

DEVICE SPECIFICATION FOR

TFT-LCD Module

Model No. LQ695D3LG02

CUSTOMER'S APPROVAL

DATE

PRESENTED

BY
BY) doumuchi Jamuar
Harumichi Tamura
MANAGER
DEVELOPMENT DEPARTMENT
LARGE LIQUID CRYSTAL DISPLAY BUSINESS UNIT DISPLAY DEVICE BUSINESS DIVISION II

RECORDS OF REVISION

MODEL No. : LQ695D3LG02
SPEC No. : LD-T150008A

SPEC No.	DATE	REVISED No.	PAGE	SUMMARY	NOTE
LD-T150008	Mar 21.2015	-	-		${ }^{\text {st }}$ Issue
	Apr 10.2015	A	11	- Modified Supply voltage Min and Max value. - Modified Current dissipation - Modified $\mathrm{I}_{\text {rush }} 1$ and $\mathrm{I}_{\text {Rush }} 2$ current - Modified Input High Voltage - Modified t 3 of Input voltage sequence	$2^{\text {nd }}$ Issue
			12	- Modified inrush current waveform	
			13	- Modified Voltage operating voltage and LED current (Swapped each value)	

1. Application

This specification applies to the color 69.5" TFT-LCD module LQ695D3LG02.

* This specification is proprietary products of SHARP CORPORATION ("SHARP") and includes materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.
* In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
* Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
* SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these specification.
* Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit, and edge-light LED system etc. Graphics and texts can be displayed on a $1920 \times$ RGB $\times 1080$ dots panel with 1 billion colors (RGB 10bits) by using LVDS (Low

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O / S driving) technology for the control circuit. In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

With this technology, image signals can be set so that liquid crystal response completes within one frame. As a result, motion blur reduces and clearer display performance can be realized

This LCD module also adopts 120 Hz Frame Rate driving method.
With combination of these technologies, motion blur can be reduced and clearer display performance can be realized.

This LCD-module can be installed by both installation direction "landscape" and "portrait" based on Section 5.

3. Mechanical Specifications

Parameter	Specifications	Unit	remark
Display size	$176.563 \quad$ (Diagonal)	cm	
	$69.513 \quad$ (Diagonal)	inch	
Active area	$1538.880(\mathrm{H}) \times 865.620 \quad(\mathrm{~V})$	mm	$[$ Note2]
Pixel Format	$1920(\mathrm{H}) \times 1080(\mathrm{~V})$ (1pixel $=\mathrm{R}+\mathrm{G}+\mathrm{B} \mathrm{dot)}$	pixel	$[$ Note2]
Pixel pitch	$0.802(\mathrm{H}) \times 0.802(\mathrm{~V})$	mm	$[$ Note2]
Pixel configuration	R, G, B vertical stripe		$[$ Note2]
Display mode	Normally black	mm	$[$ Note2]
Outline Dimensions [Note 1]	$1559.4(\mathrm{~W}) \times 893.0(\mathrm{H}) \times 27.5(\mathrm{D})$	kg	
Mass	25 ± 1.5		
Surface treatment	Low-Haze Anti Glare Hard coating: 2H and more		

[Note 1] Detail outline is shown in figure "MODULE OUTLINE DIMENSION".
[Note 2] In case of Landscape installation

4. Input Terminals

4.1. TFT panel driving

CN1 (Interface signals and +12 V DC power supply)
Using connector
: 91213-0510Y (ACES)
Mating connector : 91214-05130 (ACES), FI-RE51HL/FI-RE51CL (JAE)
Mating LVDS transmitter : THC63LVD1023 or equivalent device

Pin No.	Symbol	Function	Remark
1	GND		
2	Reserved	It is required to set non-connection(OPEN)	
3	Reserved	It is required to set non-connection(OPEN)	
4	Reserved	It is required to set non-connection(OPEN)	
5	Reserved	It is required to set non-connection(OPEN)	
6	Reserved	It is required to set non-connection(OPEN)	
7	SELLVDS	Select LVDS data order [Note 1]	Pull down: (GND)
8	Reserved	It is required to set non-connection(OPEN)	
9	Reserved	It is required to set non-connection(OPEN)	
10	Reserved	It is required to set non-connection(OPEN)	
11	GND		
12	AIN0-	Aport (-)LVDS CH0 differential data input	
13	AIN0+	Aport (+)LVDS CH0 differential data input	
14	AIN1-	Aport (-)LVDS CH1 differential data input	
15	AIN1+	Aport (+)LVDS CH1 differential data input	
16	AIN2-	Aport (-)LVDS CH2 differential data input	
17	AIN2+	Aport (+)LVDS CH2 differential data input	
18	GND		
19	ACK-	Aport LVDS Clock signal(-)	
20	ACK+	Aport LVDS Clock signal(+)	
21	GND		
22	AIN3-	Aport (-)LVDS CH3 differential data input	
23	AIN3+	Aport (+)LVDS CH3 differential data input	
24	AIN4-	Aport (-)LVDS CH4 differential data input	
25	AIN4+	Aport (+)LVDS CH4 differential data input	
26	GND		
27	GND		
28	BIN0-	Bport (-)LVDS CH0 differential data input	
29	BIN0+	Bport (+)LVDS CH0 differential data input	
30	BIN1-	Bport (-)LVDS CH1 differential data input	
31	BIN1+	Bport (+)LVDS CH1 differential data input	
32	BIN2-	Bport (-)LVDS CH2 differential data input	
33	BIN2+	Bport (+)LVDS CH2 differential data input	
34	GND		
35	BCK-	Bport LVDS Clock signal(-)	
36	BCK+	Bport LVDS Clock signal(+)	
37	GND		
38	BIN3-	Bport (-)LVDS CH3 differential data input	
39	BIN3+	Bport (+)LVDS CH3 differential data input	
40	BIN4-	Bport (-)LVDS CH4 differential data input	
41	BIN4+	Bport (+)LVDS CH4 differential data input	
42	GND		
43	GND		
44	GND		
45	GND		
46	GND		
47	VCC	+12V Power Supply	

LD-T150008A-3

48	VCC	+12 V Power Supply	
49	VCC	+12 V Power Supply	
50	VCC	+12 V Power Supply	
51	VCC	+12 V Power Supply	

CN2 (Interface signals and +12 V DC power supply)
Using connector : 91213-0410Y (ACES)
Mating connector : 91214-04130 (ACES), FI-RE41HL/FI-RE41CL (JAE)

Pin No.	Symbol	Function	Remark
1	Reserved (VCC)	(+12V Power Supply)	
2	Reserved (VCC)	(+12V Power Supply)	
3	Reserved (VCC)	(+12V Power Supply)	
4	Reserved (VCC)	(+12V Power Supply)	
5	Reserved		
6	Reserved		
7	Reserved		
8	Reserved		
9	GND		
10	CIN0-	Cport (-)LVDS CH0 differential data input	
11	CIN0+	Cport (+)LVDS CH0 differential data input	
12	CIN1-	Cport (-)LVDS CH1 differential data input	
13	CIN1+	Cport (+)LVDS CH1 differential data input	
14	CIN2-	Cport (-)LVDS CH2 differential data input	
15	CIN2+	Cport (+)LVDS CH2 differential data input	
16	GND		
17	CCK-	Cport LVDS Clock signal(-)	
18	CCK+	Cport LVDS Clock signal(+)	
19	GND		
20	CIN3-	Cport (-)LVDS CH3 differential data input	
21	CIN3+	Cport (+)LVDS CH3 differential data input	
22	CIN4-	Cport (-)LVDS CH4 differential data input	
23	CIN4+	Cport (+)LVDS CH4 differential data input	
24	GND		
25	GND		
26	DIN0-	Dport (-)LVDS CH0 differential data input	
27	DIN0+	Dport (+)LVDS CH0 differential data input	
28	DIN1-	Dport (-)LVDS CH1 differential data input	
29	DIN1+	Dport (+)LVDS CH1 differential data input	
30	DIN2-	Dport (-)LVDS CH2 differential data input	
31	DIN2+	Dport (+)LVDS CH2 differential data input	
32	GND		
33	DCK-	Dport LVDS Clock signal(-)	
34	DCK+	Dport LVDS Clock signal(+)	
35	GND		
36	DIN3-	Dport (-)LVDS CH3 differential data input	
37	DIN3+	Dport (+)LVDS CH3 differential data input	
38	DIN4-	Dport (-)LVDS CH4 differential data input	
39	DIN4+	Dport (+)LVDS CH4 differential data input	
40	GND		
41	GND		

[Note] The GND on Control-PWB should be connected with a module chassis.
[Note 1] LVDS Data order

SELLVDS		
Data	L(GND) or Open [VESA]	$\begin{aligned} & \hline \mathrm{H}(3.3 \mathrm{~V}) \\ & \text { [JEIDA] } \end{aligned}$
TA0	R0(LSB)	R4
TA1	R1	R5
TA2	R2	R6
TA3	R3	R7
TA4	R4	R8
TA5	R5	R9(MSB)
TA6	G0(LSB)	G4
TB0	G1	G5
TB1	G2	G6
TB2	G3	G7
TB3	G4	G8
TB4	G5	G9(MSB)
TB5	B0(LSB)	B4
TB6	B1	B5
TC0	B2	B6
TC1	B3	B7
TC2	B4	B8
TC3	B5	B9(MSB)
TC4	NA	NA
TC5	NA	NA
TC6	DE(*)	DE(*)
TD0	R6	R2
TD1	R7	R3
TD2	G6	G2
TD3	G7	G3
TD4	B6	B2
TD5	B7	B3
TD6	N/A	N/A
TE0	R8	R0(LSB)
TE1	R9(MSB)	R1
TE2	G8	G0(LSB)
TE3	G9(MSB)	G1
TE4	B8	B0(LSB)
TE5	B9(MSB)	B1
TE6	N/A	N/A

NA: Not Available
${ }^{(*)}$ Since the display position is prescribed by the rise of DE(Display Enable)signal, please do not fix DE signal at "High" during operation.

SELLVDS= Low (GND) or OPEN

SELLVDS $=$ High (3.3V)

DE: Display Enable, NA: Not Available (Fixed Low)
4.2. Interface block diagram

4.3. LED power interface

CN101 (LED power supply)
Using connector: A2010H00-15P-SHP (JWT)
Mating connector: A2010WR0-15P-3W-5e-3.2-W1 (JWT)

Pin No.	Symbol	lunction
1	ANNODE1	LED1 Anode terminal
2	NC	Non-connection
3	CATHODE1	LED1 Cathode
4	NC	Non-connection
5	ANODE2	LED2 Anode terminal
6	NC	Non-connection
7	CATHODE2	LED2 Cathode terminal
8	NC	Non-connection
9	ANODE3	LED3 Anode terminal
10	NC	Non-connection
11	CATHODE3	LED3 Cathode terminal
12	NC	Non-connection
13	NC	Non-connection
14	NC	Non-connection
15	NC	Non-connection

5. Installation and Display direction

This module can be installed by both installation direction "landscape" and "portrait" as follows.

[Landscape direction]

In front view, CPWB is located BOTTOM

[Portrait direction]

In front view, CPWB is located Right-side

[Note] Other installation direction
Since in case of the other installation direction the characteristic and reliability cannot be guaranteed,

NOT recommended.

5.2 Display direction

In this module each subpixel R, G, B is aligned as follows. Four S-PWBs and three LED-PWBs are layout at the bottom side of screen.

[Landscape direction]

LCD subpixel alignment in Landscape installaion

[Note] PWB layout
In Landscape installation,
Four S-PWBs and three LED-PWBs are layout at the bottom side of the screen.

Layout of LED-PWB, S-PWB (Front View)

[Portrait direction]

LCD subpixel alignment in Portrait installaion

6. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
12V supply voltage (for Control PWB)	VCC	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$0 \sim+14$	V	
Reverse voltage for LED-PWB	$\mathrm{V}_{\text {LED }}$	$\mathrm{Ta}=25{ }^{\circ} \mathrm{C}$	$0 \sim+96.8$	V	$[$ Note 1]
Forward Current for LED-PWB	I LED	$\mathrm{Ta}=25{ }^{\circ} \mathrm{C}$	$0 \sim+720$	mA	$[$ Note 1]
Storage temperature	Tstg	-	$-25 \sim+60$	${ }^{\circ} \mathrm{C}$	0
Operation temperature (Ambient)	Topa	-	$0 \sim+50$	${ }^{\circ} \mathrm{C}$	$[$ Note 2]

[Note 1] The value of each channel
[Note 2] Humidity 95% RH Max.($\mathrm{Ta} \leqq 40^{\circ} \mathrm{C}$)
Maximum wet-bulb temperature at $39{ }^{\circ} \mathrm{C}$ or less. $\left(\mathrm{Ta}>40^{\circ} \mathrm{C}\right)$. No condensation.

7. Electrical Characteristics

7.1. Control circuit driving

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter		Symbol	Min.	Typ.	Max.	Unit	Remark
+12 V supply voltage	Supply voltage	Vcc	10.8	12.0	13.2	V	[Note 1] \boldsymbol{A} A
	Current dissipation	Icc	-	0.54	1.6	A	[Note 2] $\mathbf{\Delta A}$
	Inrush current	$\mathrm{I}_{\text {RUSH }} 1$	-	3.7	-	A	$\begin{gathered} \mathrm{t} 1=500 \mathrm{us}[\text { Note 3] } \\ \mathbf{A} \mathrm{A} \\ \hline \end{gathered}$
		$\mathrm{I}_{\text {RUSH }} 2$	-	-	6.7	A	$\mathrm{tl}>5 \mathrm{~ms} \boldsymbol{\Delta} \mathrm{~A}$
Permissible input ripple voltage		VRP	-	-	100	mVp-p	$\mathrm{Vcc}=+12.0 \mathrm{~V}$
Differential input threshold Low voltage		VIL	-100	-	-	mV	$\mathrm{Vcm}=+1.2 \mathrm{~V}$
Differential input threshold Input High voltage		VIH	0	-	100	mV	[Note 6]
Thermal resistor		RT	-	100	-	Ω	Differential input
Input Low voltage		VIL	0	-	1.0	V	[Note4, 5]
Input High voltage		VIH	2.3	3.3	3.6	V	[Note4, 5] AA
Input leak current (Low)		IIL1	-	-	400	$\mu \mathrm{A}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \\ & {[\text { Note } 4]} \\ & \hline \end{aligned}$
		IIL2	-	-	40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ [Note 5]
Input leak current (High)		Iıн1	-	-	40	$\mu \mathrm{A}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{I}}=3.3 \mathrm{~V} \\ {[\text { Note } 4]} \\ \hline \end{gathered}$
		Itн2	-	-	400	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=3.3 \mathrm{~V}$ [Note 5]

[Note]VCM: Common mode voltage of LVDS driver
[Note 1]

Input voltage sequences
$50 \mathrm{us}<\mathrm{t} 1 \leqq 20 \mathrm{~ms}$
$20 \mathrm{~ms}<\mathrm{t} 2 \leqq 5 \mathrm{~s}$
$20 \mathrm{~ms}<\mathrm{t} 3 \leqq 5 \mathrm{~s} \quad$ A
$0<\mathrm{t} 4 \leqq 1 \mathrm{~s}$
$1 \mathrm{~s} \leqq \mathrm{t} 5$
$0<$ t6
$1 \mathrm{~s} \leqq \mathrm{t} 7$

Dip conditions for supply voltage
a) $9.1 \mathrm{~V} \leqq \mathrm{Vcc}<10.8 \mathrm{~V}$ td $<10 \mathrm{~ms}$
b) $\mathrm{Vcc}<9.1 \mathrm{~V}$

Dip conditions for supply voltage is based on input voltage sequence.

V1:10.8V
V2:9.1V

Data1: ACK \pm, AIN0 \pm, AIN1 \pm, AIN2 \pm, AIN3 $\pm, \mathrm{AIN} 4 \pm, \mathrm{BCK} \pm, \mathrm{BIN} 0 \pm, \mathrm{BIN} 1 \pm, \mathrm{BIN} 2 \pm, \mathrm{BIN} 3 \pm, \mathrm{BIN} 4 \pm$
$\mathrm{CCK} \pm, \mathrm{CIN} 0 \pm, \mathrm{CIN} 1 \pm, \mathrm{CIN} 2 \pm, \mathrm{CIN} 3 \pm, \mathrm{CIN} 4 \pm$,
DCK \pm, DIN0 \pm, DIN1 \pm, DIN2 \pm, DIN3 \pm, DIN4 \pm

* V_{CM} voltage pursues the sequence mentioned above
※ Data2: SELLVDS
[Note]About the relation between data input and back light lighting, please base on the above-mentioned input sequence. When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.
[Note 2] Typical current situation: 1024 gray-bar patterns. $\quad(\mathrm{Vcc}=+12.0 \mathrm{~V})$
The explanation of RGB gray scale is seen in section 9 .

$$
\begin{aligned}
& \mathrm{Vcc}=+12.0 \mathrm{~V} \\
& \mathrm{CK}=74.25 \mathrm{MHz} \\
& \mathrm{Th}=7.41 \mu \mathrm{~s}
\end{aligned}
$$

[Note 3] Vcc 12V inrush current waveform (IRUSH1) AA

[Note 4] $\mathrm{ACK} \pm, \mathrm{AIN} 0 \pm, \mathrm{AIN} 1 \pm, \mathrm{AIN} 2 \pm, \mathrm{AIN} 3 \pm, \mathrm{AIN} 4 \pm, \mathrm{BCK} \pm, \mathrm{BIN} 0 \pm, \mathrm{BIN} 1 \pm, \mathrm{BIN} 2 \pm, \mathrm{BIN} 3 \pm, \mathrm{BIN} 4 \pm$

$$
\mathrm{CCK} \pm, \mathrm{CIN} 0 \pm, \mathrm{CIN} 1 \pm, \mathrm{CIN} 2 \pm, \mathrm{CIN} 3 \pm, \mathrm{CIN} 4 \pm, \mathrm{DCK} \pm, \mathrm{DIN} 0 \pm, \mathrm{DIN} 1 \pm, \mathrm{DIN} 2 \pm, \mathrm{DIN} 3 \pm, \mathrm{DIN} 4 \pm
$$

[Note 5] SELLVDS
[Note 6] $\mathrm{ACK} \pm, \mathrm{AIN} 0 \pm, \mathrm{AIN} 1 \pm, \mathrm{AIN} 2 \pm, \mathrm{AIN} 3 \pm, \mathrm{AIN} 4 \pm, \mathrm{BCK} \pm, \mathrm{BIN} 0 \pm, \mathrm{BIN} 1 \pm, \mathrm{BIN} 2 \pm, \mathrm{BIN} 3 \pm, \mathrm{BIN} 4 \pm$

$$
\mathrm{CCK} \pm, \mathrm{CIN} 0 \pm, \mathrm{CIN} 1 \pm, \mathrm{CIN} 2 \pm, \mathrm{CIN} 3 \pm, \mathrm{CIN} 4 \pm, \mathrm{DCK} \pm, \mathrm{DIN} 0 \pm, \mathrm{DIN} 1 \pm, \mathrm{DIN} 2 \pm, \mathrm{DIN} 3 \pm, \mathrm{DIN} 4 \pm
$$

7.2 . LED driving

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
LED operating voltage	VLED	-	92.3	-	V	The value of each channel $\boldsymbol{\Delta A}$
LED Current	ILED	-	520	-	mA	$\mathbf{\Delta A}$

7.3 LED lifetime

LED light system is side-edge type. The characteristics of the LED are shown in the following table. The value mentioned below is at the case of one LED.

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Life time	$\mathrm{T}_{\text {LED }}$	-	50,000	-	Hour	$[$ Note $]$

[Note]
LED life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the condition of $\mathrm{Ta}=25^{\circ} \mathrm{C}$
[Operation condition]

- ambient temperature $\mathrm{Ta}=25^{\circ} \mathrm{C}$

8 Timing characteristics of input signals

8.1. Timing characteristics

Timing diagrams of input signal are shown in below.

Parameter		Symbol	Min.	Typ.	Max.	Unit	Remark
Clock	Frequency	1/Tc	69	74.25	80	MHz	
Data enable signal	Horizontal period	TH	525	550	650	Clock	
			7.1	7.41	8.0	$\mu \mathrm{s}$	
	Horizontal period (High)	THd	480	480	480	Clock	
	Vertical period	TV	1120	1125	1400	Line	
			94	120	120.64	Hz	
	Vertical period (High)	TVd	1080	1080	1080	line	

[Note]-When vertical period is very long, flicker and etc. may occur.
-Please turn off the module after it shows the black screen.
-Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.
-As for your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting.

Timing characteristics of input signals

8.2. LVDS signal characteristics

Item		Symbol	Min.	Typ.	Max.	Unit
Data position	Delay time, CLK rising edge to serial bit position 0	tpd0	-0.25	0	0.25	ns
	Delay time, CLK rising edge to serial bit position 1	tpd1	1*tclu/7-0.25	1*tcle/7	1*tcle/7+ 0.25	
	Delay time, CLK rising edge to serial bit position 2	tpd2	2*tcLK/7-0.25	2*tclk/7	$2 *$ tclk $/ 7+0.25$	
	Delay time, CLK rising edge to serial bit position 3	tpd3	3*tclu/7-0.25	3*tclk/7	$3 *$ tclk $/ 7+0.25$	
	Delay time, CLK rising edge to serial bit position 4	tpd4	4*tcLK/7-0.25	4*tcle/7	$4 *$ tclk $/ 7+0.25$	
	Delay time, CLK rising edge to serial bit position 5	tpd5	5*tclu/7-0.25	5*tcle/7	$5 *$ tcle $/ 7+0.25$	
	Delay time, CLK rising edge to serial bit position 6	tpd6	6*tcle 7-0.25	6*tcle/7	$6 *$ tclk $/ 7+0.25$	

9 Input Signal，Basic Display Colors and Gray Scale of Each Color

	Colors \＆ Gray scale	Data signal																														
		Gray	R0	R1	R2	R3		R5	R6	R7	R8	R9	G0	G1	G2	G3	G4	G5	G6	G7	G8	G9	B0	B1	B2	B3		B5	B6	B7	B8	B9
		Scale																														
$\begin{aligned} & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & \cdots \\ & \tilde{0} \end{aligned}$	Black	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Green	－	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Cyan	－	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red	－	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	－	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	－	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	－	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	介 Darker 仑 Ω Brighter ת	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		\downarrow					\downarrow										\downarrow															
		\downarrow					\downarrow										\downarrow										\downarrow					
		GS1021	1	0	1	1		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		GS1022	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker 今 $\sqrt{8}$ Brighter $\sqrt{3}$	GS1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		GS2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		\downarrow					\downarrow																									
		\downarrow					\downarrow										\downarrow															
		GS1021	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
		GS1022	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Green	GS1023	0	0	0	0		0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	今 Darker ת Ω Brighter ת	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
		GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
		\downarrow	\downarrow \downarrow										\downarrow \downarrow																			
		\downarrow																														
		GS1021	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1
		GS1022	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	Blue	GS1023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

0：Low level voltage，1：High level voltage．
Each basic color can be displayed in 1024 gray scales from 10 bits data signals．According to the combination of total 30 bits data signals，one billion－color display can be achieved on the screen．

10 Optical characteristics

$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=12.0 \mathrm{~V}$
Frame rate:120Hz (typical)

Parameter		Symbol	Condition	Min.	Typ.	Max.	Unit	Remark	
Viewing angle range	Horizontal	$\begin{aligned} & \theta 21 \\ & \theta 22 \end{aligned}$	$\mathrm{CR} \geqq 10$	70	88	-	Deg.	[Note1,4]	
	Vertical	$\begin{aligned} & \theta 11 \\ & \theta 12 \end{aligned}$		70	88	-	Deg.		
Contrast ratio		CRn	$\theta=0 \mathrm{deg}$.	3000	4000	-		[Note2,4]	
Response time		$\tau_{\text {DRV }}$		-	6	-		$\mathrm{Ta}=35^{\circ} \mathrm{C}[$ Note3,4,5]	
		-		8	-	ms	$\mathrm{Ta}=25^{\circ} \mathrm{C}[$ Note3,4,5]		
Chromaticity	White			x	0.249	0.279	0.309	-	[Note4]
		y		0.267	0.297	0.327	-		
	Red	x		0.609	0.639	0.669	-		
		y		0.317	0.347	0.377	-		
	Green	X		0.279	0.309	0.339	-		
		y		0.618	0.648	0.678	-		
	Blue	x		0.127	0.157	0.187	-		
		y		0.028	0.058	0.088	-		
Luminance	White	Y_{L}		280	350	-	$\mathrm{cd} / \mathrm{m}^{2}$		
Luminance uniformity \boldsymbol{A} A	White	סw		-	1.33	1.43		[Note 6]	

- Measurement condition: Set the value of backlight control voltage to maximum luminance of white.
- The measurement shall be executed 60 minutes after lighting at rating.
[Note]The optical characteristics are measured by following equipment:

*Measurement of viewing angle range and Response time.
-Viewing angle range: EZ-CONTRAST
- Response time: Photodiode

*Measurement of Contrast, Luminance, Chromaticity.
[Note 1]Definitions of viewing angle range:

[Note 2]Definition of contrast ratio :
The contrast ratio is defined as the following.

$$
\text { Contrast Ratio }=\frac{\text { Luminance (brightness) with all pixels white }}{\text { Luminance (brightness) with all pixels black }}
$$

[Note 3]Definition of response time
The response time (τ) is defined as the following figure and shall be measured by switching the input signal for "any level of gray $(0 \%, 25 \%, 50 \%, 75 \%$ and 100%)" and "any level of gray $(0 \%, 25 \%, 50 \%, 75 \%$ and 100%)".

	0%	25%	50%	75%	100%
0%		$\operatorname{tr}: 0 \%-25 \%$	$\operatorname{tr}: 0 \%-50 \%$	$\operatorname{tr}: 0 \%-75 \%$	$\operatorname{tr}: 0 \%-100 \%$
25%	$\operatorname{td}: 25 \%-0 \%$		$\operatorname{tr}: 25 \%-50 \%$	$\operatorname{tr} 25 \%-75 \%$	$\operatorname{tr}: 25 \%-100 \%$
50%	$\operatorname{td}: 50 \%-0 \%$	$\operatorname{td}: 50 \%-25 \%$		$\operatorname{tr}: 50 \%-75 \%$	$\operatorname{tr}: 50 \%-100 \%$
75%	$\operatorname{td}: 75 \%-0 \%$	$\operatorname{td}: 75 \%-25 \%$	$\operatorname{td}: 75 \%-50 \%$		$\operatorname{tr}: 75 \%-100 \%$
100%	td: $100 \%-0 \%$	$\operatorname{td}: 100 \%-25 \%$	$\operatorname{td}: 100 \%-50 \%$	$\operatorname{td}: 100 \%-75 \%$	

$t^{*}: x-y . . . r e s p o n s e ~ t i m e ~ f r o m ~ l e v e l ~ o f ~ g r a y(x) ~ t o ~ l e v e l ~ o f ~ g r a y(y) ~$

$$
\tau=\sum(\operatorname{tr}: \mathrm{x}-\mathrm{y})+\sum(\mathrm{td}: \mathrm{x}-\mathrm{y}) / 20
$$

[Note 4]This shall be measured at center of the screen.
[Note 5] This value is valid when O / S driving is used at typical input time value.
[Note 6]Definition of white uniformity;
White uniformity is defined as the following with 9 measurements.
$\delta \mathrm{w}=\frac{\text { Maximum luminance of } 9 \text { points (brightness) }}{\text { Minimum luminance of } 9 \text { points (brightness) }}$

11 Packing form

a) Piling number of cartons
b) Packing quantity in one carton
c) Carton size
: 2 Maximum
d) Total mass of one carton filled with full modules
$: 1780(\mathrm{~W}) \times 1110(\mathrm{D}) \times 1190(\mathrm{H})$
: 300kg

12 Carton storage condition

Temperature
Humidity
Reference condition
$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
95% RH or less
$20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$ or less (summer)
$5^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$ or less (winter)
the total storage time $\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right): 240 \mathrm{~h}$ or less
Sunlight
Atmosphere
Notes

Storage life

Be sure to shelter a production from the direct sunlight.
Harmful gas, such as acid and alkali which bites electronic components and/or wires must not be detected.
Be sure to put cartons on palette or base, don't put it on floor, and store them with keeping off a wall.
Please take care of ventilation in storehouse and around cartons, and control temperature within the natural environment.
1 year.

13 Reliability test item

No.	Test item	Condition
1	High temperature storage test	$\mathrm{Ta}=60^{\circ} \mathrm{C} \quad 240 \mathrm{~h}$
2	Low temperature storage test	$\mathrm{Ta}=-25^{\circ} \mathrm{C} \quad 240 \mathrm{~h}$
3	High temperature and high humidity operation test	$\mathrm{Ta}=40^{\circ} \mathrm{C} ; 95 \% \mathrm{RH}$ (No condensation) $\quad 240 \mathrm{~h}$
4	High temperature operation test	$\mathrm{Ta}=50^{\circ} \mathrm{C} \quad 240 \mathrm{~h}$
5	Low temperature operation test	$\mathrm{Ta}=0^{\circ} \mathrm{C} \quad 240 \mathrm{~h}$
6	Vibration test (non-operation)	Frequency: $10 \sim 57 \mathrm{~Hz} /$ Vibration width (one side): 0.075 mm : 58~500Hz/Acceleration: $9.8 \mathrm{~m} / \mathrm{s}^{2}$ Sweep time: 11 minutes Test period: 3 hours (1 h for each direction of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$)
7	ESD	At the following conditions, it is a thing without incorrect operation and destruction. (1)Non-operation: Contact electric discharge $\pm 10 \mathrm{kV}$ Non-contact electric discharge $\pm 20 \mathrm{kV}$ (2) Operation Contact electric discharge $\pm 8 \mathrm{kV}$ Non-contact electric discharge $\pm 15 \mathrm{kV}$ Conditions: $150 \mathrm{pF}, 330 \mathrm{ohm}$

[Result evaluation criteria]
Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function.

14 Others

14.1. Serial label

The label that displays SHARP, product model LQ695D3LG02, a product number is stuck on the back of the module.
a) Overview

This label is stuck on the backlight chassis.
ex) LQ695D3LG02 (Z) [NSEC production]

[Note1] Serial No.

- 1st ~ 99,999th/month :00001~99999
- 100,000th ~ 109,999th/month :A0000~A9999
- 110,000th ~119,999th/month :B0000~B9999
--------- (without "I","O")
[Note2] Production place code

Code	Place	Model No. \& Suffix Code
N	NSEC	LQ695D3LG02 (Z)

14.2. Packing Label

This label is stuck on each packing box.
ex) LQ695D3LG02 (Z)

(1) Model No.\& Suffix Code
(2) Lot No.
(3) Quantity

15 Precautions

a) Be sure to turn off the power supply when inserting or disconnecting the cable.
b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
c) Since the front polarizer is easily damaged, pay attention not to scratch it.
d) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
g) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
h) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
i) Observe all other precautionary requirements in handling components.
j) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc. So, please avoid such design.
k) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.

1) When handling LCD module and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
m) This LCD module is designed to prevent dust from entering into it. However, there would be a possibility to have a bad effect on display performance in case of having dust inside of LCD module. Therefore, please ensure to design your TV set to keep dust away around LCD module.
n) This LCD module passes over the rust.
o) Adjusting Vcom has been set optimally before shipment, so do not change any adjusted value. If adjusted value is changed, the specification may not be satisfied.
p) Disassembling the module can cause permanent damage and should be strictly avoided.
q) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
r) The chemical compound, which causes the destruction of ozone layer, is not being used.
s) In any case, please do not resolve this LCD module.
t) This module is corresponded to RoHS.
u) When any question or issue occurs, it shall be solved by mutual discussion.
v) This LCD module's boss holes cannot use for hanging this unit. (For example in factory)

[^0]（ H LON

SNOISNGWIの تNITL』O تT』ণOTN HJNIOL

[^0]:
 $\frac{(6)}{4}$
 $\underset{(4)}{\text {（DETALL E E }}$

 $(2 \underset{\substack{\text { Detail } \\ \text { PoS ITI ON }}}{\text {（ }}$

