TENTATIVE

No.	rev.01
DATE	Jan. 15. 2015

SHARP

TECHNICAL LITERATURE

FOR

TFT-LCD module

MODEL No. LQ695D1VG01

The technical literature is subject to change without notice. So, please contact SHARP or its representative before designing your product based on this literature.

> DEVELOPMENT DEPARTMENT 4 DISPLAY DEVICE UNIT 3 DISPLAY DEVICE BUSINESS DIVISION 1 SHARP CORPORATION

1. Application

This technical literature applies to the color 69.5 inch TFT-LCD module.

* This technical literature is proprietary products of SHARP CORPORATION ("SHARP") and includes materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

* In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

* Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

* SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in this technical literature.

* Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is color active matrix LCD Open Cell incorporating amorphous silicon TFT (<u>Thin Film Transistor</u>). It is composed of a color TFT-LCD panel, driver ICs, control circuit, LED driver circuit, and edge-light LED system etc.

Graphics and texts can be displayed on a $3840 \times RGB \times 2160$ dots panel with one billion colors by using 10bit V-By-One to interface, +12V of DC supply voltages.

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit. In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

With combination of these technologies, motion blur can be reduced and clearer display performance can be realized.

Parameter	Specifications	Unit
Display size	1538.88 (H) x865.62 (V)	mm
(Active area)	176.563 (Diagonal)[69.513]	cm
Pixel Format	$3840(H) \times 2160(V) (1pixel = R + G + B dot)$	pixel
Pixel pitch	0.401 (H) x 0.401 (V)	mm
Pixel configuration	R, G, B vertical stripe	
Display mode	Normally black	
Outline Dimensions [Note1]	(1559.4 (H) x 893.0 (V) x 27.5(D))	mm
Mass	T.B.D.	kg
Surface treatment [Note2]	Low Haze Anti Glare Hard coating: 2H and more	

3. Mechanical Specifications

[Note1] Outline dimensions are shown in figure "MODULE OUTLINE DIMENSION"

4. Input Terminals

4.1. Driving interface of C-PWB

CN1 (Interface signals and +12V DC power supply)

Using connector : FI-RNE51SZ-HF (Japan Aviation Electronics Ind., Ltd.)

Matching connector : FI-RE51HL, FI-RE51CL (Japan Aviation Electronics Ind., Ltd.)

Mating V-by-One® HS Transmitter : THCV215 (THine)

Pin No.	Symbol	Function	Remark
1	VCC	+12V Power Supply	
2	VCC	+12V Power Supply	
3	VCC	+12V Power Supply	
4	VCC	+12V Power Supply	
5	VCC	+12V Power Supply	
6	VCC	+12V Power Supply	
7	VCC	+12V Power Supply	
8	VCC	+12V Power Supply	
9	NC		
10	NC		
11	GND		
12	GND		
13	GND		
14	GND		
15	NC		
16	NC		
17	NC		
<u>18</u> 19	NC		
	NC		
20 21	NC		
21	NC		
22	NC NC		
23	GND		
24	GND		Output(On on Drain)
25	VB1_HTPDN	Hot plug detect	Output(Open Drain) [Note1]
26	VB1_LOCKN	Lock Detect L:Lock / H:Unlock	Output(Open Drain) [Note1]
27	GND		
28	VB1 0 TX-	V-by-One HS Data Lane0	
29	VB1 0 TX+	V-by-One HS Data Lane0	
30	GND		
31	VB1 1 TX-	V-by-One HS Data Lane1	
32	VB1 1 TX+	V-by-One HS Data Lane1	
33	GND		
34	VB1 2 TX-	V-by-One HS Data Lane2	
35	VB1 2 TX- VB1 2 TX+	V-by-One HS Data Lane2	
36	GND		
37	VB1 3 TX-	V-by-One HS Data Lane3	
38	VB1 3 TX+	V-by-One HS Data Lane3	
39	GND		
40	VB1 4 TX-	V-by-One HS Data Lane4	
41	VB1 4 TX+	V-by-One HS Data Lane4	
42	GND		
12			
43	VB1 5 TX-	V-by-One HS Data Lane5	
44	VB1 5 TX- VB1 5 TX+	V-bv-One HS Data Lane5 V-bv-One HS Data Lane5	
44 45	VB1 5 TX- VB1 5 TX+ GND	V-by-One HS Data Lane5	
44 45 46	VB1 5 TX- VB1 5 TX+ GND VB1 6 TX-	V-by-One HS Data Lane5 V-by-One HS Data Lane6	
44 45 46 47	VB1 5 TX- VB1 5 TX+ GND VB1 6 TX- VB1 6 TX+	V-by-One HS Data Lane5	
44 45 46	VB1 5 TX- VB1 5 TX+ GND VB1 6 TX-	V-by-One HS Data Lane5 V-by-One HS Data Lane6	
44 45 46 47 48	VB1 5 TX- VB1 5 TX+ GND VB1 6 TX- VB1 6 TX+ GND	V-by-One HS Data Lane5 V-by-One HS Data Lane6 V-by-One HS Data Lane6	
44 45 46 47 48 49	VB1 5 TX- VB1 5 TX+ GND VB1 6 TX- VB1 6 TX+ GND VB1_7_TX-	V-bv-One HS Data Lane5 V-bv-One HS Data Lane6 V-by-One HS Data Lane6 V-by-One HS Data Lane7	
44 45 46 47 48	VB1 5 TX- VB1 5 TX+ GND VB1 6 TX- VB1 6 TX+ GND	V-by-One HS Data Lane5 V-by-One HS Data Lane6 V-by-One HS Data Lane6	

[note] GND of a liquid crystal panel drive part has connected with a module chassis.

CN2 (Interface signals)

Using connector	: FI-RNE41SZ-HF (Japan Aviation Electronics Ind., Ltd.)	

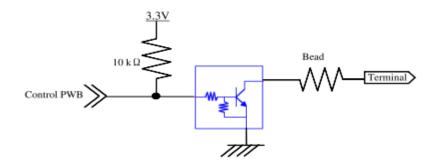
Matching connector : FI-RE41HL , FI-RE41CL (Japan Aviation Electronics Ind., Ltd.)

Matching V-by-One® HS transmitter: THCV215 (THine)

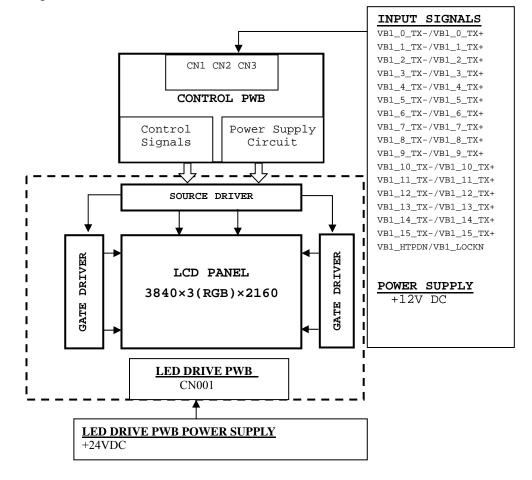
		Eurotion	Domortz
Pin No.	Symbol GND	Function	Remark
2	VB1 8 TX-	Why One US Date Lenc ⁹	
3		V-by-One HS Data Lane8	
4	VB1 8 TX+	V-by-One HS Data Lane8	
5	GND		
	VB1 9 TX-	V-by-One HS Data Lane9	
6	VB1 9 TX+	V-by-One HS Data Lane9	
7	GND		
8	VB1 10 TX-	V-by-One HS Data Lane10	
9	VB1 10 TX+	V-by-One HS Data Lane10	
10	GND		
11	VB1 11 TX-	V-by-One HS Data Lane11	
12	VB1 11 TX+	V-by-One HS Data Lane11	
13	GND		
14	VB1 12 TX-	V-by-One HS Data Lane12	
15	VB1 12 TX+	V-by-One HS Data Lane12	
16	GND		
17	VB1 13 TX-	V-by-One HS Data Lane13	
18	VB1 13 TX+	V-by-One HS Data Lane13	
19	GND		
20	VB1 14 TX-	V-by-One HS Data Lane14	
21	VB1 14 TX+	V-by-One HS Data Lane14	
22	GND		
23	VB1 15 TX-	V-by-One HS Data Lane15	
24	VB1 15 TX+	V-by-One HS Data Lane15	
25	GND		
26	NC		
27	NC		
28	NC		
29	NC		
30	NC		
31	NC		
32	NC		
33	NC		
34	NC		
35	NC		
36	NC		
37	NC	1	
38	NC		
39	NC		
40	NC		
40	NC		
41	INC		

[note] GND of a liquid crystal panel drive part has connected with a module chassis.

CN3 (Interface signals)


	U /		
Using con	inector : A	A2008WR0-8PS (JWT)	
Pin No.	Symbol	Function	Remark
1	VCC	+12V Power Supply	
2	VCC	+12V Power Supply	
3	GND		
4	-		
5	-		
6	-		
7	-		
8	GND		

TENTATIVE


-		11 0			
	D[0]	R2		D[16]	B2
	D[1]	R3		D[17]	B3
	D[2]	R4		D[18]	B4
Duto0	D[3]	R5	Duto?	D[19]	B5
Byte0	D[4]	R6	Byte2	D[20]	B6
	D[5]	R7		D[21]	B7
	D[6]	R8		D[22]	B8
	D[7]	R9(MSB)		D[23]	B9(MSB)
	D[8]	G2	Duto?	D[24]	-
	D[9]	G3		D[25]	_
	D[10]	G4		D[26]	B0(LSB)
Duto1	D[11]	G5		D[27]	B1
Byte1	D[12]	G6	Byte3	D[28]	G0(LSB)
	D[13]	G7		D[29]	G1
	D[14]	G8		D[30]	R0(LSB)
	D[15]	G9(MSB)		D[31]	R 1

V-by-One® HS color data mapping

[Note 1]The equivalent circuit figure of the terminal forVB1_HTPDN and VB1_LOCKN

4.2.Interface block diagram

4.3. Backlight driving

CN001 (+24VDC p	ower supply and control signal)
Using connector	: 2022WR-14B1(YEONHO)	⊿01
Mating connector	: 2022HS-14B1(YEONHO)	$\angle 01$ or equivalent connector.

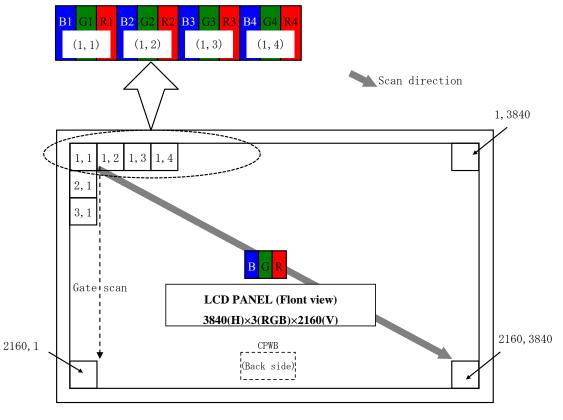
Pin No. ⊿ 01	Symbol	I/O	Function	Remark
1	VLED	In	+24V	
2	VLED	In	+24V	
3	VLED	In	+24V	
4	VLED	In	+24V	
5	VLED	In	+24V	
6	GND	In	GND	
7	GND	In	GND	
8	GND	In	GND	
9	GND	In	GND	
10	GND	In	GND	
11	Error_out	Out	Error Detection	[Note 1]
12	Von/off	In	LED driver On/Off	[Note 2]
13	NC	-		-
14	EX_DIM	In	Brightness Control(PWM 1 ~ 100%)	[Note 3] Pulse Dimming

[Note 1] Error Detection

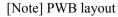
	MIN	ТҮР	MAX		
Normal	-	-	0.8V		
Abnormal	Open Collector				

[Note 2] LED driver ON/OFF

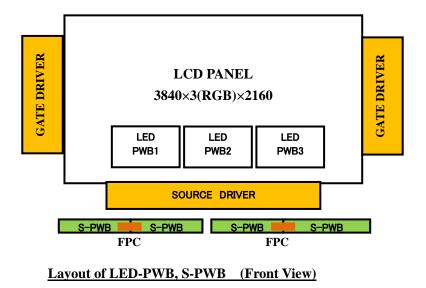
Input voltage	Symbol	Voltage	Function
High voltage	V _{ON}	2.4 ~ 3.6 V	LED driver : On
Low voltage	V _{OFF}	-0.3 ~ 0.8 V	LED driver : Off


[Note 3] Pulse Dimming Pin No.__ "EX_DIM" is used for the pulse dimming control by the PWM duty with input pulse.

		L			5	5	
Input PWM waveform	↓ Ton			_			
High voltage	ON	OFF	ON		High voltage:		
		•			Low voltage:	0~0.8 V	


		MIN	ТҮР	MAX	Remark
Pulse signal	[Hz]	240	-	T.B.D.	
DUTY(Ton/T)	[%]	1	-	100	Ta=25°C
Dimming level	[%]	-	-	100	Ta=25°C
(luminance ratio)					1a-25 C

4.4. Display direction & PWB layout


In this module each subpixel R, G, B is aligned as follows. Four S-PWBs and three LED-PWBs are layout at the bottom side of the screen.

LCD subpixel alignment

Four S-PWBs and three LED-PWBs are layout at the bottom side of the screen.

5. Absolute maximum ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
12V supply voltage (for Control PWB)	Vcc	Ta=25 °C	0~+14	V	
24V supply voltage (for LED Driver)	V _{LED}	Ta=25 °C	0~+29.0	V	
Input voltage (for LED Driver)	Von /Voff	Ta=25 °C	-0.3 ~ +5.25	V	[Note 1]
	EX_DIM	Ta=25 °C	-0.3 ~ +5.25	V	[Note 1]
Storage temperature	Tstg	-	-25 ~ +60	°C	
Operation temperature (Ambient)	Тора	-	0~+50	°C	[Note 2]

[Note 1] Von/off, EX_DIM in CN001.

[Note 2] Humidity 95%RH Max.(Ta≦40°C)

Maximum wet-bulb temperature at 39 °C or less.(Ta>40°C) No condensation.

6. Electrical characteristics of input signals

6.1. Control circuit driving

/01

⊿01							Ta=25°C
Par	ameter	Symbol	Min.	Тур.	Max.	Unit	Remark
	Supply voltage	Vcc	11.4	12.0	12.6	V	[Note1]
1037	Current dissipation	Icc	-	(1.7)	TBD	Α	[Note2]
+12V supply voltage	Inrush current	I _{RUSH} 1	-	TBD	-	А	t1=500us [Note5]
		I _{RUSH} 2	-	TBD	-	А	t1>5ms
Permissible in	put ripple voltage	VRP	-	-	100	mVP-P	Vcc = +12V
Differential In	out High threshold	VRTH			50	mV	
Differential In	put Low threshold	VRTL	-50			mV	
Unit	Interval	UI	266		1667	ps	[Note4]
	ential Input Intra-pair Skew	tRISK_Intra	0.3			UI	[Note3]
	Differential Input Allowable Intra-pair Skew					UI	[Note3]

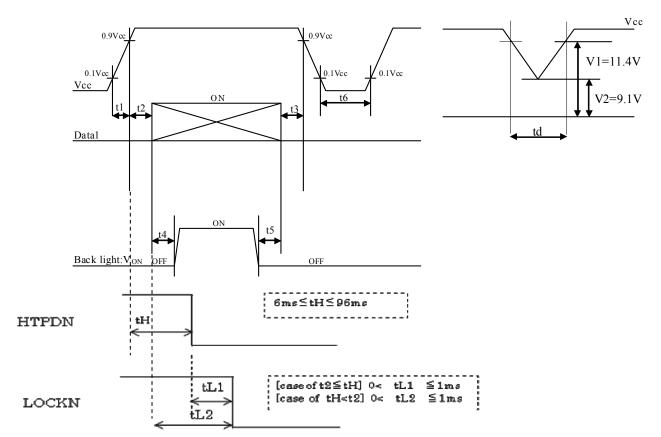
[Note1]

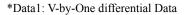
Input voltage sequences

50us < t1 < 20ms 20ms < t2 0 < t3 < 1s1s < t4

0 < t5

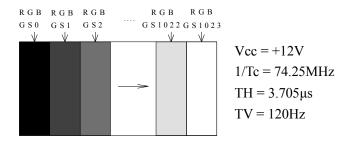
1s < t6

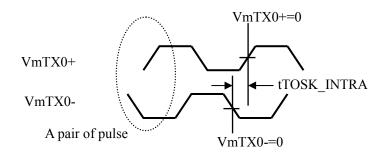

Dip conditions for supply voltage


a) V2 \leq Vcc < V1

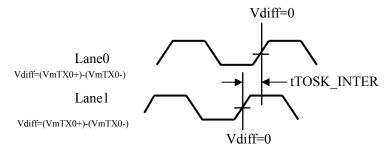
td < 10ms

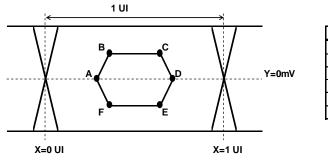
b) Vcc < V2


This case is based on input voltage sequences.



[Note] About the relation between data input and back light lighting, please base on the above-mentioned input sequence. When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

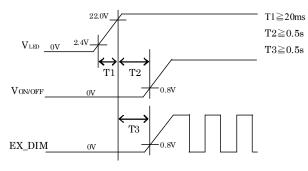

[Note2] Typical current situation: 1024 gray-bar patterns. (Vcc = +12V) The explanation of RGB gray scale is seen in section 8. $\angle 01$


[Note 3] Differential input Allowable Intra-pair Skew

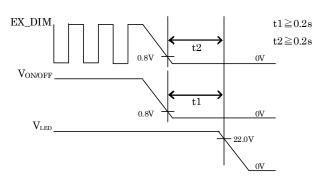
Differential input Allowable Inter-pair Skew

[Note 4] Eye diagram (Eye mask)

	X[UI]	Y[mV]
Α	0.25	0
в	0.3	50
С	0.7	50
D	0.75	0
E	0.7	-50
F	0.3	-50


[Note5] Vcc12V inrush current waveform

6.2 . LED driving for Back Light


Ta=25°C
1u 20 C

Pa	rameter	Symbol	Min.	Тур.	Max.	Unit	Remark
	Current dissipation	I _{LED}	-	(7.0)	T.B.D.	А	$V_{\text{LED}} = 24V, Ta=25^{\circ}C$ DUTY =100%
+24V supply voltage	Irush current	I _{RUSH}	-	T.B.D.	T.B.D.	А	[Note 1]
	Supply voltage	V_{LED}	21.6	24.0	26.4	V	24V±10%
Permissible i	nput ripple voltage	Vrp	-	-	1	VP-P	V_{LED} = + 24.0V
Input v	voltage (On)	Von	2.4	3.3	3.6	V	V
Input v	voltage (Off)	Voff	-0.3	-	0.8	V	V _{ON/OFF}
Input voltag	ge (EX_DIM high) EX_DIM H		2.4	3.3	3.6	V	
Input voltag	e (EX_DIM Low)	EX_DIM L	-0.3	0	0.8	V	EX_DIM

[Note 1] 1) VLED-turn-on condition

2) VLED-turn-off condition

6.3 LED lifetime

LED light system is bottom-side-edge type. The characteristics of the LED are shown in the following table. The value mentioned below is at the case of one LED.

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Life time	T _{LED}	-	50,000	-	Hour	[Note]

[Note]

LED life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the condition of $Ta = 25^{\circ}C$

[Operation condition]

⊿ 01

- ambient temperature Ta=25°C

7. Timing characteristics of input signals

Timing diagrams of input signal are shown in below figure.

]	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency	1/Tc	69.0	74.25	75.0	MHz	
	Horizontal period	TH	265	275	351	clock	
	Horizontai period	П	3.53	3.7	-	μs	
Data enable	Horizontal period (High)	THd	240	240	240	clock	
signal	Vertical period	TV	2240	2250	2872	line	
	vertical period	1 V	94	120	120.6	Hz	
	Vertical period (High)	TVd	2160	2160	2160	line	

[Note]

- When vertical period is very long, flicker and etc. may occur.
- Please turn off the module after it shows the black screen.
- Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.
- As for your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting.

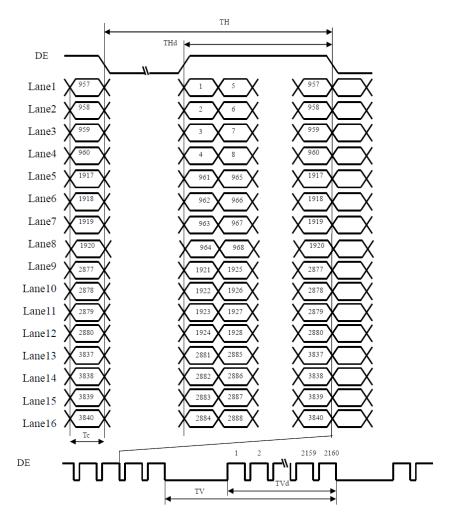


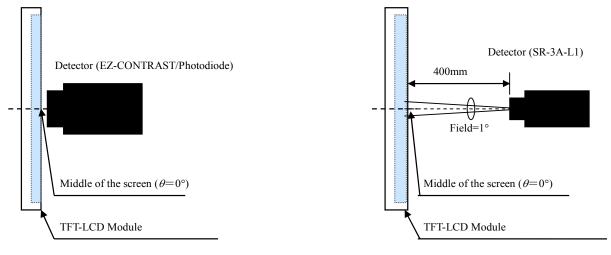
Figure: Timing characteristics of input signal

8. Input signal, basic display colors and gray scale of each color

															D	ata	sigr	nal														
	Colors &	Gray	R0	R1	R2	R3	R4	R5	R6	R7	R8	R9	G0	Gl	G2	G3	G4	G5	G6	G7	G8	G9	B0	B1	B2	B3	B4	B5	B6	B7	B8	B9
	Gray scale	Scale																														
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
or	Green	-	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic Color	Cyan	-	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
asic	Red	-	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	Magenta	-	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
þ	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
fRe	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le o	仓	\downarrow															1										`	Ļ				
Gray Scale of Red	Û	\downarrow																									`	Ļ				
ìray	Brighter	GS1021	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\cup	Û	GS1022	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
en	仓	GS1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gre	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e of	仓	\downarrow						~										-									`	Ļ				
Gray Scale of Green	Û	\downarrow						/																			,	Ļ				
ray	Brighter	GS1021	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
G	Û	GS1022	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Green	GS1023	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e	Û	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray Scale of Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
e of	Û	\downarrow															1										,	Ļ				
Scal	Û	\downarrow						/									1	/										Ļ				
ray	Brighter	GS1021	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1
9	Û	GS1022	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	Blue	GS1023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

- 0: Low level voltage / 1: High level voltage

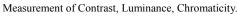
- Each basic color can be displayed in 1024 gray scales from 10 bits data signals. According to the combination of total 30 bits data signals, one billion-color display can be achieved on the screen.


9. Optical characteristics

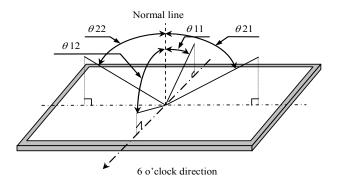
Ta=25°C, Vcc=12V, V_{INV}=24.0V, V_{BRT}=100%, Timing: 120Hz (typ. value)

Parame	ter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark		
Viewing	Horizontal	θ21 θ22	CD>10	70	88	-	deg.	[Natal 4]		
angle range	Vertical	<i>θ</i> 11 <i>θ</i> 12	CR <u>≥</u> 10	70	88	-	deg.	[Note1,4]		
Contrast	ratio	CRn			TBD		-	[Note2,4]		
Response	time	τ_{DRV}			TBD		ms	[Note3,4,5]		
	White	Х			TBD		-			
	w mite	у		Тур0.03	TBD		-			
	Red	Х	$\theta = 0 \text{ deg.}$		TBD		-			
Chromaticity	Keu	у	_		TBD	Typ+0.03	-	[Note4]		
Cinomaticity	Green	Х		Typ0.03	TBD	1yp+0.03	-			
	Ulteri	у			TBD		-			
	Blue	х	-	TBD			-			
	Blue	у			TBD		-			
Luminance	White	YL		(280)	(350)	-	cd/m ²			
Luminance	White	¥⊾		(400)	(500)	=	ed/m ²	⊿01		
Luminance uniformity	White	δw		-	-	(1.43)		[Note6]		

- The measurement shall be executed 60 minutes after lighting at rating.


[Note] The optical characteristics are measured using the following equipment.

Measurement of viewing angle range and Response time.


-Viewing angle range: EZ-CONTRAST

- Response time: Photodiode

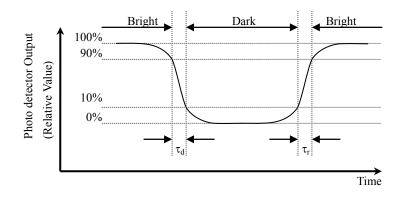
TENTATIVE

[Note1] Definitions of viewing angle range:

[Note2] Definition of contrast ratio:

The contrast ratio is defined as the following.

 $Contrast Ratio = \frac{Luminance (brightness) with all pixels white}{Luminance (brightness) with all pixels black}$

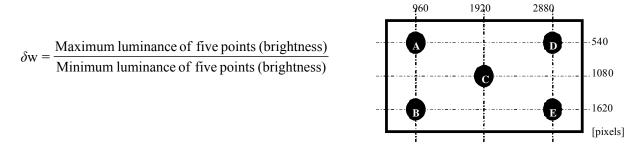

[Note3] Definition of response time

The response time (τ) is defined as the following figure and shall be measured by switching the input signal for "any level of gray (0%, 25%, 50%, 75% and 100%)" and "any level of gray (0%, 25%, 50%, 75% and 100%)".

	0%	25%	50%	75%	100%
0%		tr:0%-25%	tr:0%-50%	tr:0%-75%	tr:0%-100%
25%	td: 25%-0%		tr: 25%-50%	tr25%-75%	tr: 25%-100%
50%	td: 50%-0%	td: 50%-25%		tr: 50%-75%	tr: 50%-100%
75%	td: 75%-0%	td: 75%-25%	td: 75%-50%		tr: 75%-100%
100%	td: 100%-0%	td: 100%-25%	td: 100%-50%	td:100%-75%	

t*:x-y --- response time from level of gray(x) to level of gray(y)

$$\tau_{rd} = \{\sum (tr : x - y) + \sum (td : x - y)\}/20$$



[Note4] This value shall be measured at center of the screen.

[Note5] This value is valid when O/S driving is used at typical input time value.

[Note 6] Definition of white uniformity;

White uniformity is defined as the following with five measurements. (A~E)

10. Reliability test item

No.	Test item	Condition
1	High temperature storage test	Ta=60°C 240h
2	Low temperature storage test	Ta=-10°C 240h
3	High temperature and high humidity operation test	Ta=40°C ; 95%RH 240h (No condensation)
4	High temperature operation test	Ta=50°C 240h
5	Low temperature operation test	Ta=0°C 240h
6	Vibration test (non-operation)	Frequency: 10~57Hz/Vibration width (one side): 0.075mm : 58~500Hz/Acceleration: 9.8 m/s ² Sweep time: 11 minutes Test period: 3 hours (1h for each direction of X, Y, Z)
7	ESD test	 * At the following conditions, it is a thing without incorrect operation and destruction. (1)Non-operation: Contact electric discharge ±10kV (2)Operation: Contact electric discharge ±8kV Non-contact electric discharge ±15kV Conditions: 150pF, 330ohm

[Result evaluation criteria]

Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function.

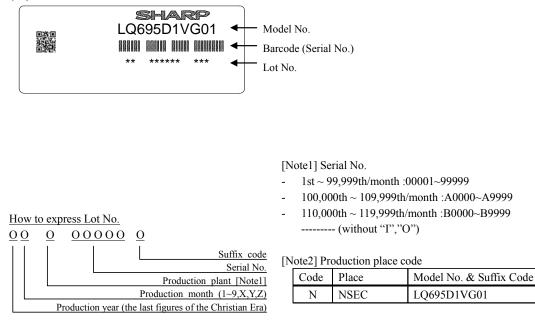
11. Packing form

a)	Piling number of cartons	: 2 Maximum
b)	Packing quantity in one carton	: T.B.D.
c)	Carton size	: T.B.D.
d)	Total mass of one carton filled with full modules	: T.B.D.

12. Carton storage condition

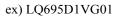
Temperature	0° C to 40° C
Humidity	95% RH or less
Reference condition	20°C to 35°C, 85% RH or less (summer)
	5°C to 15°C, 85% RH or less (winter)
	the total storage time (40°C, 95% RH) : 240h or less
Sunlight	Be sure to shelter a production from the direct sunlight.
Atmosphere	Harmful gas, such as acid and alkali which bites electronic components and/or wires must not be detected.
Notes	Be sure to put cartons on palette or base, don't put it on floor, and store them with keeping off a wall.
	Please take care of ventilation in storehouse and around cartons, and control temperature within the natural environment.
Storage life	1 year.

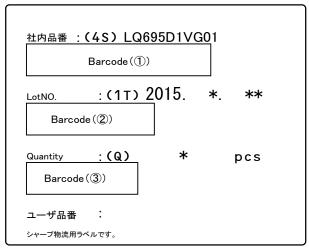
13. Label **2**01


a) Lot No. Label

The label that displays SHARP, product model, a product number is stuck on the back of the module.

a) Overview


This label is stuck on the backlight chassis.



b) Packing label

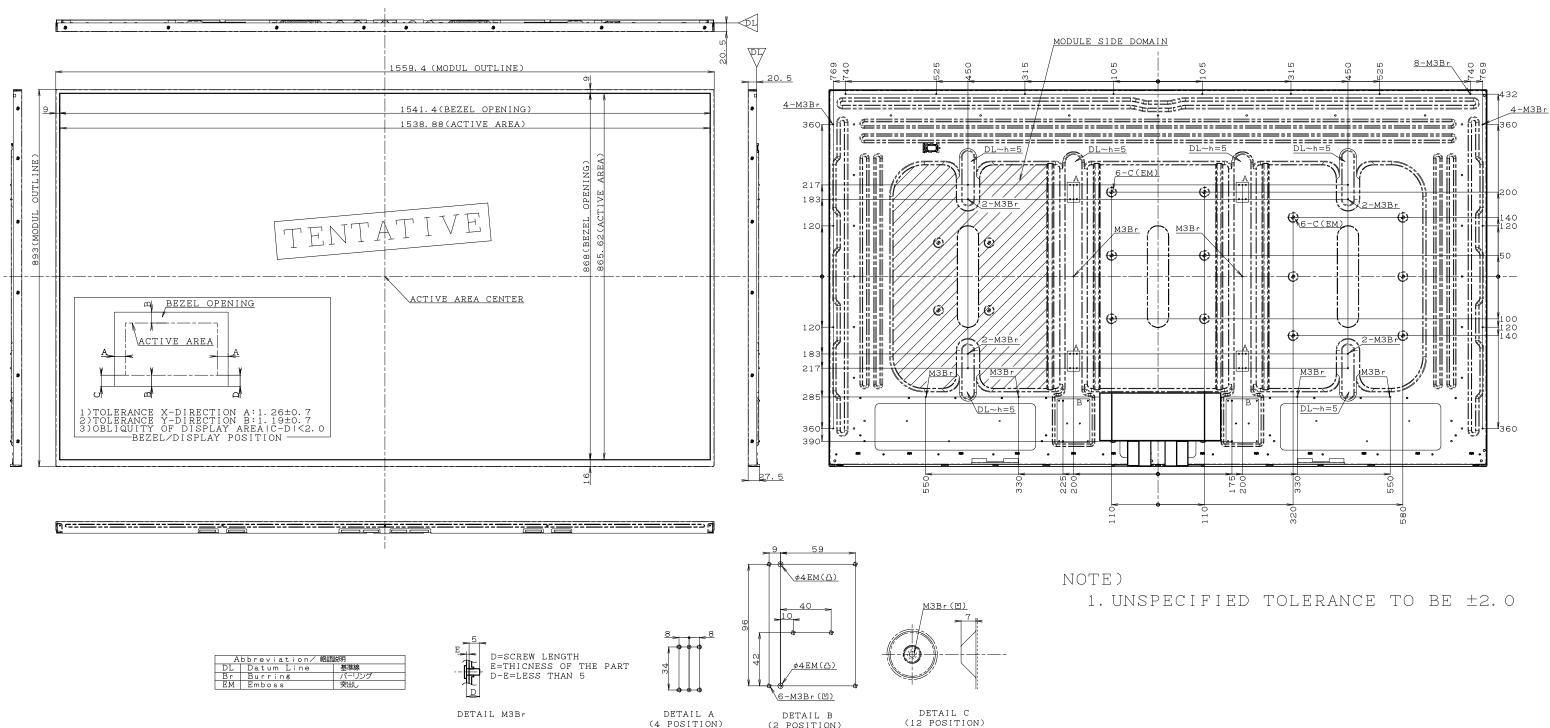
This label is stuck on each packing box.

- ① Model No.& Suffix Code
- ② Lot No.
- ③ Quantity

14.Precautions

14-1 Fail safe design

LCD module has an inherent chance of failure. Customers must protect against injury, damage or loss from such as failures by incorporating safety design measures into your facility equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.


14-2 Handling Precautions of the module

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c) Since the front polarizer is easily damaged, pay attention not to scratch it.
- d) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- h) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- i) Observe all other precautionary requirements in handling components.
- j) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc. So, please avoid such design.
- k) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- m) This LCD module is designed to prevent dust from entering into it. However, there would be a possibility to have a bad effect on display performance in case of having dust inside of LCD module. Therefore, please ensure to design your TV set to keep dust away around LCD module.
- o) Adjusting Vcom has been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
- p) Disassembling the module can cause permanent damage and should be strictly avoided.
- q) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- r) The chemical compound, which causes the destruction of ozone layer, is not being used.
- s) In any case, please do not resolve this LCD module.
- t) This module is corresponded to RoHS.
- u) When any question or issue occurs, it shall be solved by mutual discussion.

70INCH MODULE OUTLINE DIMENSIONS

(2 POSITION)

(4 POSITION)

2014/08/29