PREPARED BY: DATE APPROVED BY: DATE APPROVED BY: DATE Business Solutions Promotion GROUP SHARP CORPORATION TECHNICAL LITERATURE DEVICE SPECIFICATION TFT-LCD Module Designed for PN-V601 Draft, on Dec.3rd				
APPROVED BY : DATE Business Solutions Promotion GROUP SHARP CORPORATION TECHNICAL LITERATURE DEVICE SPECIFICATION TFT-LCD Module Designed for PN-V601	PREPARED BY :	DATE		SPEC No.
APPROVED BY : DATE Business Solutions Promotion GROUP SHARP CORPORATION TECHNICAL LITERATURE DEVICE SPECIFICATION TFT-LCD Module Designed for PN-V601			SHARP	FILE No.
Business Solutions Promotion GROUP SHARP CORPORATION TECHNICAL LITERATURE DEVICE SPECIFICATION TFT-LCD Module Designed for PN-V601				ISSUE :
SHARP CORPORATION TECHNICAL LITERATURE DEVICE SPECIFICATION TFT-LCD Module Designed for PN-V601	APPROVED BY :	DATE		PAGE : pages
DEVICE SPECIFICATION TFT-LCD Module Designed for PN-V601			Business Solutions Promotion GROUP	
DEVICE SPECIFICATION TFT-LCD Module Designed for PN-V601			SHARP CORPORATION	APPLICABLE GROUP
DEVICE SPECIFICATION TFT-LCD Module Designed for PN-V601				Business Solutions Promotion Group
TFT-LCD Module Designed for PN-V601			TECHNICAL LITERATURE	
Draft, on Dec.3rd			T-LCD Module	
			Draft, on Dec.	3rd

RECORDS OF REVISION

SPEC No.	DATE REVISED			SUMMARY		
		No.	PAGE			

1. Application

This specification applies to the color 60.0" TFT-LCD module designed for SHARP PN-V601.

□ This technical literature are the proprietary product of SHARP CORPORATION("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

The device listed in this technical literature was designed and manufactured for use in OA equipment.

- □ In case of using the device for applications such as control and safety equipment for transportation(aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- □Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment(trunk lines), nuclear power control equipment and medical or other equipment for life support.
- □ SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these technical literature.

□Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (<u>Thin Film Transistor</u>). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, and LED back light system etc. Graphics and texts can be displayed on a $1366 \times RGB \times 768$ dots panel with about 16.77 million colors by using 8bit LVDS (<u>Low Voltage Differential Signaling</u>) to interface and +12V of DC supply voltages.

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit. In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

With this technology, image signals can be set so that liquid crystal response completes within one frame. As a result, motion blur reduces and clearer display performance can be realized.

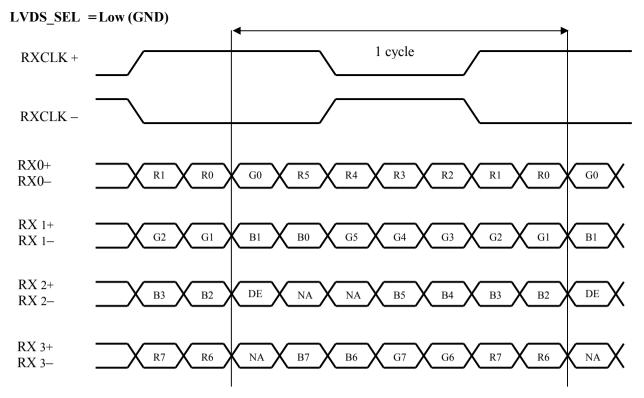
3. Mechanical Specifications

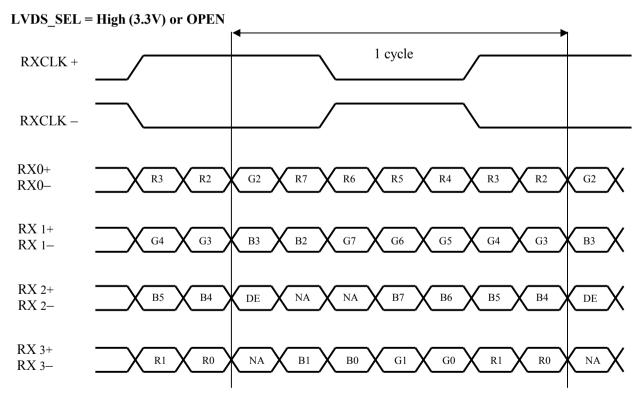
Parameter	Specifications	Unit
Display size	152.439(Diagonal)	cm
	60.0 (Diagonal)	inch
Active area	1328.7765 (H)×747.072 (V)	mm
Pixel format	1366 (H)×768 (V)	pixel
	(1 pixel=R+G+B dots)	
Pixel pitch	0.97275 (H)×0.97275 (V)	mm
Pixel configuration	R, G, B vertical stripe	
Display mode	Normally black	
Unit outline dimensions (*1)	1335.9(W)×754.2(H)×104.2(D)	mm
Mass	27.6±1.0	kg
Surface treatment	LR coating	
	Hard coating: 2H and more	

4. Input Terminals

4-1. TFT-LCD panel driving

Using connectors	: FX16S-41S-0.5SH	(HIROSE)
Mating connectors	: FX16M1-41P-HC	(HIROSE)


Pin No.	Symbol	Function	Remark
1	Reserved	-	Must be OPEN
2	Reserved	-	Must be OPEN
3	Reserved	-	Must be OPEN
4	Reserved	-	Must be OPEN
5	GND	GND	
6	GND	GND	
7	GND	GND	
8	GND	GND	
9	LVDS_SEL	Select LVDS data order [Note 1]	Pull Up : (+3.3V)
10	Reserved	-	Must be OPEN
11	GND	GND	
12	RX0-	LVDS CH0 differential data input(-)	
13	RX0+	LVDS CH0 differential data input(+)	
14	GND	GND	
15	RX1-	LVDS CH1 differential data input(-)	
16	RX1+	LVDS CH1 differential data input(+)	
17	GND	GND	
18	RX2-	LVDS CH2 differential data input(-)	
19	RX2+	LVDS CH2 differential data input(+)	
20	GND	GND	
21	RXCLK-	LVDS Clock input(-)	
22	RXCLK+	LVDS Clock input(+)	
23	GND	GND	
24	RX3-	LVDS CH3 differential data input(-)	
25	RX3+	LVDS CH3 differential data input(+)	
26	GND	GND	
27	Reserved	-	Must be OPEN
28	Reserved	-	Must be OPEN
29	GND	GND	
30	Reserved	-	Must be OPEN
31	Reserved	-	Must be OPEN
32	U/D	NC	OPEN
33	GND	GND	
34	GND	GND	
35	GND	GND	
36	GND	GND	
37	GND	GND	
38	Reserved	-	Must be OPEN
39	Reserved	-	Must be OPEN
40	Reserved	-	Must be OPEN
41	Reserved	-	Must be OPEN

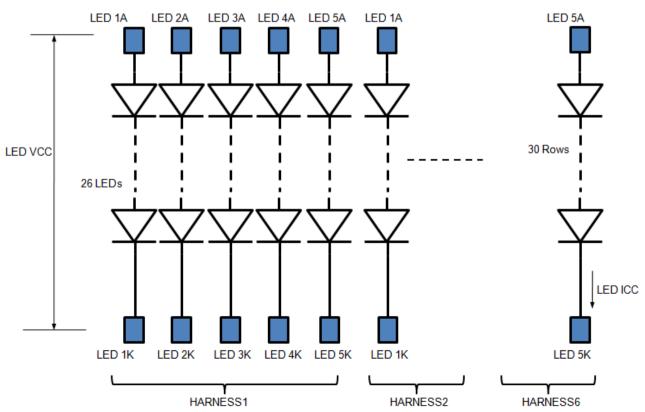

[Note 1] LVDS Data order

LVDS_SEL						
Data	L(GND)	H(3.3V) or Open				
	[VESA]	[JEIDA]				
TA0	R0(LSB)	R2				
TA1	R1	R3				
TA2	R2	R4				
TA3	R3	R5				
TA4	R4	R6				
TA5	R5	R7(MSB)				
TA6	G0(LSB)	G2				
TB0	G1	G3				
TB1	G2	G4				
TB2	G3	G5				
TB3	G4	G6				
TB4	G5	G7(MSB)				
TB5	B0(LSB)	B2				
TB6	B1	B3				
TC0	B2	B4				
TC1	B3	B5				
TC2	B4	B6				
TC3	B5	B7(MSB)				
TC4	NA	NA				
TC5	NA	NA				
TC6	DE(*)	DE(*)				
TD0	R6	R0				
TD1	R7	R1				
TD2	G6	G0				
TD3	G7	G1				
TD4	B6	B0				
TD5	B7	B1				
TD6	NA	NA				

NA: Not Available

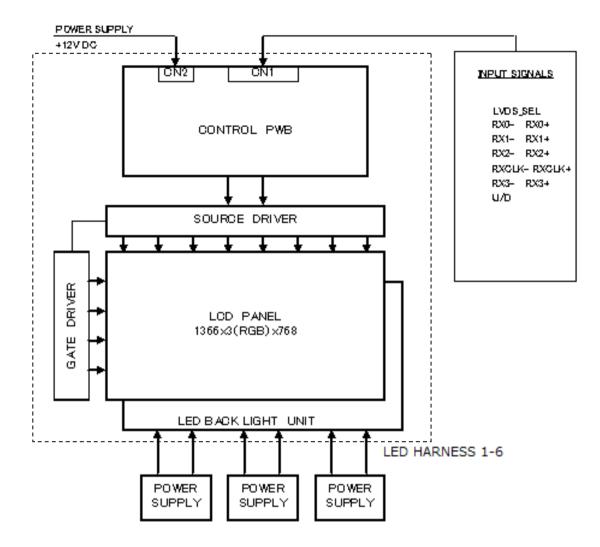
(*)Since the display position is prescribed by the rise of DE(Display Enable)signal, please do not fix DE signal during operation at "High".

DE: Display Enable, NA: Not Available (Fixed Low)


CN2 (+12V DC power supply)

Using connectors	SM05B-PASS	(JST)
Mating connectors	: PAP-05V-S	(JST)

Pin No.	Symbol	Function	Remark
1	VCC	+12V Power Supply	
2	VCC	+12V Power Supply	
3	GND	GND	
4	GND	GND	
5	NC		


LED HARNESS1 - 6 (LED Power supply)

Using c	connectors	: 51284-100	00 or 51284-1001 (MOLEX)
Mating	connectors	: 55883-109	90 or 55883-1091 (MOLEX)
Pin No.	Symbol		Function Remark
1	LED 1A		LED Anode1
2	LED 2A		LED Anode2
3	LED 3A		LED Anode3
4	LED 4A		LED Anode4
5	LED 5A		LED Anode5
6	LED 1K		LED Cathode1
7	LED 2K		LED Cathode2
8	LED 3K		LED Cathode3
9	LED 4K		LED Cathode4
10	LED 5K		LED Cathode5

LED BACK LIGHT Diagram

4-2. Interface block diagram

4.3. The back light system characteristics

The back light system is direct type with 780 LEDs. The characteristics of the LED are shown in the following table.

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Life time	$T_{\rm L}$	_	(37000)	_	Hour	[NOTE]
INIOTE1						

[NOTE]

• LED life time is defined as the time when brightness become 70% of the original value in the continuous Operation under the condition of Ta= 25° C

5. Absolute Maximum Rating

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input Voltage (for Control)	V_{I}	Ta=25°C	-0.3 ~ 3.6	V	[NOTE1]
12V supply voltage (for Control)	VCC	Ta=25°C	$0 \sim 14$	V	
Forward current (for LED)	$I_{\rm F}$	Ta=25°C	80	mA	Tc≦74.1°C
Reverse voltage (for LED)	V_R	Ta=25°C	5	V	Each LED 1 piece
Storage temperature	T _{stg}		-25 ~ (+60)	°C	
Operation temperature	T _{opa}		$0 \sim (+50)$	°C	[NOTE2]4

[NOTE1] LVDS_SEL, HZ_SEL

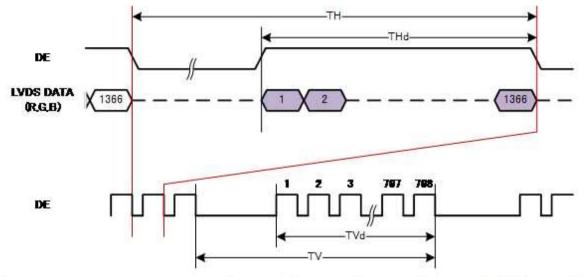
[NOTE2] Humidity 95% RH Max (Ta \leq 40°C) Maximum wet-bulb temperature at 39°C or less.(Ta>40°C) No condensation.

6. Electrical Characteristics

6.1 Control driving

Parat	Parameter			Min.	Тур.	Max	Unit	Remark
+12V supply	Supply voltage		VCC	11.4	12.0	12.6	V	
voltage	Current dissipation		ICC		(1)		А	
	Permissible input ripple voltage		V_{RP}	_	_	100	mV	
Differential i	nput	High	V_{TH}	1.3	—	1.8	V	
threshold vol	tage	Low	V_{TL}	0.6	—	1.1	V	[NOTE3]
Differential inp	out leak o	current	I _{Iz}	-10		+10	μΑ	
Input Lov	w voltag	e	V_{IL}	—	—	1.0	V	[NOTE1,2]
Input Hig	Input High voltage		$V_{\rm IH}$	2.5	—	3.3	V	
Input leak current (Low)		I_{IL1}	_	_	400	μΑ	V _I =0V [NOTE1]	
		I _{IL2}	—	_	900	μΑ	V _I =0V [NOTE2]	
Input leak current (High)		$I_{\rm IH1}$	—	_	TBD	μΑ	V _I =3.3V [NOTE1]	
		I _{IH2}	—	_	TBD	μΑ	V _I =3.3V [NOTE2]	
Terminal resistor			R _T	—	100	—	Ω	

 $[NOTE1] \quad LVDS_SEL(10k\Omega pull-up)$


[NOTE2] HZ_SEL($4.7k\Omega$ pull-up)

[NOTE3] RXCLK±、RX0±、RX1±、RX2±、RX3±

6.2 LED driving

Parameter	Symbol Min.		Тур.	Max	Unit	Remark	
Input voltage	LED VCC		(252.2)		V	LED ICC=45mA [NOTE]	
	LED ICC		(45)	60	mA	Each pin of LED HARNESS1-6	

[NOTE] Measurement after 100ms has passed since power supply was turned on.

19	Parameter	Symbol	Min.	Тур.	Max.	単位	備考
Clock	Frequency	1/Tc		83		MHz	
Data Enable	100 X 100 X 100	тн		1696		clock	
	Horizontal period			20.43		μsec	
	Horizontal period (High)	THd	<u>82</u> 87	1366	<u>82</u> 8	clock	
	Vertical period	TV		806		line	
	Vertical period (High)	TVd	532	768	1 11	line	

7. Optical characteristics

Ta=25°C, VCC=12.0V, LED ICC=45mA, LED VCC PWM Burst= 99.97%, Timing :60Hz (typ.value)

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
Contrast ratio		CRn	$\theta = 0^{\circ}$		2400		—	[NOTE2,4]	
Luminance of white		Х			0.292				
		у			0.307				
Luminance of red		х			0.656				
Lummanee	Luminance of fed		$\theta = 0^{\circ}$		0.337			[NOTE4]	
Luminance	Luminance of green				0.306				
Lummanee					0.641				
Luminance	Luminance of blue				0.152				
Lummanee					0.065				
Viewing angle	Viewing angle Horizontal		CR>10		88		deg	[NOTE1,4]	
range Vertical		θ_{11}, θ_{12}			88		deg	[NOTE1,4]	
Luminance		Y _L	White		(750)		cd/m ²		
Luminance uniformity		δw	$\theta = 0^{\circ}$		(1.25)			[NOTE6]	
Response time		τ	$\theta = 0^{\circ}$		6		ms	[NOTE3,4,5]	

Measurement condition : Set the PWM Burst of LED VCC to maximum

The measurement shall be executed 60 minutes after lighting at rating.

[Note]The optical characteristics are measured using the following equipment.

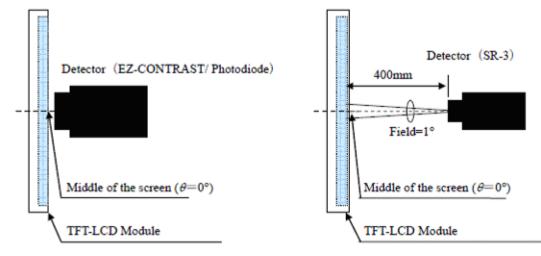
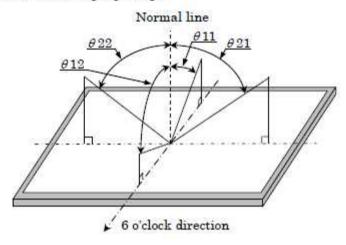



Fig.4-1 Measurement of viewing angle range and Response time. Viewing angle range: EZ-CONTRAST

Response time: Photodiode

Fig.4-2 Measurement of Contrast, Luminance, Chromaticity.

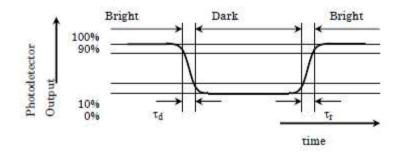
[Note 2]Definition of contrast ratio :

The contrast ratio is defined as the following.

Luminance (brightness) with all pixels white

Contrast Ratio=

Luminance (brightness) with all pixels black


[Note 3]Definition of response time

The response time (τ_d and τ_r) is defined as the following figure and shall be measured by switching the input signal for "any level of gray (0%, 25%, 50%, 75% and 100%)" and "any level of gray (0%, 25%, 50%, 75% and 100%)".

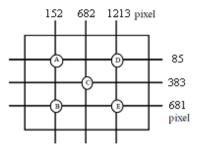
	0%	25%	50%	75%	100%
0%	/	tr:0%-25%	tr:0%-50%	tr:0%-75%	tr:0%-100%
25%	td: 25%-0%		tr: 25%-50%	tr25%-75%	tr: 25%-100%
50%	td: 50%-0%	td: 50%-25%	/	tr: 50%-75%	tr: 50%-100%
75%	td: 75%-0%	td: 75%-25%	td: 75%-50%		tr: 75%-100%
100%	td: 100%-0%	td: 100%-25%	td: 100%-50%	td:100%-75%	/

t*:x-y...response time from level of gray(x) to level of gray(y)

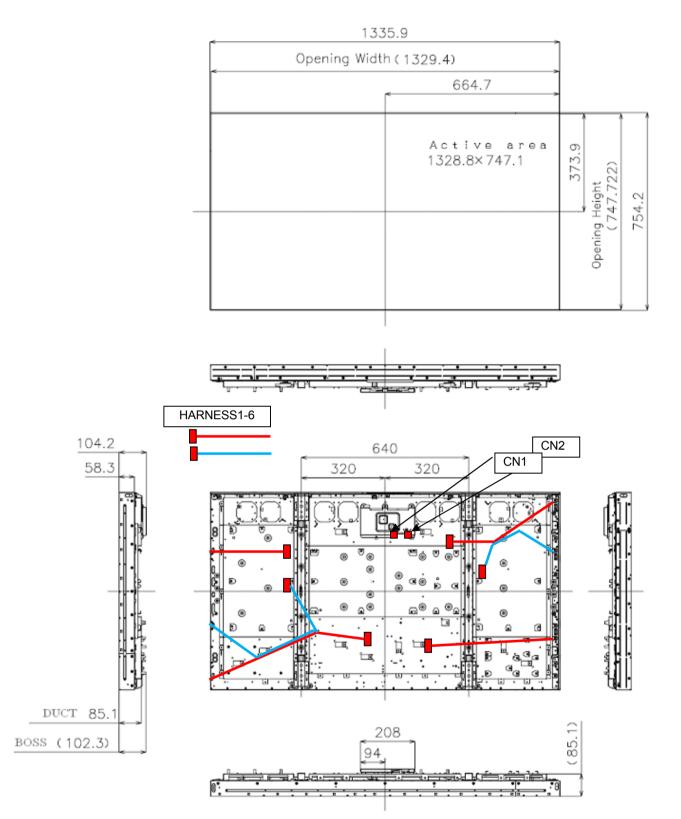
 $\tau_r = \Sigma(tr:x-y)/10$, $\tau_d = \Sigma(td:x-y)/10$

[Note 4] This shall be measured at center of the screen.

[Note 5] This value is valid when O/S driving is used at typical input time value.


[Note 6]Definition of white uniformity ;

White uniformity is defined as the following with five measurements. (A~E)


Maximum luminance of five points (brightness)

 $\delta w =$

Minimum luminance of five points (brightness)

8. Outline dimensions

