MODEL NO. :

ISSUED DATE:

VERSION : Ver 1.0								
■Preliminary Specification □Final Product Specification								
Customer :	Customer :							
Approved by	,	Notes						
SHANGHAI TIANMA C	onfirmed :							
Prepared by	Check	ced by	Approved by					

TM020HDH01

2009-06-11

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

This technical specification is subjected to change without notice

Table of Contents

COV	/ersneet	1
Tab	le of Contents	2
	cord of Revision	
	General Specifications	
2	Input/Output Terminals	
3	Absolute Maximum Ratings	6
4	Electrical Characteristics	
5	Timing Chart	g
6	Optical Characteristics	
7	Environmental / Reliability Test	19
8	Mechanical Drawing	
9	Packing Drawing	21
10	Precautions For Use of LCD Modules	

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2009-6-02	Preliminary Specification Release	

1 General Specifications

	Feature	Spec	
	Size	2.0 inch	
	Resolution	240(RGB) x 320	
	Interface	CPU 16bits	
	Color Depth	65/262K	
	Technology Type	a-Si	
Display Spec.	Pixel Pitch (mm)	0.126x0.126	
	Pixel Configuration	R.G.B. Vertical Stripe	
	Display Mode	TM with Normally White	
	Surface Treatment(Up Polarizer)	Clear Type(3H)	
	Viewing Direction	3 o'clock	
	Gray Scale Inversion Direction	9 o'clock	
	LCM (W x H x D) (mm)	38.03x51.65x2.35	
Machaniaal	Active Area(mm)	30.24x40.32	
Mechanical Characteristics	With/Without TSP	Without TSP	
2.74140101101100	Weight (g)	TBD	
	LED Numbers	3 LEDs	
Electronic	Driver IC	ILI9335	

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2: Requirements on Environmental Protection: RoHS

Note 3: LCM weight tolerance: +/- 5%

2 Input/Output Terminals

2.1 TFT LCD Panel

No	Symbol	I/O	Description	Comment
1	DB15	I/O	Data Bus	
2	DB14	I/O	Data Bus	
3	DB13	I/O	Data Bus	
4	DB12	I/O	Data Bus	
5	DB11	I/O	Data Bus	
6	DB10	I/O	Data Bus	
7	DB9	I/O	Data Bus	
8	DB8	I/O	Data Bus	
9	GND	Р	Ground	
10	DB7	I/O	Data Bus	
11	DB6	I/O	Data Bus	
12	DB5	I/O	Data Bus	
13	DB4	I/O	Data Bus	
14	DB3	I/O	Data Bus	
15	DB2	I/O	Data Bus	
16	DB1	I/O	Data Bus	
17	DB0	I/O	Data Bus	
18	IOVCC	Р	Power Supply of I/O Interface	
19	VCC	Р	Power Supply of Analog Circuit	
20	/RD	ı	Read Signal	
21	/WR	I	Write Signal	
22	RS	I	Register Select	
23	/CS	l	Chip Select	
24	/RESET	l	Reset Signal	
25	IM0		Mode Select	Note 4-1
26	GND	Р	Ground	
27	LED_A	Р	LED Anode	
28	LED_K1	Р	LED Cathode	
29	LED_K2	Р	LED Cathode	
30	LED_K3	Р	LED Cathode	
31	NC	-	Not Connected	
32	NC	-	Not Connected	
33	NC	-	Not Connected	
34	NC	-	Not Connected	
35	NC	-	Not Connected	
36	NC	-	Not Connected	

Note2-1: I/O definition:

I-----Input O---Output P----Power/Ground

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

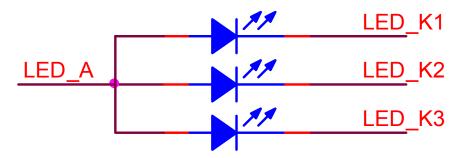
Ta = 25℃

Item	Symbol	Min	Max	Unit	Remark
Logic Supply Voltage	IOVCC	-0.3	4.6	V	
Analog Supply Voltage	VCC	-0.3	4.6	V	
Input voltage	/CS,/RD,/WR,RS,/RESET,IM0, DB0~15	-0.3	IOVCC+0.3	>	
Back Light Forward Current	I _{LED}		25	mA	For each LED
Operating Temperature	T_{OPR}	-20	60	$^{\circ}$	
Storage Temperature	T_{STG}	-30	70	$^{\circ}$	

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

Ta=25℃

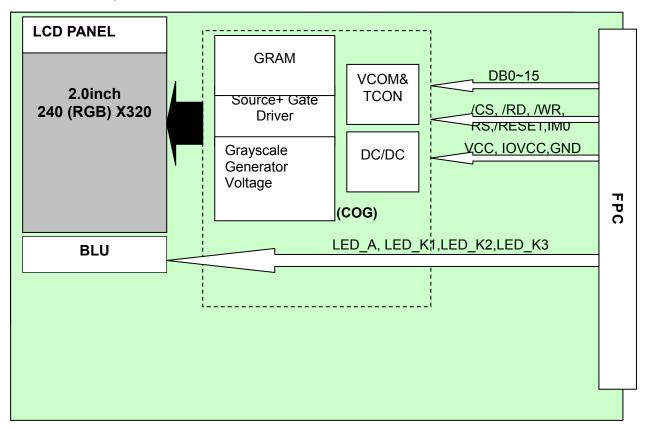

Itei	m	Symbol	MIN	TYP	MAX	Unit	Remark
Logic S Volta		IOVCC	2.5	2.8	3.3	٧	
Analog S Volta		VCC	2.5	2.8	3.3	V	
Input Signal	Low Level	V _{IL}	-0.3	-	0.2* IOVCC	V	/CS,/RD,/WR,RS,/RESET,IM0,
Voltage	High Level	V _{IH}	0.8* IOVCC	-	IOVCC	V	DB0~15
Output Signal	Low Level	V _{OL}	1	-	0.2* IOVCC	V	
Voltage	High Level	V _{OH}	0.8* IOVCC	-	ı	V	
(Panel+L	(Panel+LSI)		ı	-	ı	mW	
Power Consumption		Sleeping Mode	-		-	mW	
			-		-	uW	

4.2 Driving Backlight

Ta=25°C

Item	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	I _F		15		mA	
Forward Voltage	V_{F}		3.2		V	
Backlight Power Consumption	W _{BL}		144		mW	

Note 1: The figure below shows the connection of backlight LED.



Note 2: One LED : I_F =15 mA, V_F =3.2V

Note 3: The Life of LED: 20,000 hours

4.3 Block Diagram LCD module diagram

5 Timing Chart

5.1 Timing Parameter

Item		Symbol	Unit	Min	Тур	Max
Bus cycle time	Write	t _{CYCW}	ns	(75)	-	-
bus cycle time	Read	t _{CYCR}	ns	300	-	-
Write Ic	w-level pulse width	PW_{LW}	ns	(40)	-	500
Write hi	gh-level pulse width	PW _{HW}	ns	(30)	-	-
Read Id	w-level pulse width	PW_{LR}	ns	150	-	-
Read hi	gh-level pulse width	PW_{HR}	ns	150	-	-
Write /	Read rise / fall time	t _{WRr} / t _{WRf}	ns	-	-	25
Cotup timo	Write (RS to /CS, /WR)	4	ns	10	-	-
Setup time	Read (RS to /CS, /RD)	t _{AS}		5	-	-
Ado	dress hold time	t _{AH}	ns	5	-	-
Write	Write data set up time		ns	10	-	-
Writ	t _H	ns	15	-	-	
Read	t _{DDR}	ns	-	-	100	
Rea	d data hold time	t _{DHR}	ns	5	-	-

Table 5.1 timing parameter

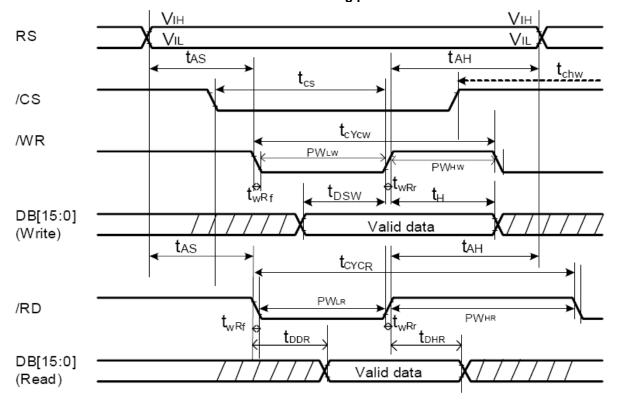
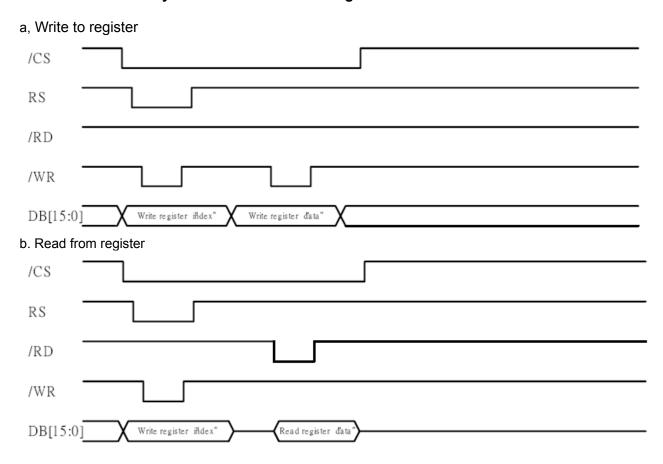
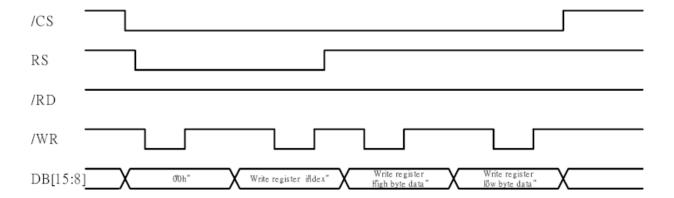
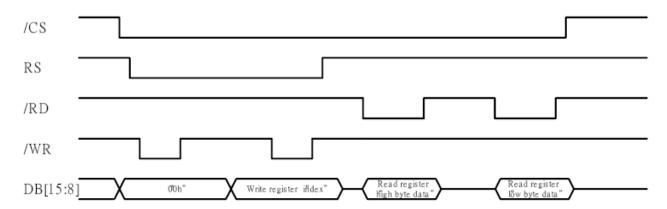


Figure 5.1 i80 System Bus Timing



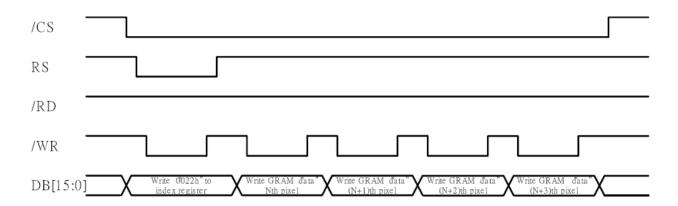

5.2 Register write/read timing in i80 8/16bit system

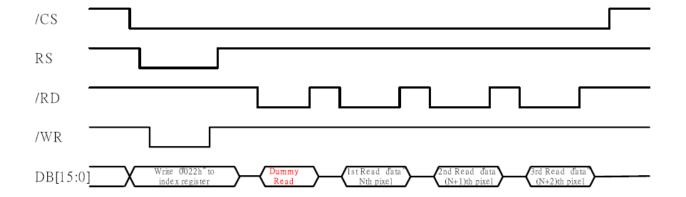
5.2.1 i80 16-bit System Bus Interface Timing



5.2.2 i80 8-bit System Bus Interface Timing

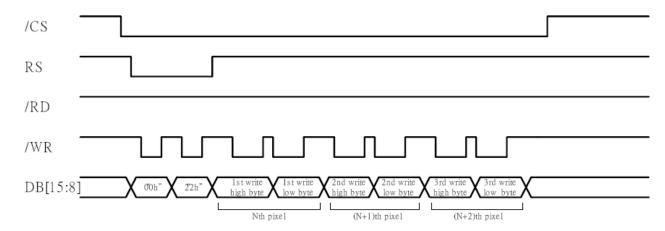
a. Write to register


b. Read from register

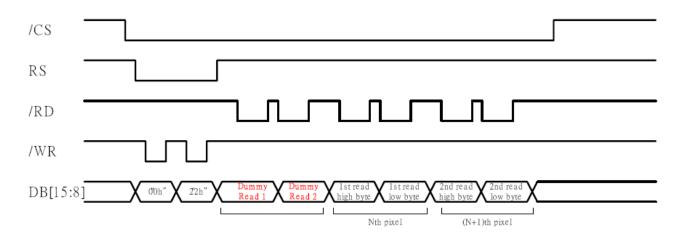

5.3 GRAM write timing in i80 8/16bit system

5.3.1 i80 16-bit System Bus Interface Timing

a. Write to GRAM



b. Read from GRAM



5.3.2 i80 8-bit System Bus Interface Timing

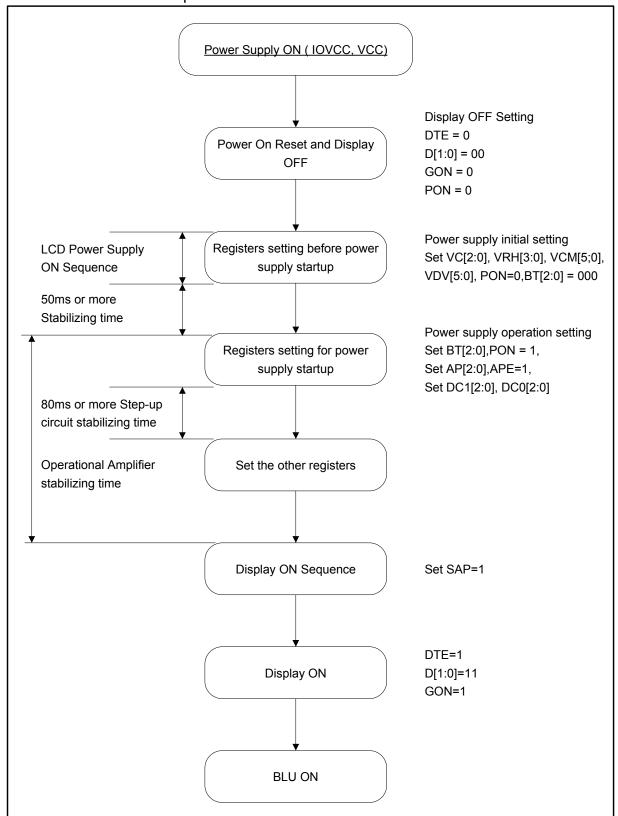
a. Write to GRAM

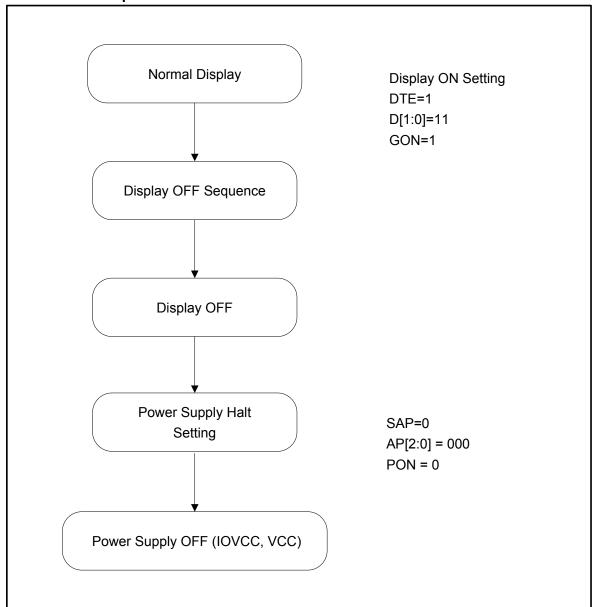
b. Read from GRAM

5.4 Reset Timing Characteristics

Ta=25°C

Item	Symbol	Unit	Min.	Тур.	Max.
RESET low-level width	t _{RES}	ms	1	-	-
RESET rise time	t _{rRES}	μs	-	-	10
Reset high-level width	tres_H	ms	50		


Figure 5.4 NRES Timing

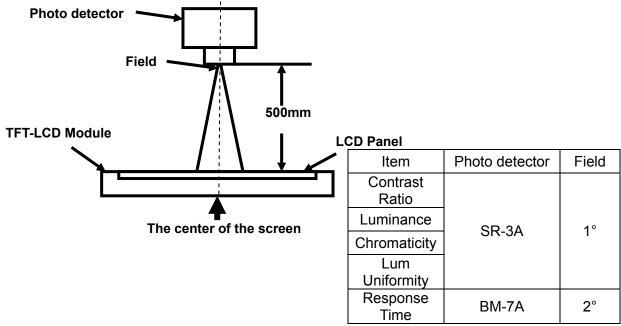

6. Power On/Off sequence

6.1 Power on Sequence

6.2 Power off Sequence

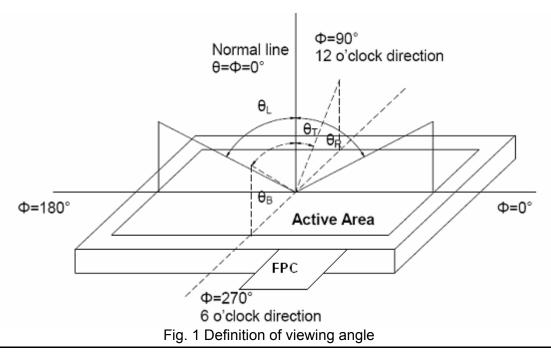
7 Optical Characteristics

Ta=25°C


Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
		θТ		55	60	-		
Viou Anglos		θВ	CR≧10	55	60	-	Dograd	Note 2
View Angles		θL	CR= 10	50	55	-	Degree	Note 2
		θR		55	60	-		
Contrast Ratio)	CR	θ=0°	300	350	-	-	Note1 Note3
Response Tim	10	T _{ON}	25 ℃		25	40	ms	Note1
iveshouse till	i c	T _{OFF}	25 0	_	25	40	1115	Note4
	White	х		0.265	0.305	0.345		Note5 Note1
	VVIIILE	у	Backlight is on	0.277	0.317	0.357		
	Red	х		0.548	0.588	0.628		
Chromaticity		у		0.299	0.339	0.379		
Chilomaticity	Green	х		0.299	0.339	0.379		
		у		0.533	0.573	0.613		
	Blue	Х		0.126	0.166	0.206		
	Dide	у		0.048	0.088	0.128		
Uniformity		U	-		80	-	%	Note1 Note6
NTSC		-	-	-	50	-	%	Note 5
Luminance		L			220	-	cd/m ²	Note1 Note7

Test Conditions:

- 1. $V_F=3.2V$, $I_F=15mA$ (One LED current), the ambient temperature is 25 °C.
- 2. The test systems refer to Note 1 and Note 2.


Note 1: Definition of optical measurement system.

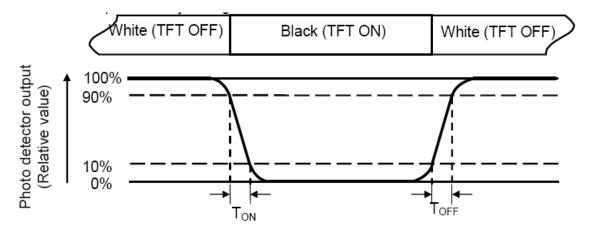
The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

Note 3: Definition of contrast ratio

Contrast ratio (CR) =
\[\frac{\text{Luminance measured when LCD is on the "White" state}}{\text{Luminance measured when LCD is on the "Black" state}} \]


"White state ": The state is that the LCD should driven by Vwhite.

"Black state": The state is that the LCD should driven by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/Lmax

L-----Active area length W----- Active area width

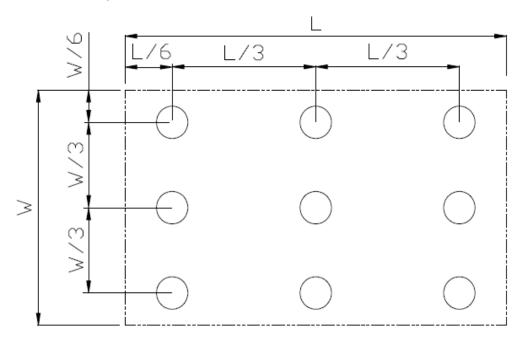


Fig. 2 Definition of uniformity

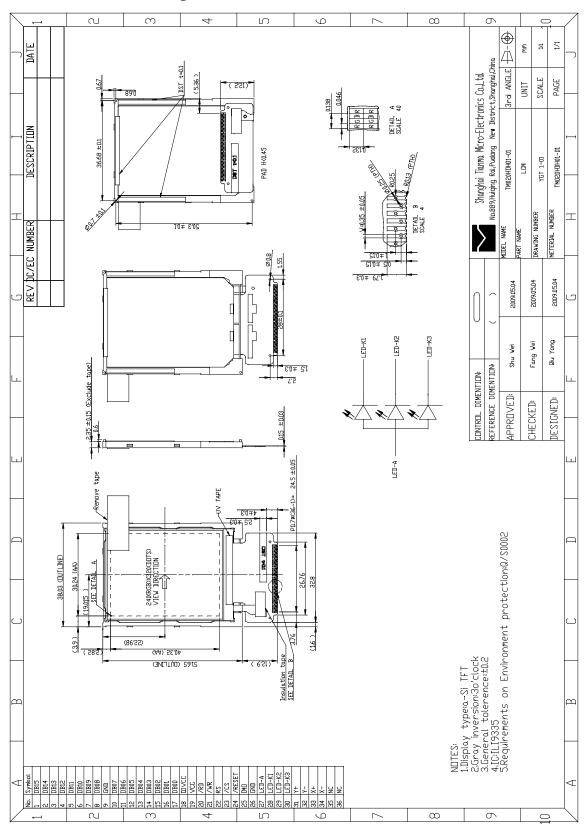
Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

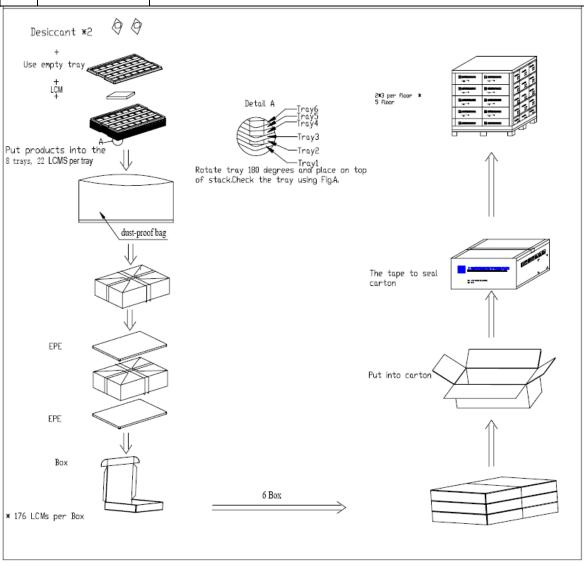
8 Environmental / Reliability Test


No	Test Item	Condition	Remark
1	High Temperature Operation	Ts=+60℃, 48hrs	Note1 IEC60068-2-2,GB2423.2—89
2	Low Temperature Operation		IEC60068-2-1 GB2423.1—89
3	High Temperature Storage		IEC60068-2-2, GB2423.2—89
4	Low Temperature Storage	Ta=-30℃, 96hrs	IEC60068-2-1 GB2423.1—89
5	High Temperature & High Humidity Storage	Ta=+60℃, 90% RH 48 hours	Note2 IEC60068-2-3, GB/T2423.3—2006
6	Thermal Shock (Non-operation)	-30°C 30 min~+70°C 30 min, Change time:5min, 10 Cycles	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22—87
7	Electro Static Discharge (Operation)	C=150pF, R=330 Ω ,5points/panel Air:± 8KV, 5times, Contact:± 4KV, 5 times, (Environment: $15^{\circ}C \sim 35^{\circ}C$, $30\% \sim 60\%$, 86 Kpa ~ 106 Kpa)	IEC61000-4-2 GB/T17626.2—1998
8	Vibration (Non-operation)	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 1 hours for each direction of X.Y.Z. (3 hours for total)(Package condition)	IEC60068-2-6 GB/T2423.10—1995
9	Package Drop Test	Height:80 cm, 1 corner, 3 edges, 6 surfaces	IEC60068-2-32 GB/T2423.8—1995

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.

9 Mechanical Drawing



TM020HDH01 V1.0

10 Packing Drawing

No	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark
1	LCM module	TM020HDH01-00	38.03×51.58×2.35	TBD	672	
2	Tray	PET (Transmit)	315×247×10.3	TBD	48	Anti-static
3	EPE	EPE	315×247×5	0.009	12	
4	Anti-static bag	PE	327×440	0.021	6	
5	вох	CORRUGATED PAPER	345×260×70	0.227	6	
6	Desiccant	Desiccant	45×50	0.0035	12	
7	Carton	CORRUGATED PAPER	544×365×250	1.01	1	
8	Total weight		TBD Kg			

11 Precautions For Use of LCD Modules

- 10.1 Handling Precautions
- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
 - 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
 - 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
 - 10.2 Storage precautions
- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° ~ 40° Relatively humidity: ≤80%

- 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
 - 10.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.