PREPARED BY: DATE		SPEC No.	LCY-407301A
	MOBILE LIQUID CRYSTAL	FILE No.	6.APR 2007
APPROVED BY: DATE	DISPLAY GROUP II	ISSUE PAGE	32 Pages
· · · · · · · · · · · · · · · · · · ·	SHARP CORPORATION		
		APPLICABLE DI	
			DEPARTMENT III OCRYSTAL DISPLAY GROUP I ATION
	SPECIFICATION	1	
(DEVICE SPECIFICATION for		
	TFT Color LCD Module		
	$(240 \times \text{RGB} \times 320 \text{ dots})$		
	LS020Q3U2	XU3	
CUSTOMER'S APPROVAL	DATE		
]	PRESENTED 7. k	moshita
DATE			to as to prove the second s
	1	Fumio Kinoshita DEPARTMENT GEN	
<u>BY</u>		ENGINEERING DEP MOBILE LIQUID CRY SHARP CORPORATI	STAL DISPLAY GROUP I

DATE PARA	14 17 18~19		light Specification characteristics rature Cycling nical strength	LS020Q3UX03 LCY-407301A CHECK AND APPROVAL
DATE REF. DATE PARA DRAW 6.Apr.2007 Page.8 Page.14 Page.15 Page.15	F.PAGE REVISED AGRAPH NO. VING No. A 3 A 14 A 17 A 18~19 A	SUMMA Changed LED backli Changed optical o Changed Temper Added Mechan	ARY light Specification characteristics rature Cycling nical strength	CHECK AND APPROVAL
DATE PARAM DRAW 6.Apr.2007 Page.8 Page.12 Page.13 Page.13	AGRAPH VING No. NO. NO. NO. NO. NO. NO. NO. NO	SUMMA Changed LED backli Changed optical o Changed Temper Added Mechan	ARY light Specification characteristics rature Cycling nical strength	AND APPROVAL
6.Apr.2007 Page.8 Page.14 Page.15 Page.15	3 14 17 18∼19	Changed optical of Changed Temper Added Mechani	characteristics rature Cycling nical strength	
			i	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

NOTICE

• These specification sheets are the proprietary product of SHARP CORPORATION ("SHARP) and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

 \circ The application examples in these specification sheets are provided to explain the representative applications of the device and are not intended to guarantee any industrial property right or other rights or license you to use them. SHARP assumes no responsibility for any problems related to any industrial property right of a third party resulting from the use of the device.

 \circ The device listed in these specification sheets was designed and manufactured for use in Telecommunication equipment (terminals)

 \circ In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

• Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

 \circ SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these specification sheets.

° Contact and consult with a SHARP sales representative for any questions about this device.

[For handling and system design]

(1) Do not scratch the surface of the polarizer film as it is easily damaged.

(2) If the cleaning of the surface of the LCD panel is necessary, wipe it swiftly with cotton or other soft cloth. Do not use organic solvent as it damages polarizer.

(3) Water droplets on polarizer must be wiped off immediately as they may cause color changes, or other defects if remained for a long time.

(4) Since this LCD panel is made of glass, dropping the module or banging it against hard objects may cause cracks or fragmentation.

(5) Certain materials such as epoxy resin (amine's hardener) or silicone adhesive agent (de-alcohol or de-oxym) emits gas to which polarizer reacts (color change). Check carefully that gas from materials used in system housing or packaging do not hart polarizer.

(6) Liquid crystal material will freeze below specified storage temperature range and it will not get back to normal quality even after temperature comes back within specified temperature range. Liquid crystal material will become isotropic above specified temperature range and may not get back to normal quality. Keep the LCD module always within specified temperature range.

(7) Do not expose LCD module to the direct sunlight or to strong ultraviolet light for long time.

(8) If the LCD driver IC (COG) is exposed to light, normal operation may be impeded. It is necessary to design so that the light is shut off when the LCD module is mounted.

(9) Do not disassemble the LCD module as it may cause permanent damage.

(10) As this LCD module contains components sensitive to electrostatic discharge, be sure to follow the instructions in below.
 ① Operators

Operators must wear anti-static wears to prevent electrostatic charge up to and discharge from human body.

② Equipment and containers Process equipment such as conveyer, soldering iron, working bench and containers may possibly generate electrostatic

charge up and discharge. Equipment must be grounded through 100Mohms resistance. Use ion blower. (3) Floor

Floor is an important part to leak static electricity which is generated from human body or equipment. There is a possibility that the static electricity is charged to them without leakage in case of insulating floor, so the countermeasure(electrostatic earth: $1 \times 10^8 \Omega$) should be made.

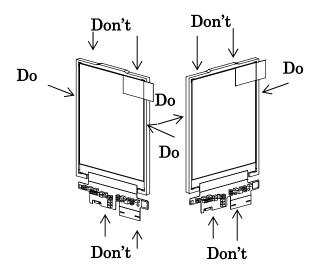
(4)Humidity

Proper humidity of working room may reduce the risk of electrostatic charge up and discharge. Humidity should be kept over 50% all the time.

(5) Transportation/storage

Storage materials must be anti-static to prevent causing electrostatic discharge.

6 Others


Protective film is attached on the surface of LCD panel to prevent scratches or other damages. When removing this protective film, remove it slowly under proper anti-ESD control such as ion blower.

(11) Hold LCD very carefully when placing LCD module into the system housing. Do not apply excessive stress or pressure to LCD module. Do not to use chloroprene rubber as it may affect on the reliability of the electrical interconnection.

(12) Do not hold or touch LCD panel to flex interconnection area as it may be damaged.

(13) As the binding material between LCD panel and flex connector mentioned in 12) contains an organic material, any type of organic solvents are not allowed to be used. Direct contact by fingers is also prohibited.

(14) When carrying the LCD module, place it on the tray to protect from mechanical damage. It is recommended to use the conductive trays to protect the CMOS components from electrostatic discharge. When holding the module, hold the Plastic Frame of LCD module so that the panel, COG and other electric parts are not damaged.

(15) Do not touch the COG's patterning area. Otherwise the circuit may be damaged.

(16) Do not touch LSI chips as it may cause a trouble in the inner lead connection.

(17) Place a protective cover on the LCD module to protect the glass panel from mechanical damages.

(18) LCD panel is susceptible to mechanical stress and even the slightest stress will cause a color change in background. So make sure the LCD panel is placed on flat plane without any continuous twisting, bending or pushing stress.

(19) Protective film is placed onto the surface of LCD panel when it is shipped from factory. Make sure to peel it off before assembling the LCD module into the system. Be very careful not to damage LCD module by electrostatic discharge when peeling off this protective film. Ion blower and ground strap are recommended.

(20) Make sure the mechanical design of the system in which the LCD module will be assembled matches specified viewing

SHARP	SPEC No.	MODEL No.	PAGE
	LCY-407301A	LS020Q3UX03	3

angle of this LCD module.

(21) This LCD module does not contain nor use any ODS (1,1,1-Trichloroethane, CCL4) in all materials used, in all production processes.

[For operating LCD module]

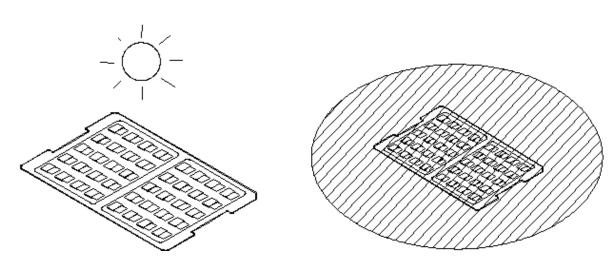
(1) Do not operate or store the LCD module under outside of specified environmental conditions.

(2) At the shipment, adjust the contrast of each LCD module with electric volume. LCD contrast may vary from panel to panel depending on variation of LCD power voltage from system.

(3) As opt-electrical characteristics of LCD will be changed, dependent on the temperature, the confirmation of display quality and characteristics has to be done after temperature is set at 25 °C and it becomes stable.

[Precautions for Storage]

(1) Do not expose the LCD module to direct sunlight or strong ultraviolet light for long periods. Store in a dark place.


(2) The liquid crystal material will solidify if stored below the rated storage temperature and will become an isotropic liquid if stored above the rated storage temperature, and may not retain its original properties. Only store the module at normal temperature and humidity $(25\pm5^{\circ}C,60\pm10\%$ RH) in order to avoid exposing the front polarizer to chronic humidity. (3) Keeping Method

a. Don't keeping under the direct sunlight.

b. Keeping in the tray under the dark place.

DON'T

DO

(1) Do not operate or store the LCD module under outside of specified environmental conditions.

(2) Be sure to prevent light striking the chip surface.

[Other Notice]

(1) Do not operate or store the LCD module under outside of specified environmental conditions.

(2) As electrical impedance of power supply lines (VCC2-VSS) are low when LCD module is working, place the de-coupling capacitor near by LCD module as close as possible.

(3) Reset signal must be sent after power on to initialize LSI. LSI does not function properly until initialize it by reset signal.

(4) Generally, at power on, in order not to apply DC charge directly to LCD panel, supply logic voltage first and initialize LSI logic function including polarity alternation. Then supply voltage for LCD bias. At power off, in order not to apply DC charge directly to LCD panel, execute Power OFF sequence and Discharge command.

(5) Don't touch to PWB surface, exposed IC chip, electric parts and other parts, to any electric, metallic materials.

(6) No bromide specific fire-retardant material is used in this module.

(7) Do not display still picture on the display over 2 hours as this will damage the liquid crystal.

[Precautions for Discarding Liquid Crystal Modules]

COG: After removing the LSI from the liquid crystal panel, dispose of it in a similar way to circuit boards from electronic devices.

LCD panel: Dispose of as glass waste. This LCD module contains no harmful substances. The liquid crystal panel contains no dangerous or harmful substances. The liquid crystal panel only contains an extremely small amount of liquid crystal (approx.100mg) and therefore it will not leak even if the panel should break.

-Its median lethal dose (LD50) is greater than 2,000 mg/kg and a mutagenetic (Aims test: negative) material is employed. FPC: Dispose of as similar way to circuit board from electric device.

1. Application

This data sheet is to introduce the specification of LS020Q3UX03 active matrix 262,144color LCD module. Main color LCD module is controlled by Driver IC (JBT6K85).

If any problem occurs concerning the items not stated in this specification, it must be solved sincerely by both parties after deliberation.

As to basic specification of driver IC refer to the IC specification and handbook.

2. Construction and Outline

Construction: LCD panel, Driver (COG), FPC with electric components,

(3) White LED lump, prism sheet, diffuser, light guide and reflector, plastic frame to fix them mechanically. Outline: See page 31

Connection: 35 pins; 0.3mm pitch

There shall be no scratches, stains, chips, distortions and other external drawbacks that may affect the display function.

Rejection criteria shall be noted in Inspection Standard (S-U-056-xx)

In order to realize thin module structure, double-sided adhesive tapes are used to fix LCD panels. As these tapes do not guarantee to permanently fix the panels, LCD panel may rise from the module when shipped from factory. So please make sure to design the system to hold the edges of LCD panel by the soft material such as sponge when LCD module is assembled into the cabinet.

3. Mechanical Specification

		Table 1			
ŀ	Parameter	Specifications	Unit		
Outline	dimensions (typ)	37.2 (W) \times 65.10 (H) \times 1.9 (D)	mm		
Main LCD	LCD Active area $30.60 \text{ (W)} \times 40.80 \text{ (H)}$				
Panel	Viewing area	31.60 (W) × 41.80 (H)	mm		
	Display format	240×RGB(W)×320(H)	-		
	Dot pitch	0.0425 (W) ×0.1275 (H)	mm		
	Base color *1	Normally Black	-		
	Mass	Approx 5.6	g		

*1 Due to the characteristics of the LC material, the colors vary with environmental temperature.

SHARP	SPEC No. LCY-407301A	MODEL No. LS020Q3UX03	page 6

4. Absolute Maximum Ratings

(4-1) Electrical absolute maximum ratings

		Table 2	Ta=25 °C				
Parameter	Symbol	Min	Max	Unit	Remark		
Supply voltage	VCC1-GND	-0.3	4.6	V			
	VCC2-GND	-0.3	4.6	V			
Input Voltage	V _{IN}	-0.3	VCC1+0.3	V	*1		

*1 Input terminal of logic system. : Voltage value is based on GND = 0V.

Environment Conditions

	<u>Table 3</u>											
Item	То	р	Ts	stg	Remark							
	MIN.	MAX.	MIN.	MAX.								
Ambient temperature	-10 °C	+60°C	-20 °C	+70°C	Note 2)							
Humidity	Note 1)		Not	e 1)	No condensation							

Note1) Ta \leq 40 °C......95 % RH Max

Note2) Ta > 40 °C......Absolute humidity shall be less than Ta=40 °C /95 % RH.

As opt-electrical characteristics of LCD will be changed, dependent on the temperature, the confirmation of display quality and characteristics has to be done after temperature is set at 25 °C and it becomes stable. Be sure not to exceed the rated voltage, otherwise a malfunction may occur.

5. Electrical Specifications

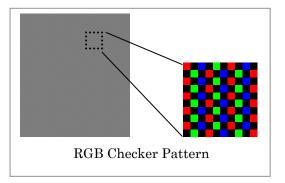

(5-1) Electrical characteristics for main LCD

		Table 4				Ta=25	°C, GND=0V
Parameter	Parameter Symbol		Min.	Min. Typ.		Unit	Applicable Pin
Supply voltage	VCC1- VSS	Ta=-10 ~ 60 °C	1.65	2.60	3.60	V	(note 1)
Supply voltage	VCC2- VSS	Ta=-10∼60 °C	2.70	2.80	2.90	V	(note 1)
"H" level input voltage	V _{IH1}	Ta=-10 ∼ 60 °C	0.7 V _{CC1}	-	-	V	(note 2)
"L" level input voltage	V _{IL1}	1a10~00 C	-	-	0.3 V _{CC1}	V	(note 2)
Input leakage current	I _{LI1}	Ta=-10 ~ 60 °C	-10	-	10	μA	(note 2)
Output leakage current	I _{LO}	V _{IN} = GND or VCC1	-10	-	10	μA	(note 3)
"H" level output voltage	V _{OH1}	Ta=-10 ~ 60 °C	0.8 V _{CC1}	-	-	V	
"L" level output voltage	V _{OL1}	I_{OH1} =-1 mA , I_{OL1} = 1 mA	-	-	0.2 V _{CC1}	V	(note 4)
Current consumption	I _{cc2}	Ta=25 °C	-	6.3	9.0	mA	(note 5)

(note 1) The condition VCC1 \leq VCC2 must be met

- (note 2) Input mode of D0 \sim D15pins, A0, RD, WR, CS, RESET
- (note 3) Output mode of D0 \sim D15pins.
- (note 4) Output mode of $D0 \sim D15$ pins.
- (note 5) Following Conditions
 - Ta=25°C, frame frequency=65Hz

Display Pattern: RGB Checker Pattern. No Host CPU access.

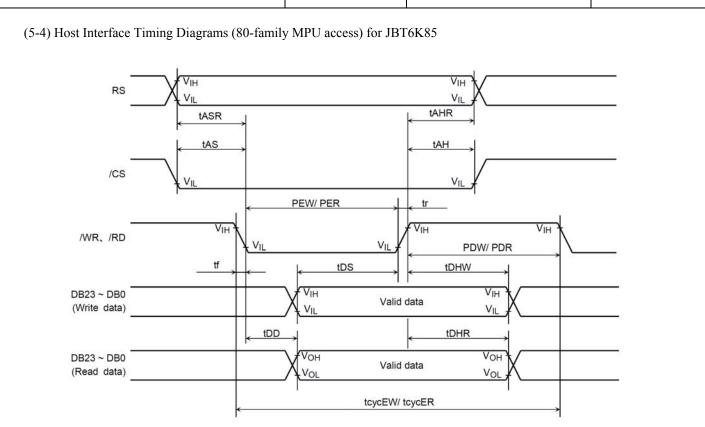
$\frac{LCY-407301A}{LSO 20Q3 (VX3} $ $\frac{1}{8}$ (5-2) LED back light Δ (1) At main panel the back light uses 3pcs edge light type white LED. $\frac{1}{120 \text{ containing the back light uses 3pcs edge light type white LED.}$ $\frac{1}{120 \text{ containing the back light uses 3pcs edge light type white LED.}$ $\frac{1}{120 \text{ containing transmitter transmitter transmitter to the type of the back light uses 3pcs edge light type white LED.}$ $\frac{1}{120 \text{ containing transmitter transmitter transmitter transmitter to the type of the back light uses 3pcs edge light type white LED.}$ $\frac{1}{120 containing transmitter tran$	SHAF	20				5	SPEC No.		MOI	DEL No	•			PAGI	<u>•</u>	
(1) At main panel the back light uses 3pac edge light type white LED. Table 5 Prime consider Allowable Sorward Current on used temperature (I.Luminous Intensity rank]: E2, F1 or F2 (Color rank]: b54 or b56 or b83) ***********************************							LCY-40	7301A		LS0	20Q3	UX0	3		8	8
(1) At main panel the back light uses 3pac edge light type white LED. Table 5 Prime consider Allowable Sorward Current on used temperature (I.Luminous Intensity rank]: E2, F1 or F2 (Color rank]: b54 or b56 or b83) ***********************************			•													
Table 5Target of the conditionsNote: The condition of the mark set of the device when the device does not open to.LED lamp: GM4BW03374A (SHARP Corporation)(ILED lamp: GM4BW03374A (SHARP Corporation)(ILED lamp: GM4BW03374A (SHARP Corporation)(ILED lamp: GM4BW03374A (SHARP Corporation)(ILED the T2 (Color rank]: b54 or b56 or b83)***********************************	(5-2) LED b	ack ligh	tΔ													
$ \frac{\text{Parameter}}{\text{Forward current}} \frac{\text{Conditions}}{\text{Ta}=25 \ ^{\circ}\text{C}} \frac{\text{Symbol}}{\text{I}_{\text{LDD}}} - \frac{20 \cdot 1}{20 \cdot 1} - \frac{\text{mA}}{\text{mA}} \frac{\text{Unit}}{\text{VLED}} \frac{\text{Remark}}{\text{LED} (\text{Cathode} 1-3)} \\ \text{LED lamp: GM4BW63374A (SHARP Corporation)} \\ ([1] Luminous Intensity rank]: E2, F1 or F2 [Color rank]: b54 or b56 or b83) \\ \text{*} Please consider Allowable Forward Current on used temperature (refer to Ambient Temperature s, Allowable Forward Current curve)} \\ \text{*} Asolate maximum ratios: (Ta=25C) (*) \\ \hline \hline \text{Parameter} & Symbol & Rating & Unit \\ \hline \text{Power dampter} & \frac{1}{100} & \frac{1}{100$	(1) At main	panel the	e back light	uses 3	Bpcs ed	dge lig	•••									
Forward currentTa=25 °C I_{1ED} - $20 \circ 1$ -mAVLEDLED lamp: GM4BW63374A (SHARP Corporation) ([Luminous Intensity rank]: E2, F1 or F2 [Color rank]: b54 or b56 or b83)*1 per one piece of 1.ED**1 <td< td=""><td>Paramet</td><td>er</td><td>Conditions</td><td></td><td>Symbo</td><td>ol</td><td></td><td></td><td>vn</td><td>Ma</td><td>ax</td><td>Uni</td><td>t</td><td>F</td><td>emark</td><td></td></td<>	Paramet	er	Conditions		Symbo	ol			vn	Ma	ax	Uni	t	F	emark	
LED lamp: GM4BW6337AA (SHARP Corporation) (ILEMINOUS Intensity rank]: E2, F1 or F2 [Color rank]: b54 or b56 or b83) *1 per one piece of LED *1 per one piece of LED *1 per one piece of LED The formation range (refer to Ambient Temperature vs. Allowable Forward Current on used temperature (refer to Ambient Temperature vs. Allowable Forward Current ource) 3-1. Asobte maximum range ($2p = 25C$] (*) Parameter Symbol Rain (String Kar) Per K forward Current on used temperature ($2p = 25C$] (*) Parameter Symbol Rain (String Kar) Per K forward Current on used temperature ($2p = 25C$] (*) Parameter Name ($2p = 25C$) (*) Parameter Name ($2p = 25C$					-	01	-								contain	
([Luminous Intensity rank]; E2, F1 or F2 [Color rank]; b54 or b56 or b83) *) I per one piece of LED *Please consider Allowable Forward Current on used temperature (refer to Ambient Temperature vs. Allowable Forward Current curve) 5-1. Absolute maximum rating $(Ta=25C) (*)$ Parameter Symbol Rating Unit Power distingtion P 130 nW Contension free distingtion P 130 nW Contension	i oi wara ea	intent	14 25 0		•LED			2	5 1			1112 \$			athode	1~3
$ \begin{array}{c} (1 \text{ Luminous intensity rank } E.2, F1 \text{ or } F2 [Color rank } b50 \text{ or } b50 $	LED lamp: (GM4BW6	3374A (SHA	RP C	orpora	tion)						50	÷.,.	29°C	85°C	
ParameterSymbolRatingUnitPower disipationP130mWContension forward sorrer1y35mADensing factorDC-0.03mA/CReverse average y_k 5VStorage temperature?Typ-300 (+82 % c)Storage temperature?Typ-300 (+28 % c)(*) Dury ruio = 1/10, Palse withth = 0 Ints(-200mA, Tar 25C)Reverse to "7-2, Soldering (Mx, 100)Refer to "7-2, Soldering (Wa Luo)Reverse currentIg-0.30 (ParameterSymbolConditionMixTYP, MX.UnitUnit-0.30 (ParameterSymbolConditionMixTYP.MX.Unit-0.30 (ParameterSymbolConditionMixTYP.MX.Unit-0.30 (ParameterSymbolCondition (HX, 100)MixTYP.MX.Unit-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30	([Luminoı	us Intensity r	ank]:	E2, F	1 or F	2 [Color ra	ank]: b54	l or b56	5 or b83	3)					
ParameterSymbolRatingUnitPower disipationP130mWContension forward sorrer1y35mADensing factorDC-0.03mA/CReverse average y_k 5VStorage temperature?Typ-300 (+82 % c)Storage temperature?Typ-300 (+28 % c)(*) Dury ruio = 1/10, Palse withth = 0 Ints(-200mA, Tar 25C)Reverse to "7-2, Soldering (Mx, 100)Refer to "7-2, Soldering (Wa Luo)Reverse currentIg-0.30 (ParameterSymbolConditionMixTYP, MX.UnitUnit-0.30 (ParameterSymbolConditionMixTYP.MX.Unit-0.30 (ParameterSymbolConditionMixTYP.MX.Unit-0.30 (ParameterSymbolCondition (HX, 100)MixTYP.MX.Unit-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30	*1 per one p	iece of L	ED									世 40 日		_		
ParameterSymbolRatingUnitPower disipationP130mWContension forward sorrer1y35mADensing factorDC-0.03mA/CReverse average y_k 5VStorage temperature?Typ-300 (+82 % c)Storage temperature?Typ-300 (+28 % c)(*) Dury ruio = 1/10, Palse withth = 0 Ints(-200mA, Tar 25C)Reverse to "7-2, Soldering (Mx, 100)Refer to "7-2, Soldering (Wa Luo)Reverse currentIg-0.30 (ParameterSymbolConditionMixTYP, MX.UnitUnit-0.30 (ParameterSymbolConditionMixTYP.MX.Unit-0.30 (ParameterSymbolConditionMixTYP.MX.Unit-0.30 (ParameterSymbolCondition (HX, 100)MixTYP.MX.Unit-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30	*Please cons	sider Allo	wable Forw	ard C	urrent	on us	ed tempera	ature				tu 30				-
ParameterSymbolRatingUnitPower disipationP130mWContension forward sorrer1y35mADensing factorDC-0.03mA/CReverse average y_k 5VStorage temperature?Typ-300 (+82 % c)Storage temperature?Typ-300 (+28 % c)(*) Dury ruio = 1/10, Palse withth = 0 Ints(-200mA, Tar 25C)Reverse to "7-2, Soldering (Mx, 100)Refer to "7-2, Soldering (Wa Luo)Reverse currentIg-0.30 (ParameterSymbolConditionMixTYP, MX.UnitUnit-0.30 (ParameterSymbolConditionMixTYP.MX.Unit-0.30 (ParameterSymbolConditionMixTYP.MX.Unit-0.30 (ParameterSymbolCondition (HX, 100)MixTYP.MX.Unit-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30 (Parameter-0.30	(refer to A	mbient T	Temperature	vs. A	llował	ole Fo	rward Cur	rent curv	ve)			0 20				
ParameterSymbolRatingUnitPower disigationP130mWContenso forwar corres $l_{\rm P}$ 35mADering factorDC-0.33mA/CReverse curres $l_{\rm P}$ 30 n A/CPerting factorPalae-1.07mA/CReverse curres $l_{\rm P}$ -30 n A/CReverse curres $l_{\rm R}$ -40 1.00° Storage temperature $T_{\rm Res}$ -40 1.00° Storage temperature $T_{\rm Res}$ -40 1.00° Storage temperature $T_{\rm Res}$ 200 $^{\circ}$ CStorage temperature $T_{\rm Res}$ 200 $^{\circ}$ C(*) Turtio = 1/10, Palae with = 0.1 Inst-200 $^{\circ}$ C(*) Turtio = 1/10, Palae with = 0.1 Inst-200 $^{\circ}$ C(*) Turtio = 1/10, Palae with = 0.1 Inst-200 $^{\circ}$ C(*) Turtio = 1/10, Palae with = 0.1 Inst-200-200(*) Turtio = 1/10, Palae with = 0.1 Inst-200-200ParameterSymbolCenditionIKNTurtio = 1/10, Palae with = 0.1 Inst-200-200Parameter-0.30ParameterV-30.20-ParameterV-0.30-Instanting(*6)V-0.30-ParameterV-0.30-ParameterV-0.30-ParameterV-0.30-ParameterV-0.30-Measure turti	3-1. Absolute maxim	um ratings										10 Forwar			\mathbf{i}	
$\frac{ }{ $							· · · ·	•				_ 0 L				
$\frac{\left \frac{1}{1 + 1} \right _{AA} = \frac{1}{30} - \frac{1}{1 + A} + \frac{1}{1 + A} +$	Parameter			 		_										
$ \frac{\operatorname{Peck} \operatorname{forward} \operatorname{current}(1)}{\operatorname{Peck}} \frac{\operatorname{Pu}_{k}}{\operatorname{Pu}_{k}} \frac{\operatorname{80}}{\operatorname{rh}_{k}} \operatorname{mA/C}}{\operatorname{Reverse voltage}} \frac{\operatorname{V}_{k}}{\operatorname{Pu}_{k}} \frac{\operatorname{5}}{\operatorname{V}_{k}} \frac{\operatorname{V}_{k}}{\operatorname{V}_{k}} \frac{\operatorname{5}}{\operatorname{V}_{k}} \frac{\operatorname{V}_{k}}{\operatorname{V}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{V}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}}{\operatorname{Form}_{k}} \frac{\operatorname{Form}_{k}}{\operatorname{Form}_$									$e^{-\frac{2\pi}{2}}$			Γ	Jevice Su	rtace Tempe	rarure Ta("	U) (
$\frac{ \mathbf{x} }{ \mathbf{x} } \frac{ \mathbf{x} }{ \mathbf{x} $										-		· · · · ·		7		
$\frac{ \mathbf{L} _{\mathbf{R}} $		/		3	mA/9	C							nit			
$\frac{ \mathbf{p} _{\mathbf{r}} _{\mathbf{r}} _{\mathbf{r}} $				7									boe			
Surge temperature T 40 to +100 $^{\circ}$ C Subarge temperature T 260 $^{\circ}$ C Subarge temperature T 260 $^{\circ}$ C (1) Dury tice with = 0.1ms 260 $^{\circ}$ C (2) Or reflow soldering (Max.10s) Refer: 0^{-7.2}. Soldering for the condition in the hand solder. (3) Ta and Topr mean atmospheric temperature near surface of the device when the device does not operate. (1 = 250) Electro-optical characteristics (1 = 250) (1 = 250) Parameter 1440 (1800) 2240 mcd (3) Ta and Topr mean atmospheric temperature near surface of the device when the device does not operate. (1 = 250) Electro-optical characteristics (1 = 250) (1 = 250) minous intensity(*) 1 1 (1 0 000 2240 mcd (Measurement accuracy : ±10%) (Measurement accuracy : ±10%) (Measurement accuracy : ±10%) (Measurement accuracy : ±10%) (Measurement accuracy : ±10%) (Measurement accuracy : ±10%) (10 - 20m/s, 1m-2) (10 - 20m/s, 1m-2) (10 - 20m/s, 1m-2) (10 - 20m/s, 1m-2) (10 - 20m/s, 1m-2) (10 - 20m/s, 1m-2) (10 - 20m/s, 1m-2) (10 - 20m/s, 1m-2) (10 - 20m/s,				+85		· · ·							ica .			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			and the second se						G1 20	50 ~	2240) <u> </u>		, i (i	I _F =20mA, T	a=25°C)
(*2) Foreflow soldering: for the condition in the hand solder. (*3) Ta and Topy mean atmospheric temperature near surface of the device when the device does not operate. .Electro-optical characteristics (Ta=25°C) Parameter Symbol Condition MIN. TYP. MAX. Unit 'orward Voltage Vs - 3.2 3.7 V minous intensity(*a) Iv Iv=20 mA 1440 (1800) 2240 mcd - 0.30 - - - 50 µA .				:	°C		· . ·	(*1)	The quantit	y-ratio of th	ne ranks are	decided by	Sharp. (n	neasurement	accuracy : ±	⊧10%)
$\frac{1}{10000000000000000000000000000000000$			Condition	MIN.	TYP.	MAX.		Ĩ								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Voltage	VF		- -	3.2	3.7	v									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	aminous intensity(*4)	Iv	I _F =20 mA	1440	° ar ar € .	2240	mcd									
$\frac{(\text{TF=20mA, Ta=22})}{(\text{Measured by EG&G MODEL550(Radiometer/Photometersystem)}}{(\text{Measurement accuracy : $\pm 10\%)}}$	Chromaticity(*5)															
(Measurement accuracy : ±10%)) Measurement accuracy : xy:±0.01)	Reverse Current	IR	V _R =4V	-	-	50	μА									
$(Measurement accuracy : \pm 10\%)$ (Measurement accuracy : xy:±0.01) (Measurement accuracy : xy:±0.01) (Measurement accuracy : xy:±0.01) (IF=20mA, Ta=25) (IF=20mA, Ta=25) (IF=) Measured by EG&	G MODEL5	50(Radiometer/P	hotome	tersyster	m)										
$(Measurement accuracy : x,y:\pm0.01)$	(Measurer	ment accurac	cy : ±10%)													
Image: constraint of the system of the sy					0											
Image: heat of the second s	(Ivicasure)	accura	.y,y. = 0.01	,												
b83 Image: Constraint of the second seco		·			¦.											
b83 Image: Constraint of the second seco		·		-	<u>+</u> -											
Image: heat of the second s		· -		1												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		· •		b83												
b56 Point P		·r	113		·										(IF=20mA,	<u>Ta</u> =25
x y x		·	$_{\rm b56}$					rank							Po	int 4
b56 0.302 0.283 0.306 0.288 0.302 0.302 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.302 0.302 0.302 0.302 0.302 0.302 0.298 0.298 0.298 0.298 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.303 0.311 0.283 0.308 0.288 0.319 0.318 0.320 0.303	F	· -		l 						-		-		-		×
		· F		l 				b56	0.302	0.283	0.306	0.288	0.302	0.302	0.298	0.29
.24 0.26 0.28 0.30 0.32 0.34 0.36	F	· •			+-			b83	0.311	0.283	0.308	0.288	0.319	0.318	0.320	0.30
.24 0.26 0.28 0.30 0.32 0.34 0.36	F	· · · · · · · · · · · · · · · · · · ·														
. 24 0. 26 0. 28 0. 30 0. 32 0. 34 0. 36	 	·			·											
	. 24 0.26	0.99	0.20													
		U. 20		0.20	2	0.34	0.36									
		0.28	0.30	0.32	2	0.34	0.36									

I/O

-

Remarks

9


(5-3) Inte	erface signals					
		<u>Table 6</u>				
Pin No	Symbol	Description				
1	VLED	LED1~3 Anode Common				
2	LED Cathode1	LED1 Cathode				
3	LED Cathode2	LED2 Cathode				
4	LED Cathode3	LED3 Cathode				
5 VCC2		Power Supply (LCD Driver) for Analog				
6	VCC1	Power Supply (LCD Driver) for I/O				
7	ID	Vandar Idantify				

3	LED Cathode2	LED2 Cathode	-	
4	LED Cathode3	LED3 Cathode	-	
5	VCC2	Power Supply (LCD Driver) for Analog	-	
6	VCC1	Power Supply (LCD Driver) for I/O	-	
7	ID	Vendor Identify	-	Connected to VCC1
8	D15	Data Bus	I/O	
9	D14	Data Bus	I/O	
10	D13	Data Bus	I/O	
11	D12	Data Bus	I/O	
12	D11	Data Bus	I/O	
13	D10	Data Bus	I/O	
14	D9	Data Bus	I/O	
15	D8	Data Bus	I/O	
16	D7	Data Bus	I/O	
17	D6	Data Bus	I/O	
18	D5	Data Bus	I/O	
19	D4	Data Bus	I/O	
20	D3	Data Bus	I/O	
21	D2	Data Bus	I/O	
22	D1	Data Bus	I/O	
23	D0	Data Bus	I/O	
24	GND	GND level pin	-	
25	GND	GND level pin	-	
26	RD	Read enable	Ι	Low enable
27	WR	Write enable	Ι	Low enable
28	A0	Data / Command selectable	Ι	Low: command
				High: display data / parameter
29	CS	Chip Select	Ι	Low enable
30	VNSCO	Tearing Effect Output	0	
31	IF2	Bus Width Setting	Ι	Refer to Circuit Diagram
32	IF1	Bus Width Setting	Ι	Refer to Circuit Diagram
33	RESET	Reset enable	Ι	Low enable
34	GND	Ground Level Pin		
35	GND	Ground Level Pin		

Corresponded connector : 0.3mm pitch, ZIF Connector (OMRON XF2B-3545-31A)

Signals connect to LCD module. Symbols correspond able to Circuit diagram in Page 30.

Note17: The following load is connected when measuring the data delay (tDD) and data hold time (tDHR)

∔ 50 pF

∲ GND

DB23~DB0

(*) including tool and probe capacitance.

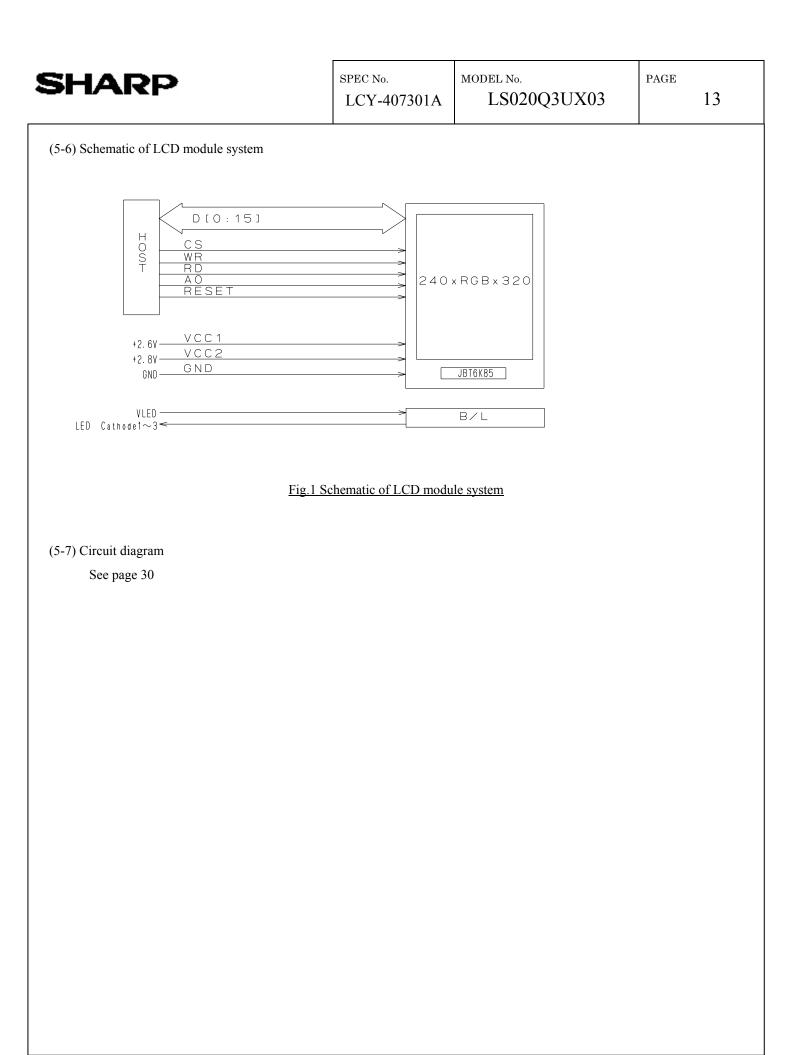
Characteris	tics	Symbol	Test Circuit Test Condition	Min	Тур.	Max	Ur
Enable cycle time	On write	tcycEW	 2	120	-	-	n
	On read	tcycER	_	800	_	_	n
Enable pulse width	On write	PEW		25	—	-	n
(Enable time)	On read	PER	_	620	-	_	n
Enable pulse width	On write	PDW		55		-	n
(Disable time)	On read	PDR	—	170	-	_	n
Input signal rising/falling ti	me			_	—	20	n
Address setup time (/CS s	ignal)			-4	-	-	n
Address setup time (RS, F	R/*W signal)			-4	-	—	n
Address hold time (/CS sig	gnal)			15	-	-	n
Address hold time (RS, R/	*W signal)		<u>1000</u> 85	15	_	_	n
Write data setup time				18	—	—	n
Write data hold time				18	-	—	n
Data delay			Note17	-	-	600	n
Read data hold time			Note17	5	_	_	n

Note : tDD and tDHR are measured with the load as shown in the figure.

Condition : High speed Write Mode, VDDIO= $1.65 \sim 2.4$ V, Ta = 25°C

Characteris	tics	Symbol	Test Circuit Test Condition	Min	Тур.	Max	Unit
Enable cycle time	On write	tcycEW	-	60	1	-	ns
	On read	tcycER	—	800	-	-	ns
Enable pulse width	On write	PEW	-	20		-	ns
(Enable time)	On read	PER	—	620	-	—	ns
Enable pulse width	On write	PDW	—	20	-	-	ns
(Disable time)	On read	PDR	_	170	a <u>—</u> 1	_	ns
Input signal rising/falling t	Input signal rising/falling time Address setup time (/CS signal)		-	-	—	20	ns
Address setup time (/CS s			-	-4		_	ns
Address setup time (RS, I	R/*W signal)	tASR	-	-4	. —.:	<u>.</u>	ns
Address hold time (/CS si	gnal)	tAH	-	15	-	—	ns
Address hold time (RS, R	/*W signal)	tAHR	_	15	-		ns
Write data setup time		tDS	-	18	1	_	ns
Write data hold time		tDHW	, .	18	3. — 30		ns
Data delay		tDD	Note17	-		600	ns
Read data hold time		tDHR	Note17	5	—	—	ns

Note : tDD and tDHR are measured with the load as shown in the figure.


Characteris	tics	Symbol	Test Circuit Test Condition	Min	Тур.	Max	Unit
Enable cycle time	On write	tcycEW	-	100		-	ns
	On read	tcycER	—	500	-	Τ	ns
Enable pulse width	On write	PEW	_	20	-	-	ns
(Enable time)	On read	PER		320		3 -8	ns
Enable pulse width	On write	PDW	_	40			ns
(Disable time)	On read	PDR	—	170			ns
Input signal rising/falling time		tEr, tEf	_	_	_	20	ns
Address setup time (/CS s	ignal)	tAS	-	-1			ns
Address setup time (RS, F	R/*W signal)	tASR	_	-1	—	_	ns
Address hold time (/CS sig	gnal)	tAH	—	15	-	-	ns
Address hold time (RS, R/	*W signal)	tAHR	—	15	s <u>—</u> s		ns
Write data setup time		tDS	—	18	-	1	ns
Write data hold time		tDHW		18			ns
Data delay		tDD	Note17	-	-	300	ns
Read data hold time		tDHR	Note17	5			ns

Note : tDD and tDHR are measured with the load as shown in the figure.

Condition : High speed Write Mode, VDDIO= $2.4 \sim 3.6$ V, Ta = 25°C

Characteris	tics	Symbol	Test Circuit Test Condition	Min	Тур.	Max	Unit
Enable cycle time	On write	tcycEW		50	—		ns
	On read	tcycER	—	500	-	—	ns
Enable pulse width	On write	PEW	—	20	-	—	ns
(Enable time)	On read	PER	—	320	-	—	ns
Enable pulse width	On write	PDW	_	20		—	ns
(Disable time)	On read	PDR	_	170			ns
Input signal rising/falling ti	Input signal rising/falling time		_	-		20	ns
Address setup time (/CS s	ignal)	tAS	—	-1	_	-	ns
Address setup time (RS, F	የ/*W signal)	tASR	-	-1	-	—	ns
Address hold time (/CS sig	gnal)	tAH	_	15	_	_	ns
Address hold time (RS, R/	*W signal)	tAHR		15	-	-	ns
Write data setup time		tDS	-	18	-	_	ns
Write data hold time Data delay		tDHW	—	18	—	—	ns
		tDD	Note17	-	-	300	ns
Read data hold time		tDHR	Note17	5	_	_	ns

Note: tDD and tDHR are measured with the load as shown in the figure.

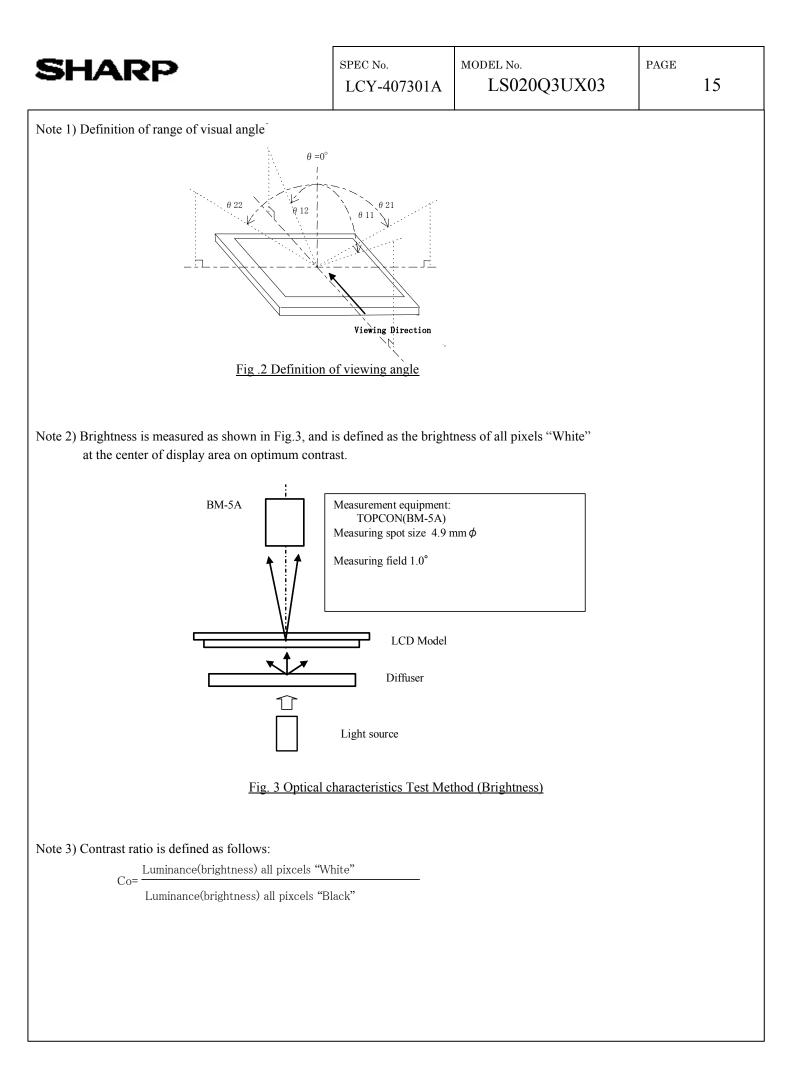
6. Optical Characteristics Δ

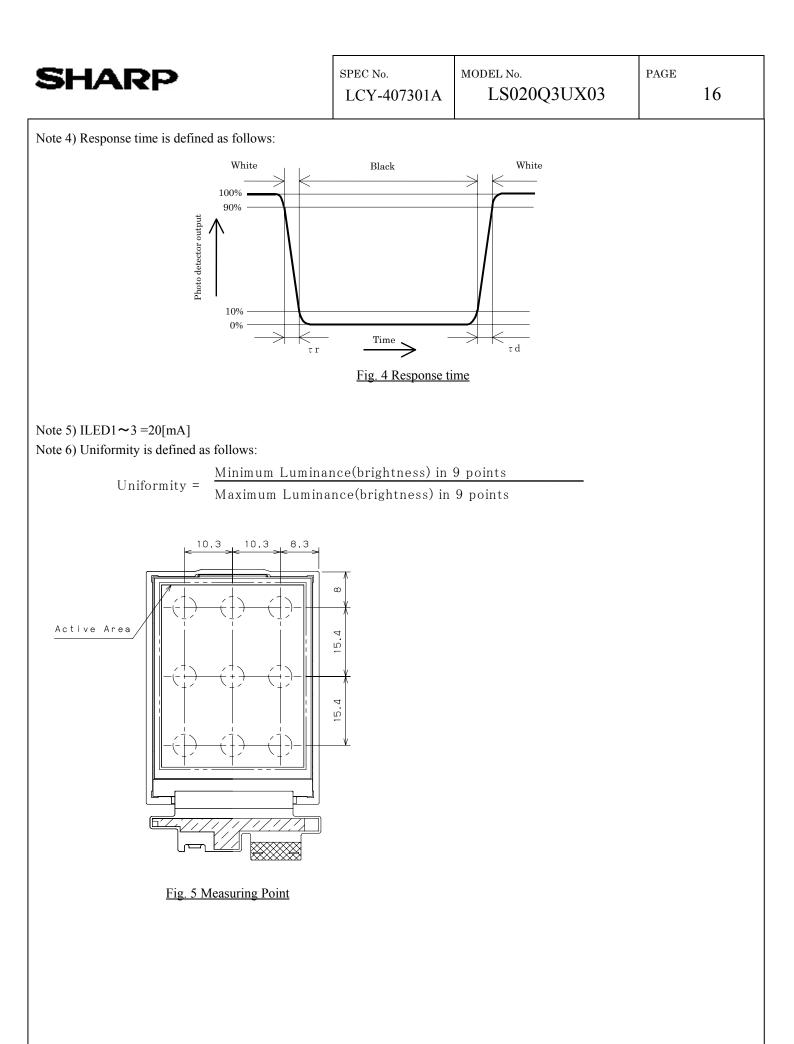
Table 7

VCC1=2.6V, VCC2=2.8V, Ta = 25°C

Parameter		symbol	conditio	MIN	ТҮР	MAX	unit	Remark
Brightness		Br	$\theta = 0^{\circ}$	220	320	-	cd/m²	Note1,2,5
Contrast		Со	$\theta = 0^{\circ}$	300	500	-		Note1,3
Viewing Ang	gle	θ11	Co > 5	70	80	-	deg	Note1
		θ12		70	80		_	
		θ21	_	70	80	_		
		θ 22		70	80	-		
Response	Rise	τrl	$\theta = 0^{\circ}$	_	11	22	ms	Note1,4
Time	Decay	τ d1		-	24	48	ms	
White chromaticity		x	$\theta = 0^{\circ}$	0.245	0.295	0.345		Note.1,3
		v		0.26	0.31	0.36		
Red chromat	icity	x	$\theta = 0^{\circ}$	0.60	0.65	0.70		
		v		0.29	0.34	0.39		
Green chrom	aticity	x	$\theta = 0^{\circ}$	0.27	0.32	0.37		
		y		0.58	0.63	0.68		_
Blue chromaticity		x	$\theta = 0^{\circ}$	0.09	0.14	0.19		_
		y		0.01	0.05	0.10		
Uniformity		-	$\theta = 0^{\circ}$	70			%	Note.6
NTSC ratio		-	$\theta = 0^{\circ}$	60	70		%	
Color Tempe	erature	-	$\theta = 0^{\circ}$	6000	7900	10000	K	
Flicker ratio		-	*1	-	-	7	%	

*1: Measuring condition


• Measuring systems: YOKOGAWA 3298_01 + 3298_11


• Temperature = $25^{\circ}C(\pm 3^{\circ}C)$, Frame Frequency = 65Hz (-0/+5Hz), LED back-light: ON, Environment brightness < 150 lx

·Measuring pattern : Horizontal stripe pattern <black (V0) / gray(V32) / black (V0) /gray (V32) ···>

·Measured sample : New sample before a long term aging.

· Flicker ratio is very sensitive to measuring condition.

SHARP	
-------	--

7. Reliability Δ

No.	Test	Condition	Judgment criteria
1	Temperature Cycling	$-30^{\circ}C \rightarrow 80^{\circ}C \rightarrow -30^{\circ}C \cdots$	Per table in below
		60min 60min 60min 12cycle	
2	High Temp. Storage	Ta=80°C 96h	Per table in below
3	Low Temp. Storage	Ta=-30°C 96h	Per table in below
4	Humidity Operation	Ta=60°C 90%RH,White pattern 96h	Per table in below
			(polarizer discoloration is
			excluded)
5	High Temp. Operation	Ta=70°C,White pattern 96h	Per table in below
6	Low Temp. Operation	Ta=-20°C,White pattern 96h	Per table in below
7	Temp. Drift	$70^{\circ}C \rightarrow 60^{\circ}C \rightarrow \cdots \rightarrow -10^{\circ}C \rightarrow -20^{\circ}C$	Per table in below
		1h 1h 1h 1h (10min) (10min) (10min) (10min)	
		65%RH(Over 10°C), 0%RH(Under 0°C)	
8	ESD	Discharge resistance: 0 Ω	Per table in below
		Discharge capacitor: 200 pF	
		Discharge voltage: ±200 V Max	
		Discharge 1 time to each input line	
		X Vss of display module is connected	
		GND of test system ground.	

INSPECTION	CRITERION(after test)	
Appearance	No Crack on the FPC, on the LCD Panel	
Alignment of LCD Panel	No Bubbles in the LCD Panel	
	No other Defects of Alignment in Active area	
Electrical current	Within device specifications	
Function / Display	No Broken Circuit, No Short Circuit or No Black line	
	No Other Defects of Display	

Pushing Bar

Fig. 6 3Point Bending Test

LCD Module

18

8. Mechanical strength($\bigstar 1, \bigstar 2, \bigstar 3$) \triangle

<u>Table. 9</u>							
Mechanical strength	MIN	TYP	MAX	Unit	Remark		
3 Point Bending	3.5		—	Kgf	Note.1)		
COG Constant Pushing	2.0		—	Kgf	Note.2)		

XTesting condition

- •Testing systems: TMD-1kN (MINEBA Co., Ltd.)
- Temperature = $25^{\circ}C(\pm 3^{\circ}C)$
- ·Non operation
- ·Measured sample : New sample before a long term aging.
- ★ 1. Mechanical Strength specification shall be out of LG Electronics 's incoming inspection standard and not applicable to AQL.
- ★ 2. Above specification are meaning of the typical lowest values gotten from actual measurement at sampling test.
- \star 3. If there are a lot of samples which doesn't meet the specifications in the standard sampling test ,

Sharp & LG have discussions how to proceed in each case.

Note.1) 3 Point Bending Test is measured as follows

The strength of 3 Point Bending is defined as the load of Pushing Bar at when LCD glass is broken.

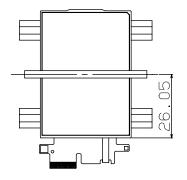
(Test condition)

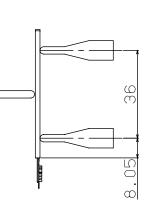
Pushing Bar:

Tip shape: Φ 3mm (round shape)

Sweep Speed:3mm/min

Material: Aluminum or Steel


Position: Fig. 7


Supporter

Tip shape: Φ 3mm(round shape)

Pitch:36mm

Material: Aluminum or Steel

Supporter

Fig. 7 Test Position

SHARP	SPEC No. LCY-407301A	$\frac{\text{MODEL N}_{0.}}{LS020Q3UX03}$	PAGE 19					
Note.2) COG Constant Pushing Test is measured as follows The strength of COG Constant Pushing is defined as the load of Pushing Rod at when LCD glass or driver IC is broken.								
(Test condition)								

Pushing Rod:

Tip diameter: Φ 3mm(flat shape)

Sweep Speed:3mm/min

Material: Aluminum or Steel

Position: Fig. 9

Supporter

Tip shape: $\Phi 3mm$

Pitch: 36mm

Material: Aluminum or Steel

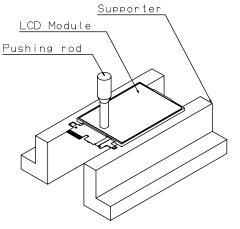
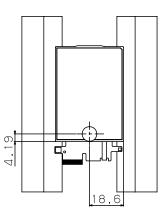



Fig. 8 COG Constant Pushing Test

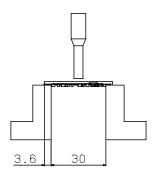


Fig. 9 Test Position

SHARP	SPEC No.	MODEL No.	PAGE
	LCY-407301A	LS020Q3UX03	20

9. Packaging specifications

- (9-1) Details of packaging
 - 1) Packaging materials: Table.11
 - 2) Packaging style : Fig. 10, 11

(9-2) Reliability

1) Vibration test

Table.10	

Item	Test			
Frequency	5 Hz to 50 Hz (3 minutes cycle)			
Direction	Up-Down, Left-Right, Front-Back (3 directions)			
Period	Up-Down	Left-Right	Front-Back	Total
	60min	15min	15min	90min

0.2mm

 $50~\mathrm{Hz}$

(For 9.8m/s²)

The frequency should start at 5 Hz and vary continuously.

Total amplitude	20mm	0.2mm	20 mm	
Frequency	$5~\mathrm{Hz}$	$50~\mathrm{Hz}$	$5~\mathrm{Hz}$	
	\sim	\sim	\sim	

2) Drop test

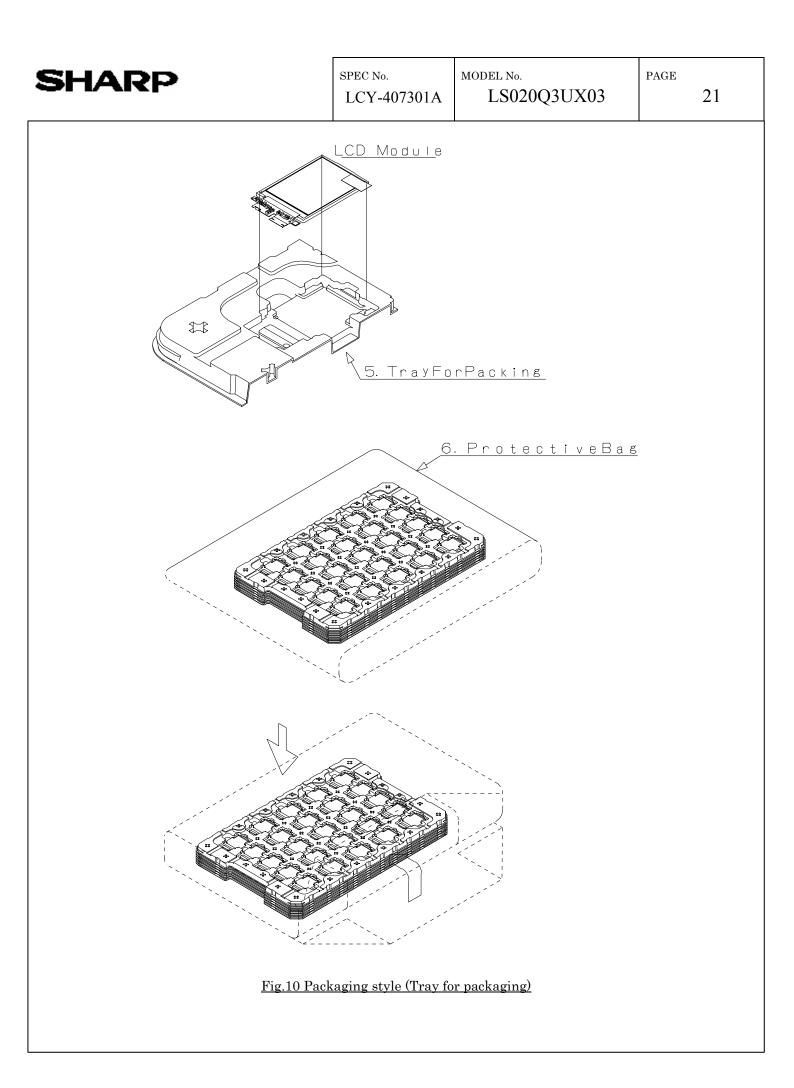
Drop height: 750mm Number of drop: 10 times (Drop sequence: 1 corner, 3 edges, 6 faces)

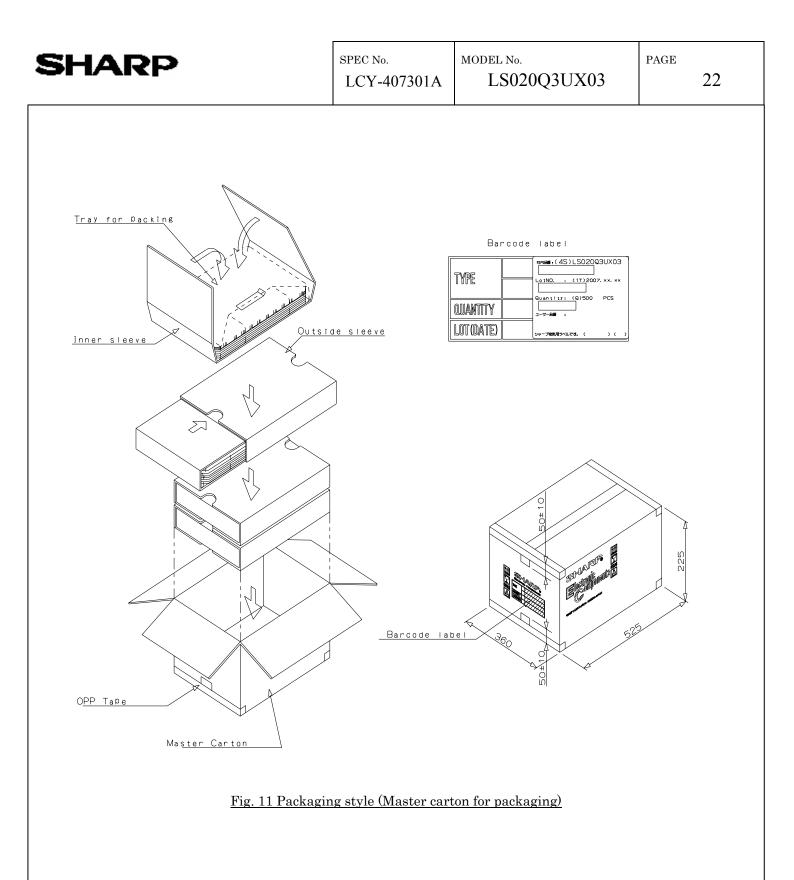
(9-3) Packaging quantities

500 modules (max) per master carton

(9-4) Packaging weight

7.6kg


(9-5) Packaging outline dimensions


360 mm × 525 mm × 225 mm (H)

(Packaging materials)

Table.11

	Parts name	Materials
1	Master carton	Corrugate card board
2	Under pad	Corrugate card board
3	Inside sleeve	Corrugate card board
4	Outside sleeve	Corrugate card board
5	Tray for packaging	Polystyrene with anti-static treatment + anti-static polystyrene
6	Protective bag	Polyethylene with anti-static treatment
7	OPP tape	Polypropylene
8	Bar code label	Anti-static polyethylene

10.	Initial	Sequence	
10.	Innual	Dequence	

【Power ON Sequence】 (In case of 16bit 1 time transfer) Δ

Item	RS	index/data	hex
Initial condition (DB0-15,RS,CSB,WRD,RDB,RE	SETE	="L")	
VDDIO ON			
VDD ON			
WAIT min. 1ms			
Fix logic initial voltage level			
Reset release (RESETB=H)			
WAIT min. 10ms		_	
Deep stand by release 1	L	I	0000h
WAIT min. 3 ms		_	
Deep stand by release 2	L	I	0000h
WAIT min. 3 ms		Ŧ	00001
Deep stand by release 3	L	I	0000h
WAIT min. 3 ms		Ŧ	0000
The on-chip CR oscillator operation starts		I	0000h
WAIT min Eme	Н	D	0001h
WAIT min. 5ms Panel output control	L	I	0100h
	H	D	0100h
WAIT min. 1us		U	000011
Manual sequence enable	L	I	0101h
	H	D	0000h
VGM setting		I	0102h
Von Stung	H	D	000Ah
XVDD setting		I	0103h
The booster clock mode of AVDD and XVDD is Dual mode	H	D	0006h
Boosting step setting	L	I	0104h
	H	D	0000h
Boosting clock of AVDD and XVDD	L	I	0105h
-	Н	D	0035h
VCS1 setting	L	I	0107h
	Н	D	003Bh
Set Source Driver output Direction	L	I	0001h
(From OUT120 to OUT1)	Н	D	0127h
STV=1H, Precharge "ON", RGB out put order is normal.	L	I	0002h
	Н	D	1210h
Display colors mode	L	I	0007h
(In case of 16bit color)			8030h
(In case of 18bit color)	Н	D	4030h
Transfer mode	L	I	0003h
(In case of 16bit 1 time transfer)	Н	D	0030h
Set Front Porch =56, Back Porch=8	L	Ι	0008h
	Н	D	3808h
Set the number of clocks in 1H.	L	Ι	000Dh
	Н	D	0002h

NEXT Page

	LCY-40/301A	LSC	120Q3	0703
	I	н	D	0402h
Panel control setting		L	Ι	0014h
		н	D	0001h
Panel control setting		L	Ι	0015h
		Н	D	6300h
Panel control setting		L	Ι	001Ch
		Н	D	0000h
Panel control setting		L	Ι	007Ah
		н	D	0400h
Select Gamma curve2.		L	Ι	0309h
		Н	D	0001h
Set the offset of the VDH/VGS side	e of positive Gamma.	L	Ι	030Ah
		Н	D	0000h
Set the offset of the VDH/VGS side	e of negative Gamma.	L	Ι	030Bh
		н	D	0000h
Panel control setting		L	Ι	0100h
		Н	D	C000h
Panel control setting		L	I	0108h
		Н	D	0000h
	WAIT min. 16ms			
Panel control setting		L	Ι	0100h
		Н	D	EA00h
Panel control setting		L	Ι	0108h
		Н	D	0001h
	WAIT min. 16ms			
Panel control setting		L	Ι	0100h
		Н	D	FA00h
Panel control setting		L	Ι	0108h
		Н	D	0000h
RAM address setting. X increment	start address set.	L	Ι	0200h
		Н	D	0000h
RAM address setting. Y increment	start address set.	L	Ι	0201h
		Н	D	0000h
RAM data write		L	Ι	0000h
		L	Ι	0202h
		Н	D	XXXXh
	WAIT min. 16ms			
Switch on Gamma gray scale volta	ge.	L	Ι	0100h
		Н	D	FB0Ah
	WAIT min. 32ms		_	
Source output (Black Display)		L	I	0100h
		Н	D	FDEAh
	WAIT min. 16ms		-	
Source output (Normal Display)		L	I	0100h
		Н	D	FDFAh

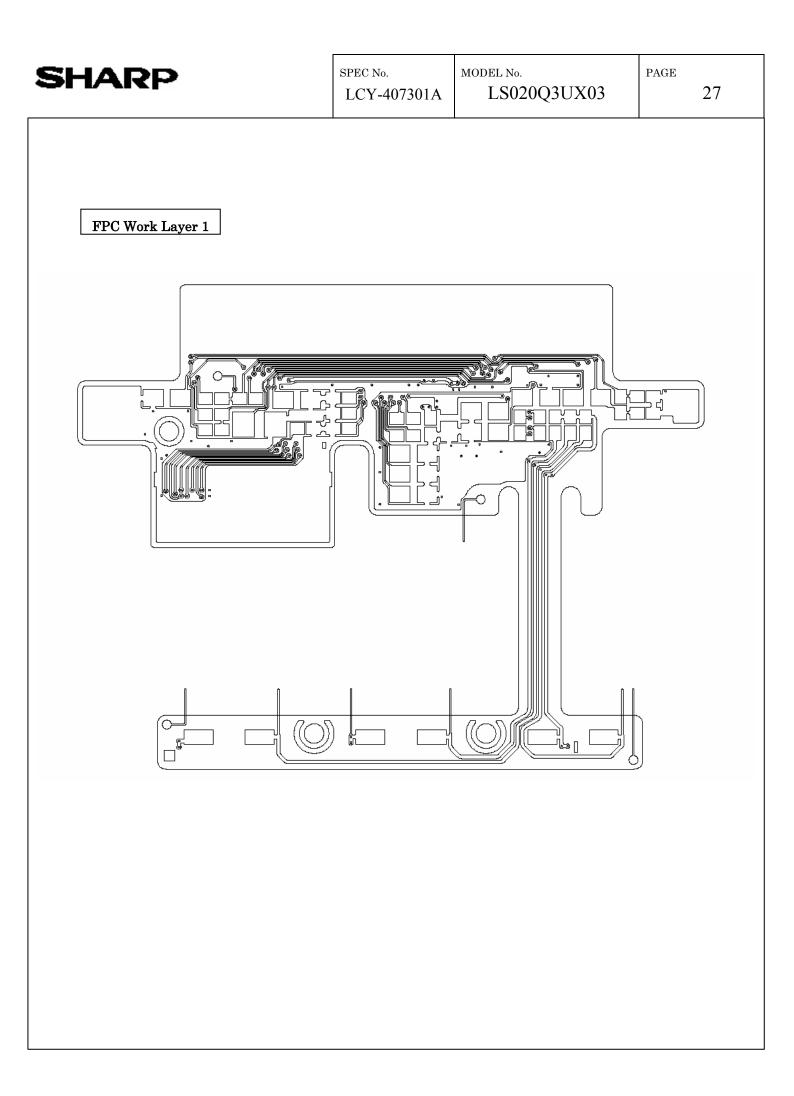
[Power OFF Sequence]

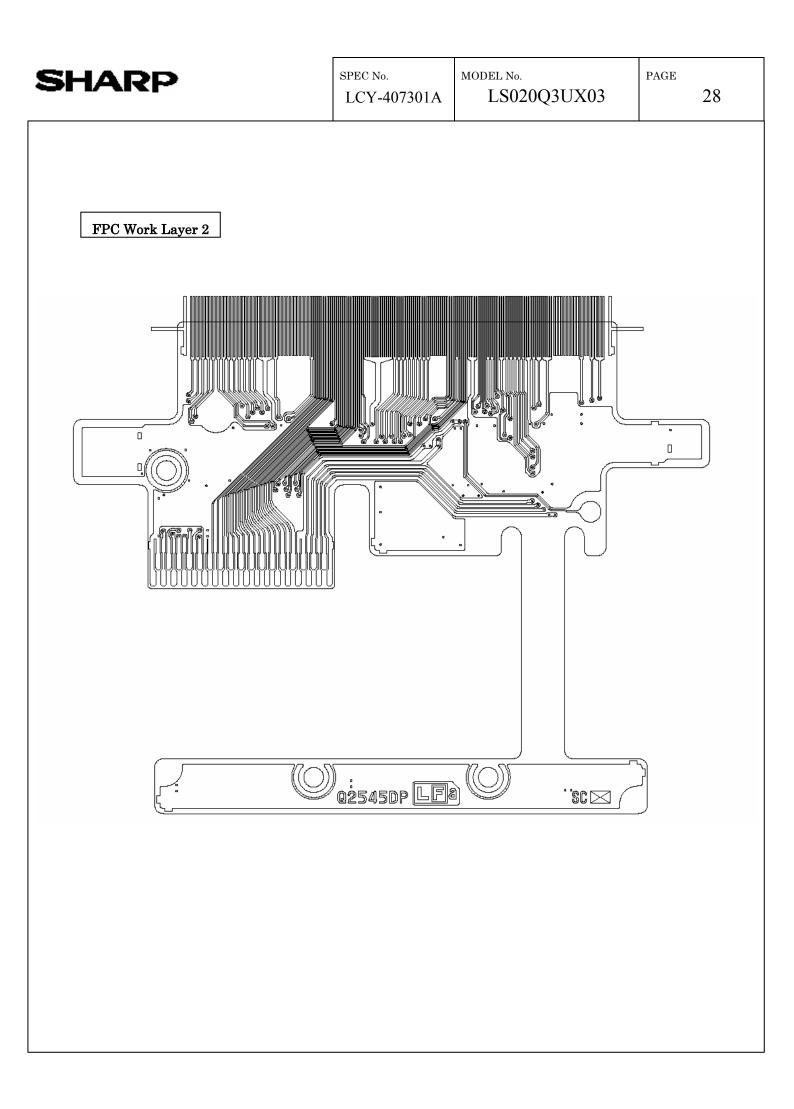
SPEC No. LCY-407301A MODEL No. LS020Q3UX03

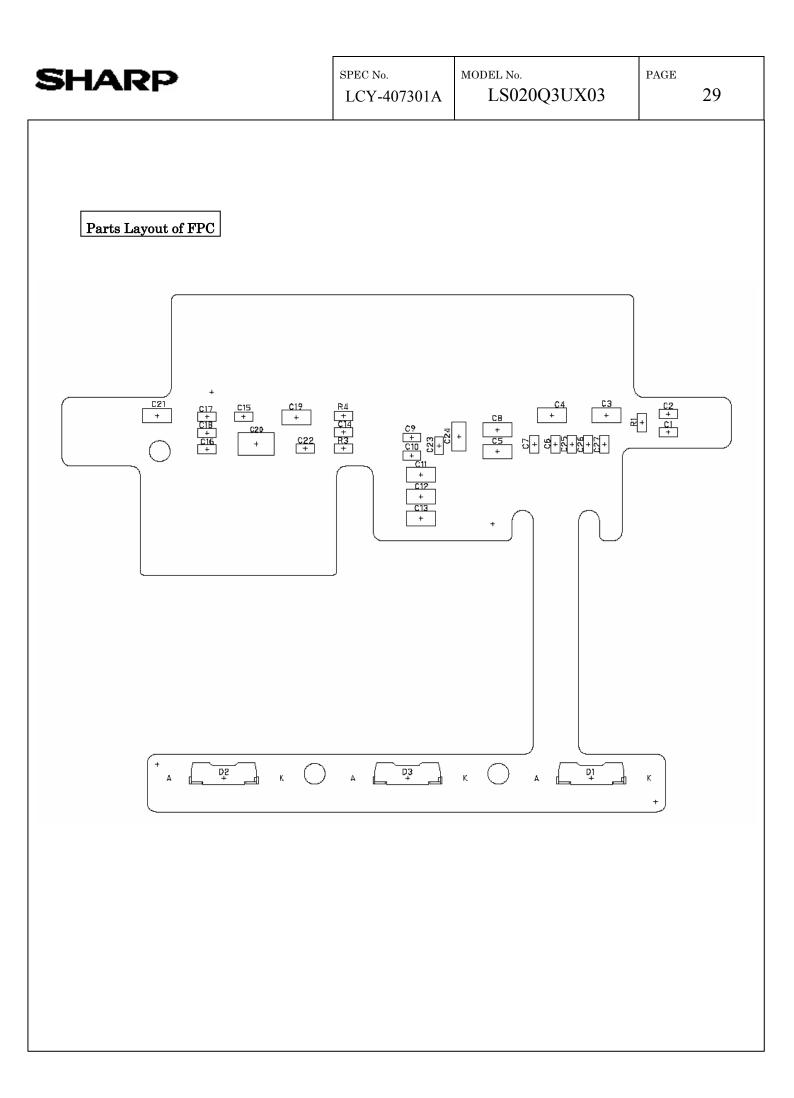
PAGE

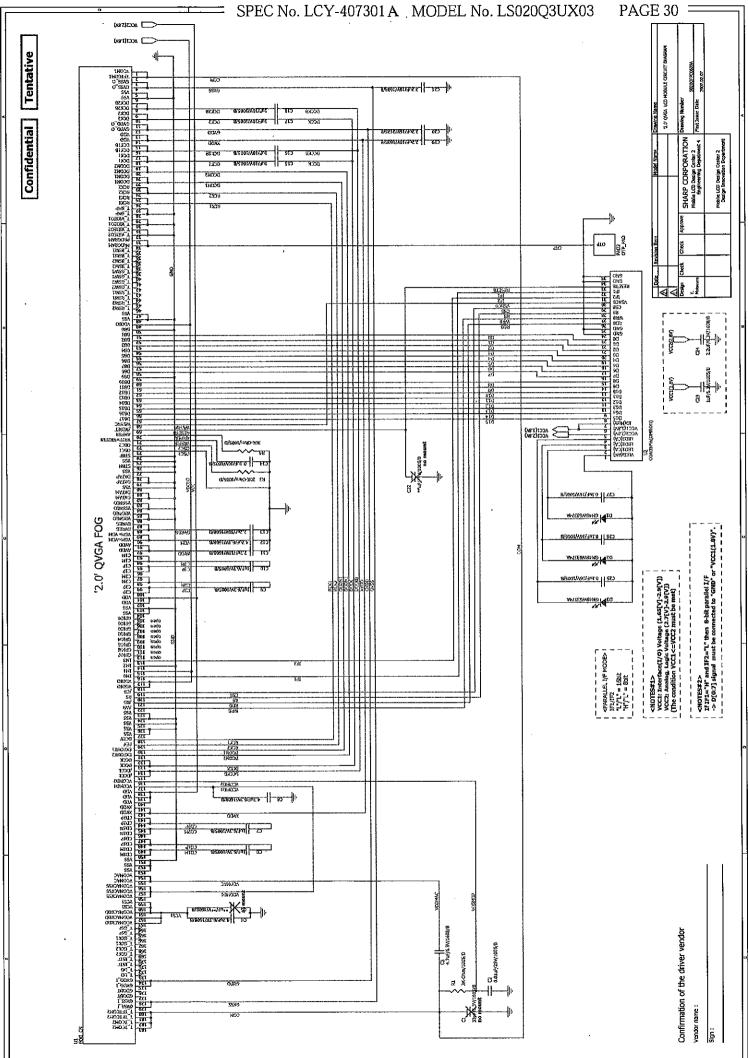
25

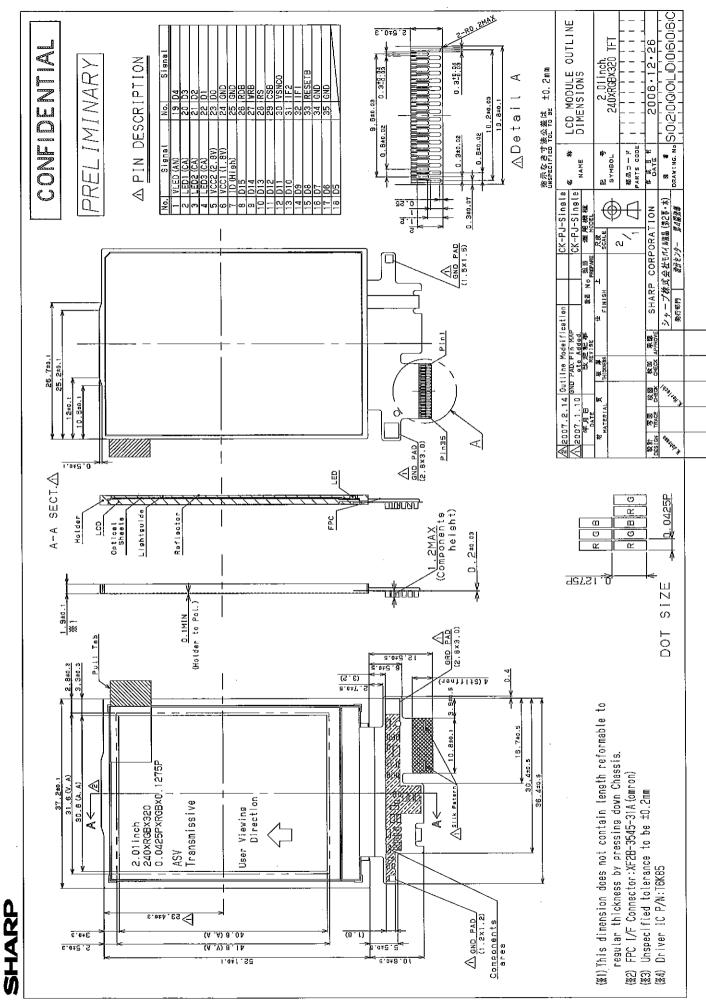
Item	RS	index/data	hex	
Source output (Black Display)		Ι	0100h	
	Н	D	FDEAh	
WAIT min. 16ms				
Panel control setting (Display OFF)	L	Ι	0100h	
	Н	D	FCC8h	
WAIT min. 32ms				
Panel control setting	L	Ι	0100h	
	Н	D	C000h	
Panel control setting	L	Ι	0108h	
		D	0002h	
WAIT min. 16ms				
Sleep mode		Ι	0100h	
	Н	D	0000h	
Panel control setting		Ι	0108h	
		D	0000h	
Deep standby		Ι	001Dh	
		D	0000h	
WAIT min. 300ms				
VDD OFF				
VDDIO OFF				
RESET = "L"				


SPEC No.
LCY-407301A


 $\frac{\text{MODEL No.}}{LS020Q3UX03}$


PAGE


26


11. Parts List	Γ	r	
PARTS CODE	SPECIFICATION	SIZE	VENDOR
LCD	240xRGBX320	2.0"	SHARP
Polarizer	-	-	NITTO
Driver LSI	JBT6K85-32AS(EZ,S)		TOSHIBA
Back Light	-	-	Nihon Lights
FPC	2layer Cu/PI/Cu		Sony Chemical
LED1~3	GM4BW63374A		SHARP
C2	0.01uF/25V	1005	MULTI
C3	4.7uF/6.3V	1608	MULTI
C4	4.7uF/6.3V	1608	MULTI
C6	1.0uF/6.3V	1005	MULTI
C7	1.0uF/6.3V	1005	MULTI
C8	4.7uF/6.3V	1608	MULTI
C9	1.0uF/6.3V	1005	MULTI
C10	1.0uF/6.3V	1005	MULTI
C11	2.2uF/10V	1608	MULTI
C12	4.7uF/6.3V	1608	MULTI
C13	2.2uF/10V	1608	MULTI
C14	0.1uF/10V	1005	MULTI
C15	1.0uF/10V	1005	MULTI
C16	1.0uF/10V	1005	MULTI
C17	1.0uF/10V	1005	MULTI
C18	1.0uF/10V	1005	MULTI
C19	2.2uF/10V	1608	MULTI
C20	2.2uF/16V	2125	MULTI
C21	2.2uF/10V	1608	MULTI
C23	1.0uF/6.3V	1005	MULTI
C24	2.2uF/6.3V	1608	MULTI
C25	0.1uF/16V	1005	MULTI
C26	0.1uF/16V	1005	MULTI
C27	0.1uF/16V	1005	MULTI
R1	3kohm/D	1005	MULTI
R2	20kohm/D	1005	MULTI
R3	30kohm/D	1005	MULTI

SPEC No. LCY-407301A MODEL No. LS020Q3UX03 PAGE 31

SHARP	SPEC No. LCY-407301A	MODEL No. LS020Q3UX03	PAGE 32
1. Serial Number Label identification			
Numbering is specified as follows.			
<u>7 E 000001 Q</u>			
① product year (lower 1 digits)			
7: 2007			
8: 2008			
② product month A: January			
B: February			
C: March			
:			
L: December			
③ serial number			
$000001 \sim 999999$			
(4) factory code			
2. LCD Module Code Rule.			
)		
<u>LS 020 Q 3 U X 03</u>			
1 2 3 4 5 6 7)		
Deute terms			
①Parts type CGS LCD			
②Active area size			
2.0inch			
③Dot format			
QVGA format			
(a)LCD type			
Transmissive			
⑤ Interface type			
CPU interface			
[®] Polarizer / LCD viewing type			
Clear type / Wide viewing an	ngle		