INTRODUCTION

This Application Note provides additional design assistance for Sharp’s LS013B4DN01 Memory LCD. This module is a reflective, monolithic active-matrix liquid crystal module utilizing Sharp’s CG-silicon thin-film transistor process. It offers high performance and power efficiency for compact display applications, with a zebra-type connector for simple integration.

Subjects covered will be:

• Mechanical Specifications, including dimension drawings and connector specifications
• Absolute Maximum Ratings
• Optical Specifications, including view angles, reflectivity, contrast, and risetime
• Electrical Characteristics, including interfacing and signal timing information
• Design Notes
• Manufacturing Information, including handling and storage
• Reliability Information

This Note is based on Sharp’s document number LCY-12T09302A and is designed to provide supplementary information for the Specifications for these parts.

Always refer to the latest Specifications when designing with these devices.

FEATURES

• Reflective monochrome panel
• Square aspect ratio (1:1)
• 1.35-inch screen with 96 × 96 resolution in a 9216-pixel stripe array
• Serial interface for display control
• Screen data is arbitrarily renewable by line
• Built-in, 1-bit internal memory for data storage
• Thin and light, compact module incorporating monolithic technology
• Super low power consumption TFT panel
• Zebra connector
• RoHS compliant
MECHANICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SPECIFICATION</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen Size</td>
<td>1.35</td>
<td>Inch</td>
</tr>
<tr>
<td>Viewing Area</td>
<td>24 (H) × 24 (V)</td>
<td>mm</td>
</tr>
<tr>
<td>Dot Configuration (Square panel)</td>
<td>96 (H) × 96 (V)</td>
<td>Dot</td>
</tr>
<tr>
<td>Dot Pitch</td>
<td>0.252 (H) × 0.252 (V)</td>
<td>mm</td>
</tr>
<tr>
<td>Pixel Array</td>
<td>Stripe Array</td>
<td></td>
</tr>
<tr>
<td>External Dimensions</td>
<td>28.2 (W) × 32.34 (H) × 1.4 (D)</td>
<td>mm</td>
</tr>
<tr>
<td>Mass</td>
<td>3.6 (TYP)</td>
<td>g</td>
</tr>
<tr>
<td>Surface Hardness</td>
<td>3H</td>
<td>Pencil hardness</td>
</tr>
</tbody>
</table>

External Dimensions

NOTE: Units in mm
Connector Specifications

Table 1. Input Terminals and Functions

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>SYMBOL</th>
<th>I/O</th>
<th>FUNCTION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TEST1</td>
<td>///</td>
<td>Test terminal</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>TEST2</td>
<td>///</td>
<td>Test terminal</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>SCLK</td>
<td>INPUT</td>
<td>Serial clock signal</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SI</td>
<td>INPUT</td>
<td>Serial Data input signal</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SCS</td>
<td>INPUT</td>
<td>Chip select signal</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EXTCOMIN</td>
<td>INPUT</td>
<td>External COM inversion signal input (H: enable)</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>DISP</td>
<td>INPUT</td>
<td>Display ON/OFF signal</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>VDDA</td>
<td>POWER</td>
<td>Power supply (Analog)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>VDD</td>
<td>POWER</td>
<td>Power supply (Digital)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>EXTMODE</td>
<td>INPUT</td>
<td>COM inversion select terminal</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>VSS</td>
<td>POWER</td>
<td>GND (Digital)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>VSSA</td>
<td>POWER</td>
<td>GND (Analog)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TEST3</td>
<td>///</td>
<td>Test terminal</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>TEST4</td>
<td>///</td>
<td>Test terminal</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTES:
1. TEST terminal: No connect. Do not tie HIGH or LOW.
2. EXTCOMIN is HIGH enabled. When LOW, the serial input flag is enabled. See Figure 20 for recommended circuits.
3. DISP enables/disables the display. All pixels will revert to Normal mode (reflective) when LOW. When DISP = H, data in the pixel memories displays normally.
4. EXTMODE pin must be connected to VDD for HIGH, and to VSS for LOW. See Figure 20 in Interfacing and Signals.
Zebra Connector Specifications

Contact resistance is <20 Ω

RECOMMENDED CONNECTORS

Select from:

- Shin-Etsu Polymer: MS-G type
 - Recommended Size: L: 27.7 ±0.25 mm, W: 1.8 ±.01 mm, H: 2.3 ±0.1 mm, P: 0.1 mm

- Shin-Etsu Polymer: GB-U type
 - Recommended Size: L: 27.3 ±0.6 mm, W: 1.7 ±.02 mm, H: 2.3 ±0.2 mm, P: 0.1 mm

Placement position specifications are found in Figure 2 and Figure 3.
NOTES:
1. ZEBRA Connector
2. Dimensions after compression
3. Dimensions before compression
4. Units: mm

Figure 2. MS-G Connector Placement
NOTES:
1. ZEBRA Connector
2. Dimensions after compression
3. Dimensions before compression
4. Units: mm

Figure 3. GB-U Connector Placement
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>Analog</td>
<td>VDDA</td>
<td>-0.3</td>
<td>+5.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Logic</td>
<td>VDD</td>
<td>-0.3</td>
<td>+5.8</td>
<td>V</td>
</tr>
<tr>
<td>Input Signal Voltage (HIGH)</td>
<td>VDD</td>
<td>V</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Input Signal Voltage (LOW)</td>
<td>-0.3</td>
<td>V</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>Tstg</td>
<td>-30</td>
<td>+80</td>
<td>°C</td>
<td>4</td>
</tr>
<tr>
<td>Operation Temperature (at panel surface)</td>
<td>Topr1</td>
<td>-20</td>
<td>+70</td>
<td>°C</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTES:
1. Applies to EXTMODE.
2. Applies to SCLK, SI, SCS, DISP, EXT COMIN.
3. Do not exceed this temperature in any part of the module.
4. Maximum wet bulb temperature is 57°C or lower. No condensation is allowed. Condensation will cause electrical leakage and may cause the module to fail to meet this Specification.
5. Operating Temperature is the guaranteed temperature limits for operation.
6. For contrast, response time, and other display quality determination, use Ta = +25°C.

OPTICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>UNIT</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing Angle CR ≥ 5</td>
<td>H</td>
<td>θ21, θ22</td>
<td>TBD</td>
<td>Degrees</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>θ11</td>
<td>TBD</td>
<td>Degrees</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>θ12</td>
<td>TBD</td>
<td>Degrees</td>
<td>1</td>
</tr>
<tr>
<td>Contrast Ratio</td>
<td>CR</td>
<td>5</td>
<td>10</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Reflectivity Ratio</td>
<td>R</td>
<td>50</td>
<td>%</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Response Time</td>
<td>Rise</td>
<td>tR</td>
<td>50</td>
<td>ms</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>tF</td>
<td>50</td>
<td>ms</td>
<td>3</td>
</tr>
<tr>
<td>Chromaticity</td>
<td>White</td>
<td>x</td>
<td>0.313</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y</td>
<td>0.338</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

NOTES:
1. Viewing Angle is described as clock positions: θ12 = 12 o’clock, θ11 = 6 o’clock, θ21 = 3 o’clock, θ22 = 9 o’clock. See Figure 4.
2. Contrast Ratio, Reflectivity Ratio, and Chromaticity are measured through the use of an integrating sphere. See Figure 5.
3. Response Time is measured by the change interval in an optical receiver when the test panel’s signal is transitioned from white to black to white. See Figure 6 for the measurement setup and Figure 7 for the output waveshape.
Figure 4. Viewing Angle

Figure 5. Setup for Contrast, Reflection Ratio, and Chromaticity

Figure 6. Setup for Response Time

Figure 7. Response Time
ELECTRICAL SPECIFICATIONS

Here are the Recommended Operating Conditions for this module, with VSS (GND) = 0V and Ta = 25°C.

Table 2. Electrical Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>Analog</td>
<td>VDDA</td>
<td>+4.8</td>
<td>+5.0</td>
<td>+5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Logic</td>
<td>VDD</td>
<td>+4.8</td>
<td>+5.0</td>
<td>+5.5</td>
<td>V</td>
</tr>
<tr>
<td>Input signal voltage</td>
<td>HIGH</td>
<td>VIH</td>
<td>+2.70</td>
<td>+3.0</td>
<td><VDD</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>VIL</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS + 0.15</td>
<td>V</td>
</tr>
<tr>
<td>Input leakage current</td>
<td>HIGH</td>
<td>IOH</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>IOL</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>μA</td>
</tr>
</tbody>
</table>

NOTES:
1. 3 V or less is recommended; never exceed VDD.
2. EXTMODE = H
3. VI = 3 V; applies to SCLK, SI, SCS, DISP, EXTCOMIN
4. VI = 0 V; applies to SCLK, SI, SCS, DISP, EXTCOMIN

Power Consumption

This module has the ability to shut down most of its logic circuits when it is in Static mode (not being updated). It has two levels of power consumption: Static and Dynamic Display.

- **Static Display:** 15 μA (TYP.) Vertical stripe display; fully static, no display updates.
 - This includes a 1 Hz VCOM toggle, and VDD = 5V, VDDA = 5 V, fSCLK = 1 MHz, fSCS = 1 Hz
- **Dynamic Display:** 30 μA (TYP.) Vertical stripe display; updated at a 1 Hz rate.
 - VDD = 5 V, VDDA = 5 V, fSCLK = 1 MHz, fSCS = 1 Hz

These numbers represent average power, not peak power usage when driving VCOM. Always allow for a margin in power supply design.

Decoupling Capacitors

Use of a decoupling capacitor on VDD and VDDA is recommended, even when the two supplies are tied together. See Figure 8.

Values for these capacitors:
- C1: DISP to VSS: rank B, 0.1 μF Ceramic
- C2: VDDA to VSS: rank B, 1 μF Ceramic
- C3: VDD to VSS: rank B, 1 μF Ceramic

These are recommended values; actual values should be determined by the final design. Always place the decoupling capacitors as close as possible to the part as the impedance of the VDD and VSS lines is low when the module is operating.
Power Supply Sequencing

This device requires proper supply sequencing on both startup and shutdown to prevent latching of the logic circuits. Refer to Figure 9.

POWER-UP

- VDD and VDDA must rise together or VDD must rise faster than VDDA.
 1. 5V rises to nominal
 2. Initialize pixel memory: send D2 CLEAR ALL flag or set the display to all-white (requires >1 V)

POWER-DOWN

- VDD and VDDA must fall together or VDDA must fall faster than VDD.
 1. Initialize pixel memory (requires >1 V)
 2. Initialize VA, VB, and VCOM (requires >1 V)
 3. 5V falls

NOTES:

1. The order of 3 and 4 can be reversed, in this case, VCOM polarity inversion timing controlled by EXTCOMIN (doesn't work during DISP = 'L').
2. Setup value for initialization of pixel memory data.
3. Precautions at power on and power off.

Figure 9. Power Supply Sequencing
SIGNAL DESCRIPTIONS

Input signal characteristics are given in Table 4 and Table 5.

All measurements are at VDDA = +5.0 V, VDD = +5.0 V, GND = 0 V, Ta = 25°C.

Table 4. Signal Frequencies

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESCRIPTION</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>fSCS</td>
<td>Frame frequency</td>
<td>1</td>
<td></td>
<td>60</td>
<td>Hz</td>
</tr>
<tr>
<td>fSCLK</td>
<td>Clock frequency</td>
<td>1</td>
<td>2</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>tV</td>
<td>Vertical Interval</td>
<td>16.66</td>
<td></td>
<td>1000</td>
<td>ms</td>
</tr>
<tr>
<td>fCOM</td>
<td>COM Frequency</td>
<td>0.5</td>
<td></td>
<td>30</td>
<td>Hz</td>
</tr>
</tbody>
</table>

Table 5. Signal Transition Times

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESCRIPTION</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>trSCS</td>
<td>SCS Risetime</td>
<td></td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tfSCS</td>
<td>SCS Falltime</td>
<td></td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>twSCS H</td>
<td>SCS HIGH Duration</td>
<td>68</td>
<td></td>
<td>2</td>
<td>μs</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>3</td>
<td>μs</td>
<td>3</td>
</tr>
<tr>
<td>twSCS L</td>
<td>SCS LOW Duration</td>
<td></td>
<td></td>
<td></td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>tsSCS</td>
<td>SCS setup time</td>
<td></td>
<td></td>
<td></td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>thSCS</td>
<td>SCS hold time</td>
<td></td>
<td></td>
<td></td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>fSI</td>
<td>SI frequency</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td>MHz</td>
<td>1</td>
</tr>
<tr>
<td>trSI</td>
<td>SI Risetime</td>
<td></td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tfSI</td>
<td>SI Falltime</td>
<td></td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tsSI</td>
<td>SI setup time</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>thSI</td>
<td>SI hold time</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>trSCLK</td>
<td>SCLK Risetime</td>
<td></td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>tfSCLK</td>
<td>SCLK Falltime</td>
<td></td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
| twSCLK H | SCLK HIGH duration| 200 | 450 | ns | \(\mu \text{s} \)
| twSCLK L | SCLK LOW duration| 200 | 450 | ns | |
| fEXTCOMIN | EXTCOMIN frequency| 1 | 60 | Hz | 4 |
| trEXTCOMIN| EXTCOMIN Risetime| | 50 | ns | |
| tfEXTCOMIN| EXTCOMIN Falltime| | 50 | ns | |
| thiEXTCOMIN| EXTCOMIN HIGH duration| 1 | | μs | |
| trDISP | DISP Risetime | | 50 | | ns |
| tfDISP | DISP Falltime | | 50 | | ns |

NOTES:
1. Parenthesis indicate preliminary values.
2. Dynamic Mode (continuously updating display)
3. Static Mode (no display updating)
4. \(f_{\text{EXTCOMIN}} \) must always be less than \(f_{\text{SCS}} \) (Table 4)
Timing Diagram
This diagram depicts input signal timing for Table 5.

SCS, SI, SCLK Signal

- SCS
 - trSCS
 - tsSCS
 - thSCS
 - tfSCS
- SI
 - trSI
 - tsSI
 - thSI
 - tfSI
- SCLK
 - trSCLK
 - tsSCLK
 - thSCLK
 - tfSCLK

EXTCOMIN Signal

- EXTCOMIN
 - trEXTCOMIN
 - tfEXTCOMIN
 - twEXTCOMINH
 - twEXTCOMINL

DISP Signal

- DISP
 - trDISP
 - tfDISP

NOTES:
1. SCS, SI, SCLK, DISP: 3 V Amplitude
2. EXTCOMIN: 5 V Amplitude

Figure 10. SCS, SI, SCLK, EXTCOMIN, and DISP Signals
PROGRAMMING

For software commands, see the Application Note, Programming Sharp’s Memory LCDs, by Ken Green.

In all the following diagrams and descriptions, these conventions are used:

• **M0: MODE**
 When M0 is 'H', the module enters Dynamic Mode, where pixel data will be updated.
 When M0 is 'L', the module remains in Static Mode, where pixel data is retained.

• **M1: VCOM**
 This polarity-inversion flag enables a periodic polarity inversion on the panel to keep a latent charge from building up within the Liquid Crystal cells. When M1 is 'H' then VCOM = 'H' is output. If M1 is 'L', then VCOM = 'L' is output.
 When EXTMODE = 'H', M1 value = XX (don't care). See COM Inversion and Signal Selection.

• **M2: CLEAR ALL**
 When M2 is 'L' then all flags are cleared. When a full display clearing is required, refer to CLEAR ALL.

• **D1 - D96: Display data**
 Setting D(n) = 'L' sets that pixel to black. Conversely, Setting D(n) = 'H' sets that pixel to white.

• **DUMMY DATA: Dummy data**
 Dummy data is typically ‘XX (don’t care); however Sharp recommends setting bits to 'L'.

Data Addressing and Positions

This module uses mixed addressing for columns and lines. Columns (X direction) are addressed using a 7-bit binary scheme, and lines (Y direction) are addressed directly as 96 bits. One line is the minimum addressable unit in the display; even if only one pixel in the line is to be updated, the entire line must be sent.

Table 6. Column (X direction) Addressing

<table>
<thead>
<tr>
<th>Column Address</th>
<th>CA0</th>
<th>CA1</th>
<th>CA2</th>
<th>CA3</th>
<th>CA4</th>
<th>CA5</th>
<th>CA6</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L2</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L3</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>L94</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L95</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L96</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Figure 11. Display Data Position
Dynamic Mode

For software commands, see Sharp’s Application Note, Programming Sharp’s Memory LCDs, by Ken Green.

MULTIPLE LINE WRITE

Dynamic Mode assumes the updating of at least one line in the display. During the Data Write period, data is stored in the panel’s binary latch. During Data Transfer, the data from the latch is written to the panel memory, line-by-line. During the write to panel memory, data for the next line is latched.

Dynamic Mode is entered by sending M0 = H and M2 = L.

Figure 12 shows an example of writing multiple lines.

Figure 12. Dynamic Mode Timing Diagram, Writing Multiple Lines
SINGLE LINE WRITE

Writing a single line of data is much the same as writing multiple lines. During the Data Write period, data is stored in the panel's binary latch. During Data Transfer, the data from the latch is written to the panel memory, line-by-line. During the write to panel memory, data for the next line is latched.

Dynamic Mode is entered the same way, by sending M0 = H and M2 = L.

Figure 13 shows an example of writing a single line.

Static Mode

Static Mode is the module's lowest-power mode, with data latches and other circuitry powered down. Static Mode can be held indefinitely; as long as the panel has power and VCOM is toggled periodically. Sharp recommends keeping maximum time between VCOM toggles to no more than one second.

Static Mode is entered by sending M0 = L and M2 = L.

Figure 13. Dynamic Mode Timing Diagram, Writing a Single Line

Figure 14. Static Mode Timing Diagram
CLEAR ALL

CLEAR ALL will clear all data from pixel memories and the display will revert to its normal white color.

CLEAR ALL is invoked by sending M0 = L and M2 = H.

VCOM Inversion

Periodic VCOM inversion impresses a periodic polarity inversion across the panel to keep a latent charge from building up within the Liquid Crystal cell. It can be implemented either through software or through hardware. In either implementation, the positive and negative inversion intervals should be kept as equal as possible, and intervals should not exceed one second.

Figure 15. CLEAR ALL Timing Diagram

Figure 16. EXTMODE = L, Software VCOM Toggle

NOTES:

1. LC inversion has been changed by M1 flag statement.
2. The periods of plus polarity and minus polarity should be the same length.
To implement VCOM inversion in software, the M1 bit is periodically toggled. When M1 is 'H' then VCOM = 'H' is output to the panel. If M1 is 'L' then VCOM = 'L' is output to the panel. To set the panel for software toggling of M1, tie EXTMODE to VSS as shown in Figure 18.

When implementing a VCOM toggle through hardware, EXTMODE is set to 'H', and the M1 value becomes XX (don't care). Hardware then toggles EXTCOMIN, and the timing between toggles of this line sets the VCOM inversion interval. Therefore, it's important not to allow the toggling interval of EXTCOMIN to exceed one second. To set the panel for software toggling of M1, tie EXTMODE to VDD as shown in Figure 19.

The LC cell inversion polarity toggle is armed when EXTCOMIN rises. Internal signal COMZ toggles with each rise of EXTCOMIN, and latches the VCOM transition. The VCOM transition takes place upon the next clock transition of SCS. Again, keep the duty cycle of EXTCOMIN at 50%.

NOTES:
1. LC inversion has been changed by M1 flag statement.
2. The periods of plus polarity and minus polarity should be the same length.

Figure 17. EXTMODE = L, Software VCOM Toggle

Figure 18. VCOM Software Input

Figure 19. VCOM Hardware Input
These Truth Tables show how VCOM is implemented in both hardware and software.

Table 7. EXTMODE = L

<table>
<thead>
<tr>
<th>EXTCOMIN</th>
<th>COM</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>Depends entirely on status of M1</td>
</tr>
<tr>
<td>H (rising edge)</td>
<td>L</td>
</tr>
<tr>
<td>H (rising edge)</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 8. EXTMODE = H,
Relationship of COMZ to EXTCOMIN

<table>
<thead>
<tr>
<th>EXTCOMIN</th>
<th>COMZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEFORE</td>
<td>AFTER</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H (rising edge)</td>
<td>L</td>
</tr>
<tr>
<td>H (rising edge)</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 9. EXTMODE = H
Relationship of COMZ to VCOM

<table>
<thead>
<tr>
<th>COMZ</th>
<th>VCOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCS = L</td>
<td>SCS = H</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Note: Qn-1: VCOM changes polarity at the falling edge of SCS.

NOTE: COMZ is inverted with each rising of EXTMODE.
DESIGN NOTES
1. This device is static sensitive. Handle it only in a static-safe environment.
2. Do not press on the surface of the module, and do not stack modules in such a way that pressure will be applied to the surfaces or to the connector area. The safest place for temporary storage of modules is in their shipping tray.
3. The connector on this module is designed for a limited number of insertions. Do not attempt to solder directly to the connector.
4. This set of Specifications gives definite environmental, electrical, and signal drive conditions for the operation of this module. Operating it outside of these given limits can reduce image quality, shorten its life, or cause it to fail altogether.
5. When displaying static images, Sharp recommends refreshing the image data every two hours to prevent stuck pixels.
6. When storing this module, keep it from long periods of exposure to direct sunlight or other sources of ultraviolet light. Recommended storage is in a dark place.
7. The liquid crystal material in this module will solidify if stored below the rated temperature, and will become an isotropic liquid if stored above the rated storage temperatures. After such storage, the material may not return to its original properties.
8. Use of decoupling capacitors is recommended. See Electrical Specifications.
9. This device can be powered from a 3 V system with these power supply ICs. See Power Supply Reference Circuits for more information.
 – SII: S-8821 Charge Pump Power Supply IC
 – National Semiconductor: LM2750 Charge Pump Power Supply IC

Table 10. Electrical Specifications for 3 V Step-up Power Supply ICs

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>VIN (V)</th>
<th>VOUT (V)</th>
<th>I OUT (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN.</td>
<td>MAX.</td>
<td>MIN.</td>
</tr>
<tr>
<td>S-8821</td>
<td>2.8</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>LM2750</td>
<td>2.7</td>
<td>5.6</td>
<td>4.8</td>
</tr>
</tbody>
</table>

NOTES:
1. Refer to each manufacturer’s specifications for more information.
2. This information is for reference. Evaluate the parts in actual use.

POWER SUPPLY REFERENCE CIRCUITS

Figure 21. S-8821 Reference Circuit

Figure 22. LM2750 Reference Circuit
HANDLING, STORAGE, AND PACKAGING

1. This module is not made to be disassembled. Doing so may cause permanent damage.

2. The liquid crystal material in this module is injurious to humans. Do not allow it to get into the eyes or mouth. If any liquid crystal material gets on skin or clothing, immediately wash it out with soap and water.

3. This module is RoHS compliant, and does not use any ODS (1,1,1-Trichloroethane, CCL4) in its materials or in its production processes.

4. When discarding this module, dispose of it as glass waste. This LCD module contains no harmful substances. The liquid crystal panel contains no dangerous or harmful substances. The liquid crystal cell contains an extremely small amount of liquid crystal (approx. 100 mg) and therefore will not leak; even if the panel should break.

5. The material used in this panel has a median lethal dose (LD50) of greater than 2,000 mg/kg and tests negative (Aims test) for mutagenic properties.

Storage

1. Store these devices at a temperature range between 0°C and 40°C, at 60% RH or less.

2. Use within 3 months.

3. Open the package within an area that has proper static control precautions, and less than 50% RH.

4. When storing this module, keep it from long periods of exposure to direct sunlight or other sources of ultraviolet light. Recommended storage is in a dark place.

Packaging

Figure 23 shows the serial number schema. Figure 24 shows the location where the serial number is printed.
Packaging Diagrams

Figure 25. Packaging Format

Figure 26. Package Labeling
RELIABILITY

Environmental Reliability

Table 5. Test Item Reliability

<table>
<thead>
<tr>
<th>NO.</th>
<th>TEST ITEM</th>
<th>TEST CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High temperature storage test</td>
<td>Ta = 80°C, 240h</td>
</tr>
<tr>
<td>2</td>
<td>Low temperature storage test</td>
<td>Ta = 35°C, 240h</td>
</tr>
<tr>
<td>3</td>
<td>High temperature and high humidity operating test</td>
<td>Tp = 40°C/95% RH, 240h</td>
</tr>
<tr>
<td>4</td>
<td>High temperature operating test</td>
<td>Tp = 70°C, 240h</td>
</tr>
<tr>
<td>5</td>
<td>Low temperature operating test</td>
<td>Tp = -20°C, 240h</td>
</tr>
<tr>
<td>6</td>
<td>Shock test</td>
<td>Ta = -30°C (1h) to +80°C (1h) / 5 cycles</td>
</tr>
<tr>
<td>7</td>
<td>Electrostatic discharge test</td>
<td>±200 V, 200 pF (0 Ω) once per terminal</td>
</tr>
</tbody>
</table>

NOTES:
1. Ta = ambient temperature, Tp = panel temperature
2. Check for any items which impair display function

Physical Reliability

The Panel surface stress specification parameter is the stress force [N] before image failure.

Load test: Minimum 120[N]; on an LCD panel with UV protection film, fixed to a test stage.

Pressure point is the center of the panel, with a ϕ10 mm column, at 1 mm/minute.

Full pressure is held for 5 seconds after achievement, then released.
SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied.
ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

NORTH AMERICA
SHARP Microelectronics of the Americas
5700 NW Pacific Rim Blvd.
Camas, WA 98607, U.S.A.
Phone: (1) 360-834-2500
Fax: (1) 360-834-8903
www.sharpsma.com

EUROPE
SHARP Microelectronics Europe
Division of Sharp Electronics (Europe) GmbH
Sonninstrasse 3
20097 Hamburg, Germany
Phone: (49) 40-2376-2286
Fax: (49) 40-2376-2232
www.sharpsme.com

TAIWAN
SHARP Electronic Components (Taiwan) Corporation
8F-A, No. 16, Sec. 4, Nanking E. Rd.
Taipei, Taiwan, Republic of China
Phone: (886) 2-2577-7341
Fax: (886) 2-2577-7326/2-2577-7328

SINGAPORE
SHARP Electronics (Singapore) PTE., Ltd.
438A, Alexandra Road, #05-01/02
Alexandra Technopark,
Singapore 119967
Phone: (65) 271-3566
Fax: (65) 271-3855

CHINA
SHARP Microelectronics of China (Shanghai) Co., Ltd.
28 Xin Jin Qiao Road King Tower 16F
Pudong Shanghai, 201206 P.R. China
Phone: (86) 21-5854-7710/21-5834-6056
Fax: (86) 21-5854-4340/21-5834-6057

HONG KONG
SHARP-ROXY (Hong Kong) Ltd.
3rd Business Division,
17/F, Admiralty Centre, Tower 1
18 Harcourt Road, Hong Kong
Phone: (852) 28229311
Fax: (852) 28660779
www.sharp.com.hk

KOREA
SHARP Electronic Components (Korea) Corporation
RM 501 Geosung B/D, 541
Dohwa-dong, Mapo-ku
Seoul 121-701, Korea
Phone: (82) 2-711-5813 ~ 8
Fax: (82) 2-711-5819

JAPAN
SHARP Corporation
Electronic Components & Devices
22-22 Nagaike-cho, Abeno-Ku
Osaka 545-8522, Japan
Phone: (81) 6-6621-1221
Fax: (81) 6117-725300/6117-725301
www.sharp-world.com

SHARP Microelectronics of China
28 Xin Jin Qiao Road King Tower 16F
Pudong Shanghai, 201206 P.R. China
Phone: (86) 21-5854-7710/21-5834-6056
Fax: (86) 21-5854-4340/21-5834-6057

Head Office:
No. 360, Bashen Road,
Xin Development Bldg. 22
Waigaoqiao Free Trade Zone Shanghai
200131 P.R. China
Email: smc@china.global.sharp.co.jp

©2010 by SHARP Corporation
Reference Code SMA10008