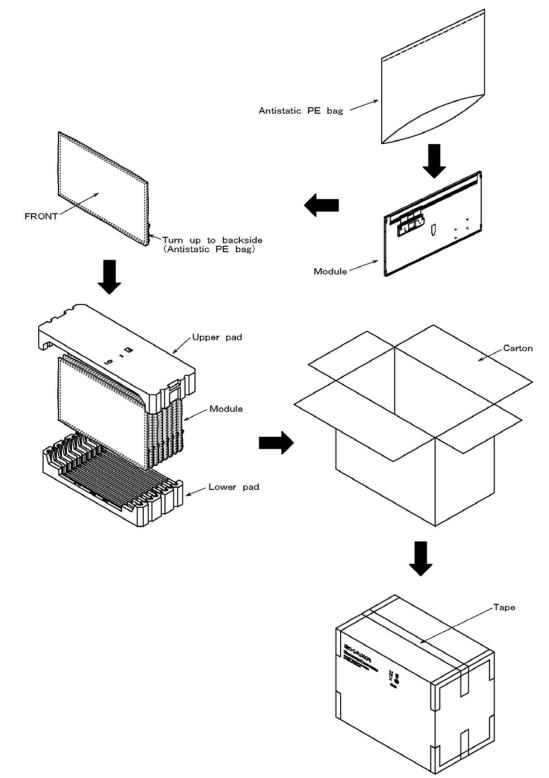
 $\delta_{w} = \frac{\text{maximum Luminance of nine points(brightness)}}{\text{minimum Luminace of nine points(brightness)}}$

[Note 7] LED Current : 260mA, duty : 1/3, PWM frequency : 120Hz, LED Voltage : 42.9V

10. Handling Precautions of the module

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Voltage difference generated by this switching, ΔV LED, may affect a sound output, etc. when the power supply is shared between the LED PWB and its surrounding circuit. So, separate the power supply of the LED PWB with the one of its surrounding circuit.
- c) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- d) Since the front polarizer is easily damaged, pay attention not to scratch it.
- e) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- f) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- g) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- h) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- The module has some printed circuit boards (PCBs) on the back side, take care to keep them from any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- j) Observe all other precautionary requirements in handling components.
- k) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc... So, please avoid such design.
- 1) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- m) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- n) This LCD module is designed to prevent dust from entering into it. However, there would be a possibility to have a bad effect on display performance in case of having dust inside of LCD module. Therefore, please ensure to design your product to keep dust away around LCD module.
- Make sure that the LCD module is operated within specified temperature and humidity. Measures against dust, water, vibration, and heat dissipation structure, etc. are required at the cabinet or equipment side.

Avoid combination of background and image with large different luminance.


Please consider the design and operating environment.

- p) Ultra-violet ray filter is necessary in outdoor environment.
- q) Operation for 24 hours a day is NOT recommended.
- r) When the module is turned on, you might hear cracking noises coming from the module until it warms up. Similarly, this phenomenon might occur when the module is turned off until it cools down. This phenomenon occurs by a large amount of heat generation due to a big module. Therefore, it is not a defect.
- s) Image retention may occur if same fixed pattern is displayed for a long time. In some cases, it may not disappear. It is recommended to use moving picture periodically. After long-term static display, periodical power-off or screen saver is needed. For screen saver, moving picture or black pattern is strongly recommended.

11. Packing

- 11-1. Packing form
 - a) Piling number of cartons : 3 Maximum
 - b) Packing quantity in one carton : 8 pcs
 - c) Carton outer size : $671 \text{ mm}(W) \times 374 \text{ mm}(D) \times 421 \text{ mm}(H)$ Typ.
 - d) Total mass of one carton filled with full modules(8 pcs) : 25 kg Typ.
 - e) Country of origin / area : China

*Packing Form is shown in Fig.11-1

LD-T130001B-23

11-2. How to take out the EPS Upper pad

Both hands are inserted in the concave portion of the right-and-left side central part of EPS Upper pad.

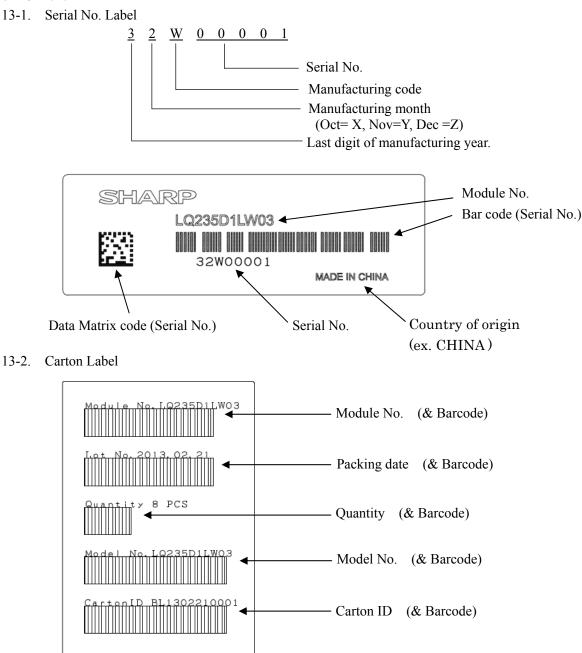
Insert to the back of concave portion, and pinches and raises the lower part of concave portion.

(Refer to the following figure.)

(side view)

Pinched and raised state.

LD-T130001B-24


12. Reliability test item

No.	Test item	Condition
1	High temperature storage test	Ta =60 °C 240h
2	Low temperature storage test	$Ta = -25 ^{\circ}C$ 240h
3	High temperature and high humidity operation test	Ta=40°C ; 90%RH 240h (No condensation)
4	High temperature operation test	Ta=50°C 240h
5	Low temperature operation test	$Ta=0^{\circ}C$ 240h
6	Vibration test*	Frequency: 10~57Hz/Vibration width (one side): 0.075mm
	(non-operation)	: 58~500Hz/Acceleration: 9.8 m/s ²
		Sweep time: 11 minutes
		Test period: 3 hours (1h for each direction of X, Y, Z)
7	Shock test*	Maximum acceleration: 294m/s ²
	(non-operation)	Pulse width:11ms, sinusoidal half wave
	(non-operation)	Direction: +/-X, Y, Z once for each direction.
8		At the following conditions, it is a thing without incorrect operation
		and destruction.
		(1)Non-operation: Contact electric discharge +/-10kV
	ESD	Non-contact electric discharge+/-20kV
		(2)Operation Contact electric discharge +/-8kV
		Non-contact electric discharge +/-15kV
		Conditions: 150Pf, 330ohm

[Result evaluation criteria]

Under the display quality test condition with the normal operation state, there shall be no change, which may affect a practical display function

13. Others

- 13-3. The chemical ozone depleting substance is not used.
- 13-4. If any problem occurs in relation to the description of this specification, it shall be resolved through discussion with spirit of cooperation.

The figure left below (cardboard box recycling symbol mark) is written to the packing box.
And, the figure right below is written to the packing box of the settlement for the RoHS restriction.
※ R.C. (RoHS Compliance) means it suits the RoHS directive.
This LCD module is compliant with RoHS Directive.

Cardboard box • Recycling symbol mark

R.C.

Mark for RoHS directive

LD-T130001B-26

1 4. Range of storage temperature and humidity environmental condition

Temperature 0° C to 40° C

Relative humidity 90% and below

Reference condition

:20°C to 35°C 85%RH or less(summer)

: 5° C to 15° C to 85° RH or less(winter)

• the total storage time (40°C,90%RH) : 240h or less

Direct sunlight

Please keep it in the state of wrapping or the darkroom so that direct sunshine should not strike directly into the product.

Ambient atmosphere

Please do not keep it in the place with the danger of the generation of the causticity gas and the volatile solvent.

Dewy condensation prevention

• Please do not put the wrapping box directly on the floor, and keep it on palette or rack to avoid dewy condensation.

Moreover, please put it in a constant direction correctly to improve ventilation under the palette.

• Please separate from the wall in the storage warehouse and keep it.

• Please pay attention that ventilation is improved, and set up the ventilator etc. in the warehouse.

• Please manage so that there is no rapid temperature change more than natural environment.

Storage period

Please keep within one year under the above-mentioned storage condition.

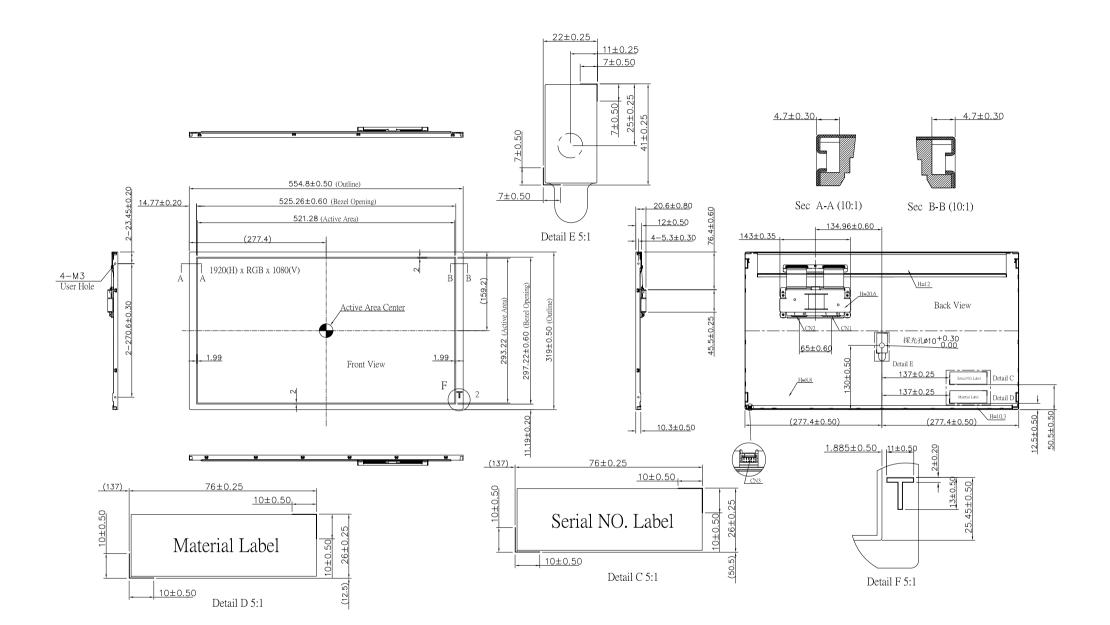


Fig.3 OUTLINE DIMENSIONS