LS060S2UD01 LCD Module

Product Specification
March 2010

SVGA (Portrait) Monochrome HR-TFT Transflective Memory LCD featuring FPC connector, 16% reflectivity with 15:1 contrast.
DEVICE SPECIFICATION for
TFT LCD Module
(600 × 2 × 800 dots)

Model No.
LS060S2UD01

CUSTOMER'S APPROVAL

DATE

BY

PRESENTED
BY

MASAMI.INOUE

ASSISTANT DEPARTMENT GENERAL MANAGER
ENGINEERING DEPARTMENT III
MOBILE LCD DIVISION I
MOBILE LCD GROUP
SHARP CORPORATION
RECORDS OF REVISION

MODEL No: LS060S2UD01

<table>
<thead>
<tr>
<th>SPEC No.</th>
<th>Date</th>
<th>NO.</th>
<th>PAGE</th>
<th>SUMMARY</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP-1310002</td>
<td>2010.03.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1st Issue</td>
</tr>
</tbody>
</table>
This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP’s devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP’s devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP’s devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP’s device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP’s device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs, such as:

- Personal computers
- Office automation
- Telecommunication equipment
- Test and measurement equipment
- Industrial control
- Personal digital assistant
- Audio visual and multimedia equipment
- Consumer electronics
- Smart phone
- e-book

The appropriate design measures should be taken to ensure reliability and safety when SHARP’s devices are used for equipment such as:

- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices etc.

SHARP’s devices shall not be used for equipment that requires extremely high level of reliability, such as:

- Military and space applications
- Nuclear power control equipment
- Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP’s devices for any “specific” applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.
1. Applicable Scope

This specification is applicable to TFT-LCD Module “LS060S2UD01”.

2. Mechanical (Physical) Specifications

Table 2-1

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen size</td>
<td>15.30 (6.02” type) Diagonal</td>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>Active area</td>
<td>91.8(H) × 122.4(V)</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Pixel format</td>
<td>600(H) × 800(V)</td>
<td>pixel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Pixel = 2 dots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel pitch</td>
<td>0.153(H) × 0.153(V)</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Display mode</td>
<td>Normally White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit outline dimensions</td>
<td>96.8(W) × 132.8(H) × 1.23(D)</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>36</td>
<td>g</td>
<td>Panel module part</td>
</tr>
</tbody>
</table>

【Note 2-1】The above-mentioned table indicates module sizes without some projections and FPC. For detailed measurements and tolerances, please refer to Fig.1 Outline Dimensions.

3. Pixel Configuration

![Pixel Configuration Diagram]
4. Input Terminal Names and Functions

Table 4-1 (FPC: connector [HIROSE] FH19SC-32S-0.5)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>I/O</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>–</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>N.C.(VPP)</td>
<td>–</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BUSSEL</td>
<td>I</td>
<td>Data bus selection signal</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RESETB</td>
<td>I</td>
<td>Reset signal (Active Low)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CSB</td>
<td>I</td>
<td>Chip select signal</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RS</td>
<td>I</td>
<td>Display Data/Command selection signal</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>WR</td>
<td>I</td>
<td>Write Enable</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RD</td>
<td>I</td>
<td>Read Enable</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D00</td>
<td>I/O</td>
<td>Data bus 0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>D01</td>
<td>I/O</td>
<td>Data bus 1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>D02</td>
<td>I/O</td>
<td>Data bus 2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D03</td>
<td>I/O</td>
<td>Data bus 3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>D04</td>
<td>I/O</td>
<td>Data bus 4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>D05</td>
<td>I/O</td>
<td>Data bus 5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>D06</td>
<td>I/O</td>
<td>Data bus 6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>D07</td>
<td>I/O</td>
<td>Data bus 7</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>D08</td>
<td>I/O</td>
<td>Data bus 8</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>D09</td>
<td>I/O</td>
<td>Data bus 9</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>D10</td>
<td>I/O</td>
<td>Data bus 10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>D11</td>
<td>I/O</td>
<td>Data bus 11</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>D12</td>
<td>I/O</td>
<td>Data bus 12</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>D13</td>
<td>I/O</td>
<td>Data bus 13</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>D14</td>
<td>I/O</td>
<td>Data bus 14</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>D15</td>
<td>I/O</td>
<td>Data bus 15</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>ACK</td>
<td>O</td>
<td>ACK signal output</td>
<td>※1</td>
</tr>
<tr>
<td>26</td>
<td>OVSYNC</td>
<td>O</td>
<td>Vertical synchronizing signal output</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>N.C.(OTPTEST)</td>
<td>–</td>
<td>No Connection</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>VDDL_EN</td>
<td>I</td>
<td>Power supply generation circuit enable (Active High)</td>
<td>※1</td>
</tr>
<tr>
<td>29</td>
<td>VDDIO</td>
<td>–</td>
<td>Power Supply</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>VDD</td>
<td>–</td>
<td>Power Supply</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>GND</td>
<td>–</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>GND</td>
<td>–</td>
<td>Ground</td>
<td></td>
</tr>
</tbody>
</table>

※1: Recommendation Circuit
5. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Rated value</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic I/O power supply voltage</td>
<td>VCCIO</td>
<td>$T_a = 25^\circ C$</td>
<td>-0.3 to $+7.0$</td>
<td>V</td>
<td>Note 1</td>
</tr>
<tr>
<td>Analog power supply voltage</td>
<td>VCI</td>
<td>$T_a = 25^\circ C$</td>
<td>-0.3 to $+7.0$</td>
<td>V</td>
<td>Note 1</td>
</tr>
<tr>
<td>Temperature for storage</td>
<td>Tstg</td>
<td>$-$</td>
<td>-30 to $+80$</td>
<td>deg.</td>
<td>Note 2</td>
</tr>
<tr>
<td>Temperature for operation</td>
<td>Topr</td>
<td>$-$</td>
<td>-20 to $+70$</td>
<td>deg.</td>
<td></td>
</tr>
</tbody>
</table>

Note 1) If used beyond the absolute maximum ratings, the LSI may permanently be damaged. It is strongly recommended to use the LSI under the condition within the electrical characteristics in normal operation. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device.

Note 2) Humidity: 80%RH Max. ($T_a \leq 40^\circ C$)
Maximum bulb temperature under $39^\circ C$ ($T_a > 40^\circ C$) See to it that no dew will be condensed.

6. Electrical Characteristics

6-1. DC characteristic

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input H Voltage</td>
<td>VIH</td>
<td>$0.7 \times VDDIO$</td>
<td>$-$</td>
<td>$-$</td>
<td>$VDDIO$</td>
<td>V</td>
<td>*1</td>
</tr>
<tr>
<td>Input L Voltage</td>
<td>VIL</td>
<td>0</td>
<td>$-$</td>
<td>$-$</td>
<td>$0.3 \times VDDIO$</td>
<td>V</td>
<td>*1</td>
</tr>
<tr>
<td>Input H Leak Current</td>
<td>IIH</td>
<td>$V_{IN} = VDDIO$</td>
<td>-10</td>
<td>$-$</td>
<td>10</td>
<td>μA</td>
<td>*1</td>
</tr>
<tr>
<td>Input L Leak Current</td>
<td>III</td>
<td>$V_{IN} = VSS$</td>
<td>-10</td>
<td>$-$</td>
<td>10</td>
<td>μA</td>
<td>*1</td>
</tr>
<tr>
<td>Host Interface Voltage</td>
<td>VDDIO</td>
<td>1.65</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver driving voltage</td>
<td>VDD</td>
<td>2.7</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
<td></td>
<td>*2</td>
</tr>
</tbody>
</table>

Power Consumption

<table>
<thead>
<tr>
<th></th>
<th>Standby Mode</th>
<th>Still image</th>
<th>1Re-write/30s</th>
<th>30fps Movie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>2.1</td>
<td>2.2</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>mW</td>
<td>mW</td>
<td>mW</td>
<td>mW</td>
</tr>
</tbody>
</table>

*1: Application terminal: RESETB, CSB, RS, WR, RD, D[15:00]
*2: When voltage is Typ. 2.7 ~ 3.3V at “start Sequence”, it is necessary to input “the following Command” before input “Normal Command”.

Command: 68h Parameter: 00h

*3: VDD=VDDIO=3.3V, Ta=25°C

*4: Display OFF, Memory keep
7. Timing characteristics of input signals

7-1 AC Timing

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS, CSB</td>
<td>tAS</td>
<td>RS, CSB setup time</td>
<td>50</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RS, CSB</td>
<td>tAH</td>
<td>RS, CSB hold time</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>WR</td>
<td>tCYCW</td>
<td>write cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR</td>
<td>tCYCW</td>
<td>(High-speed writing mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR</td>
<td>tCYCW</td>
<td>16bit bus, 2bit/pixel</td>
<td>16bit bus, 2bit/pixel</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>WR</td>
<td>tCYCW</td>
<td>8bit bus, 2bit/pixel</td>
<td>8bit bus, 2bit/pixel</td>
<td>125</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>WR</td>
<td>Control pulse “L” Width</td>
<td>tCPLW</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>WR</td>
<td>Control pulse “H” Width</td>
<td>tCPHW</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>tCYCR</td>
<td>Read cycle</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>tCPLR</td>
<td>Control pulse “L” Width</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>tCPHR</td>
<td>Control pulse “H” Width</td>
<td>125</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>D[15:0]</td>
<td>tDS</td>
<td>Data setup time</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>D[15:0]</td>
<td>tDH</td>
<td>Data hold time</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>D[15:0]</td>
<td>tACC</td>
<td>Read access time</td>
<td></td>
<td>—</td>
<td>—</td>
<td>60</td>
<td>ns</td>
</tr>
<tr>
<td>D[15:0]</td>
<td>tOD</td>
<td>Read access time</td>
<td></td>
<td>—</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

![Timing Diagram](image-url)
7–2 Reset Input Timing

Table 7–2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset low-level width</td>
<td>(t_{\text{RST}})</td>
<td>1.5</td>
<td>–</td>
<td>–</td>
<td>us</td>
<td></td>
</tr>
<tr>
<td>Reset cancel time</td>
<td>(T_{\text{RST.C}})</td>
<td>–</td>
<td>–</td>
<td>0.3</td>
<td>us</td>
<td></td>
</tr>
</tbody>
</table>

8. Power Sequence

Table 8–1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{ON1}})</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>(\mu) s</td>
</tr>
<tr>
<td>(t_{\text{ON2}})</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{ON3}})</td>
<td>—</td>
<td>24+1V</td>
<td>—</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{OFF1}})</td>
<td>—</td>
<td>32+1V</td>
<td>—</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{OFF2}})</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>ms</td>
</tr>
</tbody>
</table>
9. Optical Characteristics
9-1 Driving the Back Light Condition

Table 9-1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing Angle Range</td>
<td>θ 21,</td>
<td>CR>2</td>
<td></td>
<td>55</td>
<td></td>
<td>degree</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ 11,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast Ratio</td>
<td>CR</td>
<td>θ =0°</td>
<td>15</td>
<td></td>
<td></td>
<td>-</td>
<td>[Note2,4,5]</td>
</tr>
<tr>
<td>Response</td>
<td>Rise</td>
<td>τr</td>
<td></td>
<td>10</td>
<td></td>
<td>ms</td>
<td>[Note3,4]</td>
</tr>
<tr>
<td></td>
<td>Decay</td>
<td>τd</td>
<td></td>
<td>20</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>White Chromaticity</td>
<td>x</td>
<td>θ =0°</td>
<td>0.31</td>
<td></td>
<td></td>
<td>-</td>
<td>[Note4,5]</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td></td>
<td></td>
<td>0.33</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reflection ratio</td>
<td>R</td>
<td>θ =0°</td>
<td>16</td>
<td></td>
<td></td>
<td>%</td>
<td>[Note6]</td>
</tr>
</tbody>
</table>

*The measuring method of the optical characteristics is shown by the following figure.
*A measurement device is Minolta luminance meter CM2002. (With the diffusion reflection unit.)

![Diagram](image.png)

Optical characteristics measuring method (b)
[Note 1] Definitions of viewing angle range

[Note 2] Definition of contrast ratio
The contrast ratio is defined as the following:
\[
\text{Contrast ratio (CR)} = \frac{\text{Luminance (brightness) with all pixels white}}{\text{Luminance (brightness) with all pixels black}}
\]

[Note 3] Definition of response time
The response time is defined as the following figure and shall be measured by switching the input signal for “black” and “white”

[Note 4] This shall be measured at center of the screen.

[Note 6] Definition of reflection ratio
The contrast ratio is defined as the following:
\[
\text{Contrast ratio (R)} = \frac{\text{Light detected level of the reflection by the LCD module}}{\text{Light detected level of the reflection by the standard white board}}
\]
10. Explanation of Function
10.1. Basic Operation

This IC stores image data input from HOST in internal RAM and outputs the image from source terminal S [16:0] accordingly to source output configuration. We will call the operation of HOST inputting image data to this IC (writing into internal RAM) “RAM Write”, and host reading image data from internal RAM “RAM Read”, and outputting image data from this IC to the panel “Panel Transfer”. Timing of each of these operations is accordingly to command from the HOST (Detail is in latter page.). Primarily, image data input only is transferred to the panel. Aside from image data transmitting, registers can be set up to control each function. By reading the register, condition of inside the IC can be checked.

Data bus width can be set either 16bit or 8bit by setting up BUSSEL terminal.

16bitbus transmits image data with terminal D [15:0] to and from HOST. For command receiving from HOST and register access, use terminal D [7:0].

8bitbus uses terminal D [7:0] for image data transmitting, receiving command from HOST and register access.

RAM Write
There are two kinds of RAM Write:

<table>
<thead>
<tr>
<th>RAM Write</th>
<th>Operation</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>All screen RAM</td>
<td>Inputs data of once screen panel size set in</td>
<td>LDIMG</td>
</tr>
<tr>
<td>Write</td>
<td>register (PSIZEX and PSIZEY)</td>
<td></td>
</tr>
<tr>
<td>Partial RAM</td>
<td>Inputs image data equal partial area set up in</td>
<td>LDIMGPTL</td>
</tr>
<tr>
<td>Write</td>
<td>register (PTLAREA).</td>
<td></td>
</tr>
</tbody>
</table>

RAM Read
There are two kinds of RAM Read:

<table>
<thead>
<tr>
<th>RAM Read</th>
<th>Operation</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>All screen RAM</td>
<td>Reads data of once screen panel size set in</td>
<td>RDIMG</td>
</tr>
<tr>
<td>Read</td>
<td>register (PSIZEX and PSIZEY)</td>
<td></td>
</tr>
<tr>
<td>Partial RAM</td>
<td>Reads image data equal partial area set up in</td>
<td>RDIMGPTL</td>
</tr>
<tr>
<td>Read</td>
<td>register (PTLAREA).</td>
<td></td>
</tr>
</tbody>
</table>

Panel Transfer
There are two kinds of Panel Transfer:

<table>
<thead>
<tr>
<th>Panel Transfer</th>
<th>Operation</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>All screen Panel</td>
<td>Transfers data of once screen panel size set in</td>
<td>DISP</td>
</tr>
<tr>
<td>Transfer</td>
<td>register (PSIZEX and PSIZEY) to the panel</td>
<td></td>
</tr>
<tr>
<td>Partial Panel</td>
<td>Transfers image data equal partial area set up</td>
<td>DISPPTL</td>
</tr>
<tr>
<td>Transfer</td>
<td>register (PTLAREA) to the panel</td>
<td></td>
</tr>
</tbody>
</table>

10.2. Command Transfer

Data control from HOST uses two way data bus (D[15:0]). The control signals are CSB, WR, RD and RS.

<table>
<thead>
<tr>
<th>Control Signal</th>
<th>Function</th>
</tr>
</thead>
</table>
| CSB | Chip Select
 When L, this input interface is active
 When H, inactive |
| WR | Write enable
 Reads data D by WR rise |
| RD | Read enable
 Reads data D by RD fall. At the time of write operation, it should be
 fixed at H. |
| RS | Recognition of input data D
 When WR rises and RS=L, recognizes D[7:0] as command.
 When WR rises and RS=H, recognizes D[15:0] as data. |
10.2.1. Write Operation
An example of write cycle (WR goes from H→L→H) is shown below.
Make sure to input command first. After that, write data as necessary. Until new command is input, it will continue operation accordingly to the original command.

Command setting only: Command
Setting command and parameter: Command + Parameter1 ⋯ ParameterN
Setting command and image data: Command + Image data ⋯ Image data

The Period of "Transfer Command (DISP, DISPPTL) writing" to "500ns", please do not write as followsings.

10.2.2. Read Operation
An example of read cycle (RD goes H→L→H) is shown below.

Command setting: Command (Output is Dummy Data)
Setting command and parameter: Command , Parameter1 ⋯ ParameterN
Setting command and image data: Command , Dummy Data , Image data ⋯ Image data
10.3. Data Protocol

Data protocol for transmission of data (image, command, register) with HOST is supported as shown below. Data protocol is decided by register PRTCLSEL. Along with protocol, terminal BUSSEL also needs to be set up. Terminal BUSSEL designates data bus width on hardware. Width is 8bit when L and 16 bit when H. Same protocol is applied regardless of data transmission.

<table>
<thead>
<tr>
<th>BUSSEL</th>
<th>Data bus</th>
<th>Register PRTCLSEL[2:0]</th>
<th>Bit/Pixel</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>8</td>
<td>000 1bit</td>
<td>D[15:8] is fixed at "L"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>001 2bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>010 4bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>16</td>
<td>000 1bit</td>
<td>When RAM write, D[15:8] inputs "L"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>001 2bit</td>
<td>When RAM read, D[15:8] outputs "L"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>010 4bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>101 2bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>110 4bit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Virtual location on RAM (with panel upper left as original point)

<table>
<thead>
<tr>
<th>Pixel(1,1)[P1]</th>
<th>Pixel(2,1)[P2]</th>
<th>Pixel(3,1)[P3]</th>
<th>Pixel(4,1)[P4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

8bit bus(BUSSEL:"L")

1bit/pointer(PRTCLSEL:000)

<table>
<thead>
<tr>
<th>D7</th>
<th>P0 [Data 3]</th>
<th>P6 [Data 3]</th>
<th>P16 [Data 3]</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6</td>
<td>P1 [Data 3]</td>
<td>P9 [Data 3]</td>
<td>P17 [Data 3]</td>
<td>...</td>
</tr>
<tr>
<td>D5</td>
<td>P2 [Data 3]</td>
<td>P10 [Data 3]</td>
<td>P18 [Data 3]</td>
<td>...</td>
</tr>
<tr>
<td>D4</td>
<td>P3 [Data 3]</td>
<td>P11 [Data 3]</td>
<td>P19 [Data 3]</td>
<td>...</td>
</tr>
<tr>
<td>D3</td>
<td>P4 [Data 3]</td>
<td>P12 [Data 3]</td>
<td>P20 [Data 3]</td>
<td>...</td>
</tr>
<tr>
<td>D2</td>
<td>P5 [Data 3]</td>
<td>P13 [Data 3]</td>
<td>P21 [Data 3]</td>
<td>...</td>
</tr>
<tr>
<td>D1</td>
<td>P6 [Data 3]</td>
<td>P14 [Data 3]</td>
<td>P22 [Data 3]</td>
<td>...</td>
</tr>
<tr>
<td>D0</td>
<td>P7 [Data 3]</td>
<td>P15 [Data 3]</td>
<td>P23 [Data 3]</td>
<td>...</td>
</tr>
</tbody>
</table>

2bit/pointer(PRTCLSEL:001)

<table>
<thead>
<tr>
<th>D7</th>
<th>P0 [Data 3]</th>
<th>P4 [Data 3]</th>
<th>P8 [Data 3]</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6</td>
<td>P0 [Data 2]</td>
<td>P4 [Data 2]</td>
<td>P8 [Data 2]</td>
<td>...</td>
</tr>
<tr>
<td>D5</td>
<td>P1 [Data 3]</td>
<td>P5 [Data 3]</td>
<td>P9 [Data 3]</td>
<td>...</td>
</tr>
<tr>
<td>D4</td>
<td>P1 [Data 2]</td>
<td>P5 [Data 2]</td>
<td>P9 [Data 2]</td>
<td>...</td>
</tr>
<tr>
<td>D3</td>
<td>P2 [Data 3]</td>
<td>P6 [Data 3]</td>
<td>P10 [Data 3]</td>
<td>...</td>
</tr>
<tr>
<td>D2</td>
<td>P2 [Data 2]</td>
<td>P6 [Data 2]</td>
<td>P10 [Data 2]</td>
<td>...</td>
</tr>
<tr>
<td>D1</td>
<td>P3 [Data 3]</td>
<td>P7 [Data 3]</td>
<td>P11 [Data 3]</td>
<td>...</td>
</tr>
<tr>
<td>D0</td>
<td>P3 [Data 2]</td>
<td>P7 [Data 2]</td>
<td>P11 [Data 2]</td>
<td>...</td>
</tr>
</tbody>
</table>

4bit/pointer(PRTCLSEL:010)

<table>
<thead>
<tr>
<th>D7</th>
<th>P0 [Data 3]</th>
<th>P2 [Data 3]</th>
<th>P4 [Data 3]</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6</td>
<td>P0 [Data 2]</td>
<td>P2 [Data 2]</td>
<td>P4 [Data 2]</td>
<td>...</td>
</tr>
<tr>
<td>D5</td>
<td>P0 [Data 1]</td>
<td>P2 [Data 1]</td>
<td>P4 [Data 1]</td>
<td>...</td>
</tr>
<tr>
<td>D4</td>
<td>P0 [Data 0]</td>
<td>P2 [Data 0]</td>
<td>P4 [Data 0]</td>
<td>...</td>
</tr>
<tr>
<td>D3</td>
<td>P1 [Data 3]</td>
<td>P3 [Data 3]</td>
<td>P5 [Data 3]</td>
<td>...</td>
</tr>
<tr>
<td>D2</td>
<td>P1 [Data 2]</td>
<td>P3 [Data 2]</td>
<td>P5 [Data 2]</td>
<td>...</td>
</tr>
<tr>
<td>D1</td>
<td>P1 [Data 1]</td>
<td>P3 [Data 1]</td>
<td>P5 [Data 1]</td>
<td>...</td>
</tr>
<tr>
<td>D0</td>
<td>P1 [Data 0]</td>
<td>P3 [Data 0]</td>
<td>P5 [Data 0]</td>
<td>...</td>
</tr>
</tbody>
</table>
16bit bus (BUSSEL:"H")

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>D14</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>D13</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>D12</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>D11</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>D10</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>D9</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>D8</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

1bit/pixel (PRTCLSEL:000)

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>P0</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P8</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>P2</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P10</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P18</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>P3</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P11</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P19</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>P4</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P12</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P20</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>P5</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P13</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P21</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>P6</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P14</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P22</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>P7</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P15</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P23</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
</tbody>
</table>

2bit/pixel (PRTCLSEL:001)

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>P0</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P4</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>P0</td>
<td>Data</td>
<td>[2]</td>
</tr>
<tr>
<td>P4</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>P1</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P5</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>P1</td>
<td>Data</td>
<td>[2]</td>
</tr>
<tr>
<td>P5</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>P2</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P6</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>P2</td>
<td>Data</td>
<td>[2]</td>
</tr>
<tr>
<td>P6</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>P3</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P7</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>P3</td>
<td>Data</td>
<td>[2]</td>
</tr>
<tr>
<td>P7</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
</tbody>
</table>

4bit/pixel (PRTCLSEL:010)

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>P0</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P2</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>P0</td>
<td>Data</td>
<td>[2]</td>
</tr>
<tr>
<td>P2</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>P0</td>
<td>Data</td>
<td>[1]</td>
</tr>
<tr>
<td>P2</td>
<td>Data</td>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Data</td>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>P0</td>
<td>Data</td>
<td>[0]</td>
</tr>
<tr>
<td>P2</td>
<td>Data</td>
<td>[0]</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Data</td>
<td>[0]</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>P1</td>
<td>Data</td>
<td>[3]</td>
</tr>
<tr>
<td>P3</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>Data</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>P1</td>
<td>Data</td>
<td>[2]</td>
</tr>
<tr>
<td>P3</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>Data</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>P1</td>
<td>Data</td>
<td>[1]</td>
</tr>
<tr>
<td>P3</td>
<td>Data</td>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>Data</td>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>P1</td>
<td>Data</td>
<td>[0]</td>
</tr>
<tr>
<td>P3</td>
<td>Data</td>
<td>[0]</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>Data</td>
<td>[0]</td>
<td></td>
</tr>
</tbody>
</table>
16-bit bus (BUSSEL: "H")

\[2 \text{bit/pixel (PRTCSEL: 101)} \]

\[8 \text{bit/pixel (PRTCSEL: 110)} \]

|-----|-------------|-------------|-------------|-----|

10.4. ACK Terminal

During panel transfer (ACTIVE) and when CSB is "L", output from ACK terminal is “L”.

<table>
<thead>
<tr>
<th>Panel transfer status</th>
<th>RESETB</th>
<th>CSB</th>
<th>ACK OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>L</td>
<td>—</td>
<td>H</td>
</tr>
<tr>
<td>—</td>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>WAIT</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

When ACK is “L” (ACTIVE). Do not use any command input other than RAM Write.
(If it is not a problem in case of RAM Write setting, however, the forwarding command cannot be input.)
11. Command
11-1 Command explanation
NORMAL[02h]
Executes power ON sequence automatically and switches to NORMAL mode.

STBY[04h]
Executes power OFF sequence automatically and switches to STANDBY mode.

RDIMG[16h]
Enables RAM data read.
By reading data following this command, RAM data for entire display is sequentially read.
(Read protocol is the same as write protocol.)

RDIMGPTL[18h]
Enables RAM data read (rectangular wave access).
By reading data following this command, RAM data for area set in PTLAREA is sequentially read.
(Read protocol is the same as write protocol.)

LDIMG[20h]
Enables data write to RAM.
By writing data following this command, data is sequentially written to RAM area for entire display.

LDIMGPTL[22h]
Enables data write (rectangular wave access) to RAM.
By writing data following this command, data is sequentially written to RAM area for area set in PTLAREA.

PTLAREA[27h]
Sets area for rectangular wave access.
- XSTARTL [D7–D0]: Starting address for rectangular wave access (X coordinate low 8bit)※
- XSTARTh [D1–D0]: Starting address for rectangular wave access (X coordinate high 2bit)※
- YSTARTL [D7–D0]: Starting address for rectangular wave access (Y coordinate low 8bit)
- YSTARTH [D1–D0]: Starting address for rectangular wave access (Y coordinate high 2bit)
- WIDTHL [D7–D0]: Width of rectangular wave access (low 8 bit)※
- WIDTHH [D1–D0]: Width of rectangular wave access (high 2 bit)※
- HEIGHTL [D7–D0]: Height of rectangular wave access (low 8 bit)
- HEIGHTH [D1–D0]: Height of rectangular wave access (high 2 bit)
※ X coordinate and area width of rectangular wave access starting address should be in pixel unit which can be transmitted in one data protocol. However, in high speed write mode, it should be set in multiple of 8 regardless of data protocol.
Eg.) In case of 8bitbus 1bit/pixel, data that can be transmitted in one time is 8 pixel worth of data, therefore, each setting value should be in multiple of 8.
In case of 16bitbus 4bit/pixel, data that can be transmitted in one time is 4 pixel worth of data, therefore, each setting value should be in multiple of 4.

DISPDIR[28h]
Set up the display.

DITHER[2Bh]
Set up On/Off of dithering function.
This dithers data 4bit/pixel read from RAM. 4 gray scale display → dithered 16 gray scale display
- DITHER [D0]: [0]OFF [1]ON
PRTCLSEL[2Ch]
Select image data protocol.
9.3. Refer to Data Protocol.

MOVIE[2Dh]
Set up ON/OFF of movie mode.
Continues automatic transfer at about 30Hz without using transfer command.

MOVIE [D0] : [0]OFF [1]ON

FLOAD[2Eh]
Set up ON/OFF of high speed mode (at 8pixel unit).

FLOAD [D0] : [0]OFF [1]ON

DISP[33h]
Transfer RAM data of entire display to the panel.

DISPPTL[35h]
Transfer RAM data of area set up in PTLAREA to the panel.

11-2. Command List

<table>
<thead>
<tr>
<th>Address (Hex)</th>
<th>Command</th>
<th>R/W/C</th>
<th>Parameter</th>
<th>Default (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02h</td>
<td>NORMAL</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>STBY</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16h</td>
<td>RDIMG</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18h</td>
<td>RDIMGPTL</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20h</td>
<td>LDIMG</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22h</td>
<td>LDIMGPTL</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27h</td>
<td>PTLAREA</td>
<td>R/W</td>
<td>XSTARTL</td>
<td>00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XSTARTH</td>
<td>00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YSTARTL</td>
<td>00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WIDTH</td>
<td>00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HEIGHTL</td>
<td>00h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HEIGHTH</td>
<td>00h</td>
</tr>
<tr>
<td>28h</td>
<td>DISPDIR</td>
<td>R/W</td>
<td>L</td>
<td>00h</td>
</tr>
<tr>
<td>29h</td>
<td>DITHER</td>
<td>R/W</td>
<td>L</td>
<td>00h</td>
</tr>
<tr>
<td>2Ch</td>
<td>PRTCLSEL</td>
<td>R/W</td>
<td>L</td>
<td>01h</td>
</tr>
<tr>
<td>2Dh</td>
<td>MOVIE</td>
<td>R/W</td>
<td>L</td>
<td>00h</td>
</tr>
<tr>
<td>2Eh</td>
<td>FLOAD</td>
<td>R/W</td>
<td>L</td>
<td>00h</td>
</tr>
<tr>
<td>33h</td>
<td>DISP</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35h</td>
<td>DISPPTL</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R=Read, W=Write, C=Command D15~D8=Low
12. Handling of modules
12-1. Connecting the FPC by the ACF
1) Be sure to turn off the power supply and the signals when connecting the FPC
2) Please connect for too much stress not to join FPC in the case of connection of FPC.
12-2. About handling of FPC
1) Do not dangle the LCD module by holding the FPC, or do not give any stress to it.
11-3. Mounting of the module
1) The module should be held on to the plain surface. Do not give any warping or twisting stress to the module.
11-4. Cautions in assembly / Handling pre cautions
As the polarizer can be easily scratched, be most careful in handling it.
1) Work environments in assembly.
Working under the following environments is desirable:
a) Implement more than 1MΩ conductive treatment (by placing a conductive mat or applying conductive paint) on the floor or tiles.
b) No dusts come in to the working room. Place an adhesive, anti-dust mat at the entrance of the room.
c) Humidity of 50 to 70% and temperature of 15 to 27° C are desirable.
d) All workers wear conductive shoes, conductive clothes, conductive fingerstalls and grounding belts without fail.
e) Use a blower for electrostatic removal. Set it in a direction slightly tilt downward so that each Module can be well subjected to its wind. Set the blower at an optimum distance between the blower and the module.
2) How the remove dust on the polarizer
a) Blow out dust by the use of an N2; blower with antistatic measures taken. Use of an ionized air gun is recommendable.
b) When the panel surface is soiled, wipe it with soft cloth.
3) If water dropped, etc. remains stuck on the polarizer for a long time, it is apt to get discolored or cause stains. Wipe it immediately.
4) As a glass substrate is used for the TFT-LCD panel, if it is dropped on the floor or hit by something hard, it may be broken or chipped off.
5) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
12-5. Others
1) If stored at temperatures below the rated values, the inner liquid crystal may freeze, causing cell destruction. At temperatures exceeding the rated values for storage, the liquid crystal may become isotropic liquid, making it no longer possible to come back to its original state in some cases.
2) If the LCD is broken, do not drink liquid crystal in the mouth. If the liquid crystal adheres to a hand or foot or to clothes, immediately cleanse it with soap.
3) If a water drop or dust adheres to the polarizer, it is apt to cause deterioration. Wipe it immediately.
4) Be sure to observe other caution items for ordinary electronic parts and components.
5) Epoxy resin (amine series curing agent), silicone adhesive material (dealkalization series and oxime series), tray forming agent (azo compound) etc, in the cabinet or the packing materials may induce abnormal display with polarizer film deterioration regardless of contact or noncontact to polarizer film.
Be sure to confirm the component of them.
蹇 39x613]NORTH AMERICA
Sharp Microelectronics of the Americas
5700 NW Pacific Rim Blvd.
Camas, WA 98607, U.S.A.
Phone: (1) 360-834-8700
Fax: (1) 360-834-8903
www.sharpsma.com

TAIWAN
Sharp Electronic Components (Taiwan) Corporation
8F-A, No. 16, Sec. 4, Nanking E. Rd.
Taipei, Taiwan, Republic of China
Phone: (886) 2-2577-7341
Fax: (886) 2-2577-7326/2-2577-7328

CHINA
Sharp Microelectronics of China (Shanghai) Co., Ltd.
28 Xin Jin Qiao Road King Tower 16F
Pudong Shanghai, 201206 P.R. China
Phone: (86) 21-5854-7710/21-5834-6056
Fax: (86) 21-5854-4340/21-5834-6057
Head Office:
No. 360, Bashen Road,
Xin Development Bldg. 22
Waigaoqiao Free Trade Zone Shanghai
200131 P.R. China
Email: smc@china.global.sharp.co.jp

EUROPE
Sharp Microelectronics Europe
Division of Sharp Electronics (Europe) GmbH
Sonninstrasse 3
20097 Hamburg, Germany
Phone: 49 (0)180 507 35 07
Fax: (49) 40-2376-2232
www.sharpsme.com

SINGAPORE
Sharp Electronics (Singapore) PTE., Ltd.
438A, Alexandra Road, #05-01/02
Alexandra Technopark,
Singapore 119967
Phone: (65) 271-3566
Fax: (65) 271-3855

KOREA
Sharp Electronic Components (Korea) Corporation
RM 501 Geosung B/D, 541
Dohwa-dong, Mapo-ku
Seoul 121-701, Korea
Phone: (82) 2-711-5813 ~ 8
Fax: (82) 2-711-5819

JAPAN
Sharp Corporation
Electronic Components & Devices
22-22 Nagaikae-cho, Abeno-Ku
Osaka 545-8522, Japan
Phone: (81) 6-6621-1221
Fax: (81) 611-725300/6117-725301
www.sharp-world.com

HONG KONG
Sharp-Roxy (Hong Kong) Ltd.
Level 26, Tower 1, Kowloon Commerce Centre,
No. 51, Kwai Cheong Road, Kwai Chung,
New Territories, Hong Kong
Phone: (852) 28229311
Fax: (852) 28660779
www.sharp.com.hk
Shenzhen Representative Office:
Room 602-603, 6/F.,
International Chamber of Commerce Tower,
168 Fuhua Rd. 3, CBD,
Futian District, Shenzhen 518048,
Guangdong, P.R. China
Phone: (86) 755-88313505
Fax: (86) 755-88313515

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP’s product warranty.
The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied.
ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or responsible in any way, for any incidental or consequential economic or property damage.