MODEL NO

MODEL NO.		1021 ODI 10											
ISSUED DAT													
VERSION													
	■Preliminary Specification □Final Product Specification												
Customer :													
Approved by			Notes										
SHANGHAI TIANMA Confirm	ed :												
Prepared by	Check	red by	Approved by										

TM027CDH02

This technical specification is subjected to change without notice

Table of Contents

versne	eeteet	1
le of (Contents	2
cord o	of Revision	3
date N	Mechanical Drawing	3
Gene	eral Specifications	4
Input	t/Output Terminals	5
Absc	blute Maximum Ratings	6
4.1	Driving TFT LCD Panel	7
4.2		
4.3		
Timir		
5.1		
5.2		
5.3	y	
	·	
5.6		
5.7		
-	· ·	
	· · · · · · · · · · · · · · · · · · ·	
	ole of cord of date M General Absorbasic A.1 4.2 4.3 Timil 5.1 5.5 5.6 5.7 Option Mechanical Absorbasic Architectures and the cord of the	4.3 Block Diagram Timing Chart 5.1 3-Wire Serial Control Interface 5.2 Register Table 5.3 3-Wire Register Description 5.4 Data Input Format 5.5 Input Timing Format 5.6 AC Electrical Characteristics

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2008-12-12	Preliminary Specification Release	Enhao Li
1.1	2009-3-16	Update Mechanical Drawing (FPCA Drawing)	Enhao Li

1 General Specifications

	Feature	Spec
	Size	2.7 inch
	Resolution	960x240
	Interface	8-bit RGB /8-bit Dummy RGB /CCIR656/601
	Color Depth	16.7M
-	Technology Type	a-Si
Display Spec	Dot Pitch (mm)	0.056 x 0.168
	Pixel Configuration	R.G.B. Delta
	Display Mode	TM With Normally White
	Surface Treatment(Up Polarizer)	Clear Type(3H)
	Viewing Direction	12 o'clock
	Gray Scale Inversion Direction	6 o'clock
	LCM (W x H x D) (mm)	63.50x46.60x2.60
Mashaniaal	Active Area(mm)	54.00x40.50
Mechanical Characteristics	With /Without TSP	Without TSP
	Weight (g)	TBD
	LED Numbers	2 LEDs
Electronic	Driver IC	NT53002

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2: Requirements on Environmental Protection: RoHS

Note 3: LCM weight tolerance: +/- 5%

2 Input/Output Terminals

2.1 TFT LCD Panel

Matching Connector: Molex 501616-3950

No	Symbol	I/O	Description	Remark				
1	VCOM	I	Panel common voltage					
2	SPENB	I	SPI enable					
3	SPDA	I/O	SPI data input/output					
4	SPCK	I	SPI clock input					
5	HSD	I	Horizontal sync input					
6	VSD	I	Vertical sync input					
7	CLKIN	I	Data clock input					
8	DB7	I	Data input; MSB					
9	DB6	I	Data input					
10	DB5	I	Data input					
11	DB4	I	Data input					
12	DB3	I	Data input					
13	DB2	I	Data input					
14	DB1	I	Data input					
15	DB0	I	Data input; LSB					
16	GND	Р	Power ground					
17	VDD	Р	Supple power					
18	DVDD	С	Power setting capacitor connect pin					
19	C1P	С	Capacitor for charge pump					
20	C1M	С	Capacitor for charge pump					
21	C2P	С	Capacitor for charge pump					
22	C2M	С	Capacitor for charge pump					
23	VINT1	С	Power setting capacitor connect pin					
24	C3P	С	Capacitor for charge pump					
25	СЗМ	С	Capacitor for charge pump					
26	VINT2	С	Power setting capacitor connect pin					

TM027CDH02 V1.1

27	VINT3	С	Power setting capacitor connect pin					
28	C4P	С	Capacitor for charge pump					
29	C4M	С	Capacitor for charge pump					
30	VGH	С	Power setting capacitor connect pin					
31	VGL	С	Power setting capacitor connect pin					
32	AGND	Р	Power ground					
33	FRP	0	Frame Polarity output for VCOM					
34	VCOMDC	0	VCOM DC output in					
35	VCAC	С	Power setting capacitor connect pin					
36	NC	-	Not connected					
37	LED+	Р	LED power anode					
38	LED-	Р	LED power cathode					
39	VCOM	I	Panel common voltage					

Note2.1: I/O definition:

I--- input; O---Output; P---Power; C---Capacitor; NC--- Not connected

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

Ta = 25℃

Item	Symbol	Min	Max	Unit	Remark
Supply Voltage	VDD	-0.3	5.0	V	
Input signal voltage	DB0~DB7,VCOM,SPENB,SPDA, SPCK,HSD,VSD,CLKIN	-0.3	VDD +0.3	V	
Back Light Forward Current	I _{LED}	-	30	mA	2 LEDs in series
Operating Temperature	T _{OPR}	-20	60	$^{\circ}$	
Storage Temperature	T _{STG}	-30	70	$^{\circ}$	

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

GND=0V, Ta=25℃

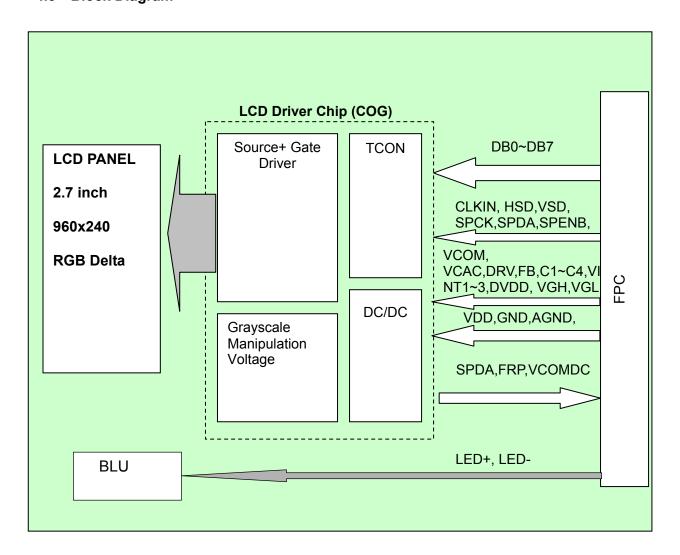
Ite	m	Symbol	Min	Тур	Max	Unit	Remark
Supply V	oltage	VDD	3.0	3.3	3.6	V	
Input Signal	Low Level	VIL	0	-	0.2xVDD	V	DB0~DB7,VCOM,SPENB,SPDA,
Voltage	High Level	VIH	0.8xVDD	1	VDD	V	SPCK,HSD,VSD,CLKIN
Output Signal	Low Level	VOL	0	-	0.2xVDD	V	SPDA,FRP,VCOMDC
Voltage	High Level	VOH	0.8xVDD	-	VDD	V	SPDA,FRF,VCOIVIDC
(Panel+LSI) Power		Normal Mode	-	-	-	mA	CLK 27MHz
Consump	otion	Standby Mode	-	- 1	-	uA	

4.2 Driving Backlight

Ta=25°C

Item	Symbol	Min	Тур	Max	Unit	Remark
Forward Current	I _F		20		mA	E
Forward Voltage	V_{F}		3.2		V	For one LED Note 1,2,3
Power Consumption	W_{BL}		128		mW	14010 1,2,0

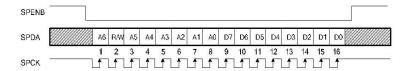
Note 1: The figure below shows the connection of backlight LED.

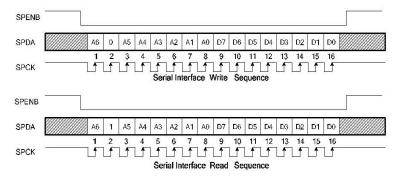


Note 2: One LED : $I_F = 20 \text{mA}$, $V_F = 3.2 \text{V}$

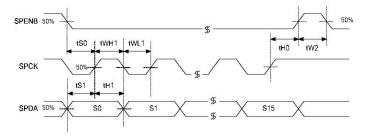
Note 3: The Minimum life of LED: 20,000 hours

4.3 Block Diagram




5 Timing Chart

5.1 3-Wire Serial Control Interface


3-Wire Serial command format

- Each serial command consists of 16 bits of data that is loaded one bit a time at the rising edge of serial clock SPCK. Command loading operation starts from the falling edge of SPENB and is completed at the next rising edge of SPENB.
- The serial control block is operational after power on reset, but commands are established by the VSD signal. If command is transferred multiple times for the same register, the last command before the VSD signal is valid.
- If less than 16 bits of SPCK are input while SPENB is low, the transferred data is ignored.
- If 16 bits or more of SPCK are input while SPENB is low, the last 16 bits of transferred data before the rising edge of SPENB pulse are valid data.
- Serial block operates with the SPCK clock
- Serial data can be accepted in the power save mode.

Serial Control Timing

Item	symbol	Min.	Тур.	Max.	Unit
SPENB input setup time	tS0	50			ns
SPDA input setup time	tS1	50			ns
SPENB input hold time	tHO	50			ns
SPDA input hold time	tH1	50			ns
SPCK pulse high width	tWH1	50			ns
SPCK pulse low width	tWL1	50			ns
SPENB pulse high width	tW2	400			ns

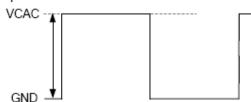
5.2 Register Table

3-Wire Register table

Register Address Default Register Data (default)																	
Register		R	egis	ter /	Add	ress			Default	Register Data (default)							
	A6	R/W	A5	A4	А3	A2	A1	ΑU	Value	D7	D6	D5	D4	D3	D2	D1	D0
R00H	0	1/0	0	0	0	0	0	0	06h	Y_CbCr (0)	C601_EN (0)	х	х		VC. (01		
R01H	0	1/0	0	0	0	0	0	1	51h	VCDCEN (1)	x				/CDC (21h)		
R03H	0	1/0	0	0	0	0	1	1	40h	, ,		•	BRIGHT (40	NESS			
R04H	0	1/0	0	0	0	1	0	0	0Bh	NARROW (0)	C656_EN (0)		SEL (0)	NF	SEL (10)	LDIR (1)	YDIR (1)
R05H	0	1/0	0	0	0	1	0	1	5Eh	DRV_SET	GRB (1)		WM_SEL (011)		VGHL_EN		x
R06H	0	1/0	0	0	0	1	1	0	15h	HBLK_EN (0)	FB_S		(011)		VBLK (15h)	(1)	
R07H	0	1/0	0	0	0	1	1	1	46h	(0)	(00	')	HBI		(1311)		
R08H	0	1/0	0	0	1	0	0	0	00h	DRV_		х	(46 x	n) X	х	х	х
R0BH	0	1/0	0	0	1	0	1	1	00h	REGSEL) x	x	X	х	x	х	х
R0CH	0	1/0	0	0	1	1	0	0	06h	(0) VS		DE_EN	CbCr	DENP	VSDP	HSDP	CLKINP
RODH	0	1/0	0	0	1	1	0	1	40h	(00))	(0)	(0) CONTI		(1)	(1)	(0)
R0EH	0	1/0	0	0	1	1	1	0	40h				(40	h) R_CON	IT		
							1	1		X				(40h) R BRIG			
R0FH	0	1/0	0	0	1	1			40h	Х				(40h) B CON			
R10H	0	1/0	0	1	0	0	0	0	40h	Х				(40h) B BRIG			
R11H	0	1/0	0	1	0	0	0	1	40h	х				(40h)			
R12H	0	1/0	0	1	0	0	1	0	00h				TRM (00				
R16H	0	1/0	0	1	0	1	1	0	04h	х	х	х	х	х	GOP_EN (1)	х	х
R17H	0	1/0	0	1	0	1	1	1	54h	x		016_SEL (101)		х		008_SEL (100)	
R18H	0	1/0	0	1	1	0	0	0	54h	х	L	050_SEL (101)		х	L	032_SEL (100)	
R19H	0	1/0	0	1	1	0	0	1	43h	x	L	096_SEL (100)		х	L	072_SEL (011)	
R1AH	0	1/0	0	1	1	0	1	0	54h	X L120_SEL X L110_SEL (100)							
R2BH	0	1/0	1	0	1	0	1	1	00h	x	х	х	х	х	х	x	STB (0)
R2FH	0	1/0	1	0	1	1	1	1	61h	0	VGH_ (11		CF_SET (0)		SEL (00)	SOF (01	c
R55H	1	1/0	0	1	0	1	0	1	00h	х	INV_SET	x	x	х	х	х	x
R5Ah	1	1/0	0	1	1	0	1	0	02h	x	x	х	х	х	х	VGL_ (10	
Notes:	<u> </u>	<u> </u>			<u> </u>	-		ш		ļ	-	-	-		ļ	(10	',

Notes:

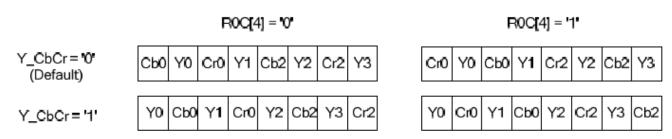
- When RSTB is low, all registers reset to default values.
- 2. Serial commands are executed at next VSD signal.
- 3. The register except upper list was for testing use, to read/write test register are not allow.



5.3 3-Wire Register Description

R00H - VCAC(R00H[3:0]): Common voltage AC level selection

D3	D2	D1	D0	VCAC voltage (V)
0	0	0	0	3.6
0	0	0	1	3.7
0	0	1	0	3.8
0	0	1	1	3.9
0	1	0	0	4.0
0	1	0	1	4.1
0	1	1	0	4.2 (default)
0	1	1	1	4.3
1	0	0	0	4.4
1	0	0	1	4.5
1	0	1	0	4.6
1	0	1	1	4.7
1	1	Χ	Χ	4.8


FRP Output

R00H - C601_EN (R00H[6]): CCIR601 input timing selection

CCIR601	Function
0	Disable CCIR601. (Default)
1	Enable CCIR601, (please refer to the table of R04H(IF_SEL) for detail description)

R00H - Y_CbCr (R00H[7]): Y & CbCr exchange position (only valid for 8-bit input YUV640 / YUV720)

TM027CDH02 V1.1

R01H - VCDC(R01H[5:0]): Common voltage DC level selection

Setting accuracy 20mV/step

Cotting Goodracy Zoni Wotop			
D5~D0	VCOMDC Level selection		
00h	0.24		
:	·		
21h	0.90 . (Default)		
:			
3Fh	1.5		

Note: The MTP memory and 3-wire register was link to the same address in 3-wrie interface.

It will switch to MTP memory in default setting. To set REGSEL = 1 to switch to 3-wire register.

R01H - VCDCEN(R01H[7]): VCOMDC output control

D7	VCDCE Function
0	The VCOMDC pin is disabled.
1	The VCOMDC output voltage follows VCOM DC setting. (default)

R03H - BRIGHTNESS (R03H[7:0]): RGB brightness level

Setting accuracy 1bit/step

D7~D0	Brightness gain
00h	Dark. (-64)
40h	Center (0). (default)
FFh	Bright. (+191)

R04H - YDIR (R04H[0]): Shift registers of source driver direction selection

D0 HDIR Function		
0	hift from right to left. Y1←Y2←←Y959←Y960	
1	Shift from left to right. Y1→Y2→→Y959→Y960 (Default)	

R04H - LDIR (R04H [1]): Gate driver output direction selection

	D1	VDIR Function
	0	Shift from down to up. L1←L2←←L239←L240
Γ	1	Shift from up to down. L1→L2→→L239→L240 (Default)

R04H- NP_SEL (R04H [3:2]): NTSC or PAL input mode selection

D3	D2 NTSC/PAL Mode	
0	0	PAL.
0	1	NTSC.
1	Х	Auto detection. (Default)

TM027CDH02 V1.1

R04H- IF SEL (R04H [5:4]): Input format selection register

C601 EN	CCEC EN	IF S	SEL	Input format coloction
C601_EN	C636_EIV	D5	D4	Input format selection
0	0	0	0	8-bit RGB. (Default)
0	0	0	1	8-bit Dummy RGB 320 x 240.
0	0	1	х	8-bit Dummy RGB 360 x 240.
0	1	х	х	CCIR656.
1	1	0	х	YUV 640.
1	1	1	0	YUV 720.

R04H- C656_EN (R04H [6]): CCIR656/CCIR601 or RGB/RGB-Dummy input selection

D6	Data format
0	RGB input. (Default)
1	CCIR656/YUV640/YUV720 input.

YUV mode is executed immediately after program.

R04H- NARROW (R04H [7]): Normal display and Narrow display selection.

D7	Function	
0	Normal display. (Default)	
1	Narrow display.	

R04H[7] = 0

R04H[7] = 1

R05H-PWM_EN (R05H [1]): Back light power converter enable control

D1	PWM enable control	
0	The DRV output is off.	
1	The DRV output is controlled by STB's power on/off sequence. (Default)	

R05H- VGHL_EN (R05H [2]): VGH/VGL charge pump enable control

D2	VGHL enable control
0	VGH/VGL charge pump is off, VGL will set to GND level.
1	VGH/VGL charge pump is controlled by STB's power on/off sequence. (Default)

TM027CDH02 V1.1

R05H-PWM_SEL (R05H [4:3]): PWM duty cycle selection for back light power convert

	PWM SEL		function
D5	D4	D3	PWM duty cycle
0	0	0	55%
0	0	1	60%
0	1	0	65%
0	1	1	70% (Default)
1	0	0	75%
1	0	1	80%
1	1	0	85%
1	1	1	90%

R05H- GRB (R05H [6]): Global reset control register

D6	GRB Function
0	Reset all registers to default value.
1	Normal operation. (Default)

R05H- DRV SET (R05H [7]): DRV signal frequency setting register

D7	DRV operation frequency
0	CLKIN/64. (Default)
1	CLKIN/128.

R06H - VBLK (R06H[4:0]): Vertical blanking setting register

For 8-bit RGB, 8-bit Dummy RGB, CCIR656, YUV640 and YUV720 NTSC mode,

Parallel RGB input mode (PSEL="Low"),

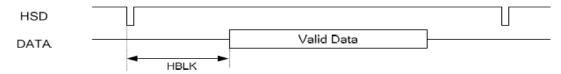
aliel ROB inpat mode (1 OLE LOW),	
VBLK selection	Unit
3.	
4~20	
21. (Default)	
22~31	
	VBLK selection 3. 4~20 21. (Default)

For 8-bit Dummy RGB, CCIR656, YUV640 and YUV720 PAL mode. (Vertical blanking+3)

D4~D0	VBLK selection	Unit
00h~14h	3~23.	
15h	24. (Default)	Н
16h~1Fh	25~34.	

R06H - FB_SEL (R06H[6:5]): FB pin feedback voltage selector

D6~D5	FB threshold voltage
00	0.6 V. (default)
01	0.75V.
10	0.45V.
11	0.3V.



TM027CDH02 V1.1

R06H/R07H - HBLK_EN(R6H[7]): HBLK function enable HBLK (R07H[7:0]): Horizontal blanking setting

HBLK_EN	D7~D0	HBLK	Unit	NTSC/PAL Mode
X	32h~45h	50~69		
X	46h	70	CLKIN(*)	8-bit RGB.
X	47∼FFh	71~255		
0	XXh	241		
4	00h~03h	3	CLKIN(*)	8-bit Dummy RGB.
'	04h~FFh	4~255		
0	XXh	240		
4	00h~03h	3	CLKIN(*)	YUV840, YUV720.
'	04h~FFh	4~255		
0	XXh	61	CLIZIN/*)	Barallal BCB
1	04h~3Fh	4~63	CLKIN(*)	Parallel RGB

^{*} The frequency of CLKIN is different under different input timing.

R08H -DRV_SEL(R08H[7:6]): Backlight driving capability setting

D7	D6	DRV driving capability
0	0	Normal capability. (Default)
0	1	2 times the Normal capability.
1	0	4 times the Normal capability.
1	1	8 times the Normal capability.

R0BH - REGSEL(R0BH[7]): VCOMDC output select register

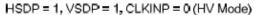
	D7	REGSEL function			
	0 VCOMDC output voltage level was control by MTP memory. (Default)				
1 VCOMDC output voltage level was control by 3-wire register memory (VCDC(R01 adjust the VCOMDC voltage level by R01H[5:0], user have to change the register to		VCOMDC output voltage level was control by 3-wire register memory (VCDC(R01H[5:0])). When user want to adjust the VCOMDC voltage level by R01H[5:0], user have to change the register to '1'. Refer to the "TRMEN" control register for the proper MPT write operation.			

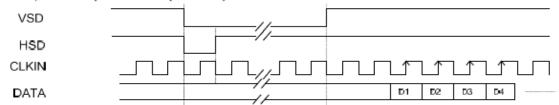
TM027CDH02 V1.1

R0CH - CLKINP(R0CH[0]):CLKIN polarity selection

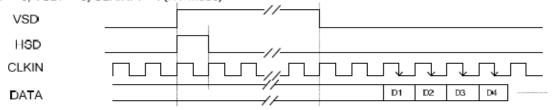
D0	CLKINP Function
0	Positive polarity. (Default)
1	Negative polarity

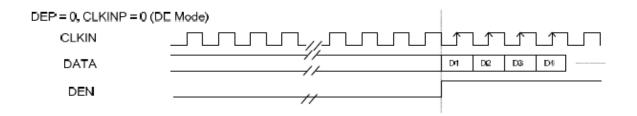
R0CH - HSDP((R0CH[1]):HSD polarity selection


D1	HSDP Function
0	Positive polarity.
1	Negative polarity. (Default)


R0CH- VSDP(R0CH[2]):VSD polarity selection

D2	VSDP Function
0	Positive polarity.
1	Negative polarity. (Default)


R0CH- DENP(R0CH [3]):DEN polarity selection


D3	DENP Function
0	Positive polarity (Default)
1	Negative polarity

TM027CDH02 V1.1

R0CH- CbCr(R0CH [4]): Cb & Cr exchange position (for CCIR656 and YUV640/YUV720)

D4	CbCr Function
0	Cb→Y→Cr. (Default)
1	Cr→Y→Cb.

R0C-DE EN (R0C [5]):DE Mode enable control

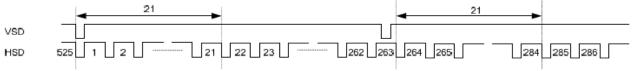
D5	DESEL Function
0	HV mode selected. (Default)
1	DE mode selected.

^{*} DE_EN only controls the HV and DE mode at 8-bit RGB, 8-bit Dummy RGB and Parallel Mode.

R0CH - VST(R0CH [7:6]): Vertical start time of Odd/Even Frame

8-bit RGB / 8-bit Dummy RGB NTSC / 8-bit Dummy RGB PAL(*)

Parallel RGB input mode (PSEL= "Low")


T GIGING TOOD I	drailer (COD inpat mode (1 OLE LOW)								
VST		VST VBLK							
D7	D7 D6 ODD/EVEN								
X	0	H (Line)							
Х	1	N / N-1.	n (Line)						

CCIR656/YUV640/YUV720 NTSC/PAL(**)

VST		VST VBLK		
D7	D7 D6 ODD/EVEN			
0	0	N / N. (Default)		
0	1	N / N+1.	H (Line)	
1	0	N+1 / N.	H (Lille)	
1	1	N+1 / N+1.		

(*)The typical value of VBLK of 8-bit Dummy RGB PAL(24 H) is different than 8-bit RGB/8-bit Dummy RGB NTSC(21H). (**) The typical value of VBLK of CCIR656 PAL(24 H) is different than CCIR656 NTSC(21H). Note: VBLK must be adjusted base on the input data.

For example:

R0DH - CONTRAST(R0DH [7:0]): RGB contrast level setting, the gain changes (1/64) / bit

D7~D0	Contrast gain
00h	0
40h	1(Default)
FFh	3.984

R0EH - R_CONT(R0EH [6:0]):Red sub-pixel contrast level setting, the gain changes (1/256)/bit

D6~D0	R Contrast gain
00h	0.75
40h	1(Default)
7Fh	1.246

TM027CDH02 V1.1

R0FH - R BRIGHT(R0FH [6:0]):Red sub-pixel brightness level setting, setting accuracy:1 step/bit

D6~D0	R Brightness gain
00h	DARK (-64)
40h	Center (0) (Default)
7Fh	Bright (+63)

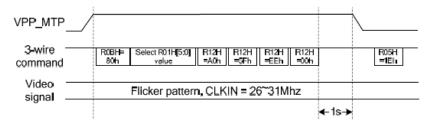
R10H - B_CONT(R10 [6:0]):Blue sub-pixel contrast level setting, the gain changes (1/256)/bit

D6~D0	B Contrast gain
00h	0.75
40h	1 (Default)
7Fh	1.246

R11H - B_BRIGHT(R11H[6:0]):Blue sub-pixel brightness level setting, setting accuracy:1 step/bit

D6~D0	B Brightness gain
00h	DARK (-64)
40h	Center(0) (Default)
7Fh	Bright (+63)

R12H -TRMEN(R12H[7:0]): VCOM DC Trim Function Control Register


VCOMDC Trim function control register, this IC have build-in MTP memory, at Power-on, IC will auto load the MTP memory to set the VCOMDC level to prevent flick issue.

Operation condition:

- 1. CLKIN frequency range 26Mhz ~ 31Mhz
- Apply 6VDC to VPPMTP pin.

Programming procedure:

- Set REGSEL = 1 (R0BH = 80h)
- 2. Adjustment VCDC(R01H[5:0]) value, select proper VCOM_DC value
- 3. Set TRMEN[7:0] (R12H) as following sequence : A0h → 5Fh → EEh →00h.
- 4. Hold 1s for MTP control block operation.
- 5. Set global reset (set R05H = 1Eh) and restart the display operation.
- 6. Check the voltage level of VCOMDC pin.

Note:

- 1. The Trim Block can be writing only for "2" times.
- 2. After finishing TRMEN command do not power off within 1 second.
- 3. Trim command exceed the limit may cause the VCOMDC output unknown value.

TM027CDH02 V1.1

R16H - GOP_EN(R16H[2]): Internal gamma op enable control

D2	Gamma op enable control
0	Output characteristic curve control by R17H~R1AH.
1	Output characteristic curve define by gamma correction resistor.(default)

R17H ~ R1AH

```
L008_SEL (R17H [2:0]): Gamma op output selection to level 8;

L016_SEL (R17H [6:4]): Gamma op output selection to level 16;

L032_SEL (R18H [2:0]): Gamma op output selection to level 32;

L050_SEL (R18H [6:4]): Gamma op output selection to level 50;

L072_SEL (R19H [2:0]): Gamma op output selection to level 72;

L096_SEL (R19H [6:4]): Gamma op output selection to level 96;

L110_SEL (R1AH [2:0]): Gamma op output selection to level 110;

L120_SEL (R1AH [6:4]): Gamma op output selection to level 120;
```

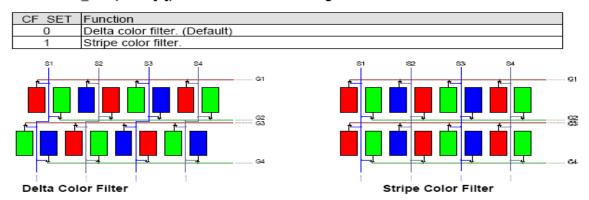
Reference point	000	001	010	011	100	101	110	111
L008 (100)	-100mV	-75mV	-50mV	-25mV	Default	+25mV	+50m∨	+75mV
L016 (101)	-125mV	-100mV	-75mV	-50mV	-25mV	Default	+25mV	+50mV
L032 (100)	-100mV	-75mV	-50m∨	-25mV	Default	+25mV	+50m∨	+75mV
L050 (101)	-125mV	-100mV	-75mV	-50mV	-25mV	Default	+25mV	+50m∨
L072 (011)	-75mV	-50mV	-25mV	Default	+25mV	+50mV	+75mV	+100mV
L096 (100)	-100mV	-75mV	-50mV	-25mV	Default	+25mV	+50mV	+75mV
L110 (100)	-100mV	-75mV	-50m∨	-25mV	Default	+25mV	+50m∨	+75mV
L120 (101)	-125mV	-100mV	-75mV	-50m∨	-25mV	Default	+25mV	+50mV

R2BH - STB (R2BH [0]): Normal / Standby mode control register

D0	STB Function
0	Standby Mode. (Default)
1	Normal operation.

R2FH - SOPC(R2FH[1:0]): Source output driving capability selection

D1	D0	Source driver capability
0	0	-25%.
0	1	Normal. (default)
1	0	+25%.
1	1	+50%.


R2FH - LC_SEL(R55H[3:2]): LC type selection register

D5	D4	LC type selection
0	0	Low Voltage LC. (Default)
0	1	Reserved
1	0	Reserved
1	1	Normal LC

TM027CDH02 V1.1

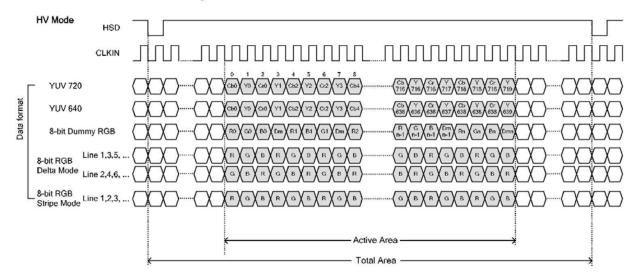
R2FH - CF_SET(R2FH[4]): Color filter selection register

R2FH- VGH_SEL (R2FH[6:5]): VGH voltage level selection

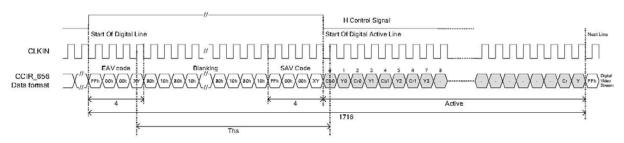
D1	D0	VGH SEL Function
0	0	VGL + 2V.
0	1	VGL + 3V.
1	0	VGL + 4V.
1	1	VGL + 5V. (Default)

R55H - INV_SET (R55H[6]): Inversion type selection

D6	INV SEL Function
0	One line inversion. (Default)
1	Column inversion.


R5FH - VGL_SEL (R5FH[0:1]): VGL voltage level selection

D1	D0	VGL SEL Function
0	0	-8V.
0	1	-9V
1	0	-10V. (Default)
1	1	-11V



5.4 Data Input Format

Serial 8-bit RGB / 8-bit Dummy RGB / YUV Mode Data format

CCIR_656 Mode Data format

- FF 00 00 XY signals are involved with HSD, VSD and Field
- XY encode following bits:

F=field select

V=indicate vertical blanking

H=1 if EAV else 0 for SAV

P3-P0=protection bits:

P3=V \oplus H P2=F \oplus H P1=F \oplus V P0=F \oplus V \oplus H

⊕: Represents the exclusive-OR function

XY							
D7 (MSB)	D6	D5	D4	D3	D2	D1	D0
1	F	V	H	P3	P2	P1	P0

- Control is provided through "End of Video" (EAV) and "Start of Video" (SAV) timing references.
- Horizontal blanking section consists of repeating pattern 80 10 80 10

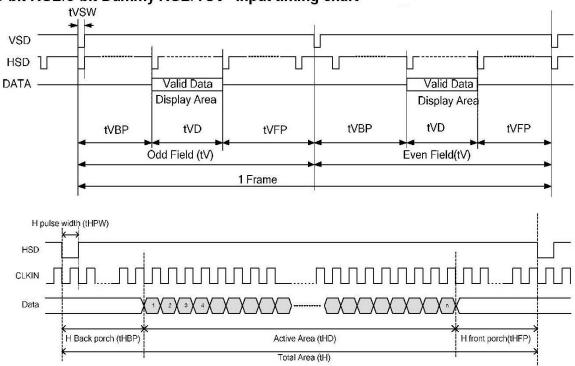
TM027CDH02 V1.1

Data Active Area

Input Format	Format Standard	CLKIN(MHz)	Н	Total AREA	Active AREA	
	CCIR_601	fCLKIN = 27	4	1716	1440	
YUV	CCIR_656		.1.	1728	1440	
	CCIR_601	fCLKIN = 24.54	1	1560	1280	
8-bit Dummy	NTSC/PAL	fCLKIN = 27	4	1560	1440	
RGB	NISCIPAL	fCLKIN = 24.54	111	1560	1280	
8-bit RGB	NTSC/PAL	fCLKIN = 27	1	1716	960	

(Unit:CLKIN)

CCIR656/YUV640/YUV720 to RGB Conversion Formula


Rn = 1.164*[(Y2n-1+Y2n)/2-16] + 1.596*(Crn-128)

Gn = 1.164*[(Y2n-1+Y2n)/2-16] - 0.813*(Crn-128) - 0.392*(Cbn-128)

5.5 Input Timing Format

8-bit RGB/8-bit Dummy RGB/YUV Input timing chart

8-bit RGB input timing

Parameter		Cumbal		Interlace		Unit
Parameter		Symbol	Min.	Тур.	Max.	
CLKIN frequ	uency	fCLKIN	13.5	27	27.19	MHz
HSD period		tH	1024	1716	1728	CLKIN
HSD display	/ period	tHD		960		CLKIN
HSD back p	orch	tHBP	50	70	255	CLKIN
HSD front porch		tHFP	14	686	718	CLKIN
HSD pulse width		tHSW	1	1	tHBP-1	CLKIN
VSD period	time	tV	242.5	262.5	450.5	Н
Vertical disp	olay area	tVD		240		
VSD	Odd field	tVBP	3	21	31	
back porch	Even field	TVBP	3.5	21.5	31.5	Н
VSD	Odd field	AVED.	1.5	1.5	179.5	
front porch Even field		tVFP	1	1	179	Н
VSD pulse width		tVSW	1 CLKIN	1CLKIN	6H	
1 Frame			485	525	901	Н

8-bit Dummy RGB input timing

8-bit Dummy RGB (320 mode/NTSC/24.535Mhz) input timing

Parameter	Parameter		,	Interlace		Unit
Farameter			Min.	Тур.	Max.	
CLKIN frequ	CLKIN frequency		20.45	24.535	30	MHz
HSD period		tH	1306	1560	1907	CLKIN
HSD display	/ period	tHD		1280		CLKIN
HSD back p	orch	tHBP	3	241	255	CLKIN
HSD front p	HSD front porch		25	39	372	CLKIN
HSD pulse	HSD pulse width		1	1	200	CLKIN
VSD period	time	tV	242.5	262.5	450.5	H
Vertical disp	olay area	tVD	240			Н
VSD	Odd field	tVBP	3	21	31	1
back porch	Even field	TIVER	3.5	21.5	31.5	Н
VSD	Odd field	tVFP	1.5	1.5	179.5	H
front porch Even field		7 (1	1	179	1 -
VSD pulse width		tVSW	1	1	200	CLKIN
1 Frame			485	525	901	Н

8-bit Dummy RGB (320 mode/PAL/24.375Mhz) input timing

Parameter		Cuma la cal	Interlace			Unit
Parameter		Symbol	Min.	Тур.	Max.	Oille
CLKIN frequ	uency	fCLKIN	20.45	24.375	30	MHz
HSD period		tH	1306	1560	1920	CLKIN
HSD display	period	tHD		1280		CLKIN
HSD back p		tHBP	3	241	255	CLKIN
HSD front porch		tHFP	25	39	385	CLKIN
HSD pulse	HSD pulse width		1	1	200	CLKIN
VSD period	time	tV	292.5	312.5	450.5	H
Vertical disp	lay area	tVD	288			Н
VSD	Odd field	tVBP	3	23	34	11
back porch	Even field	J MADE I	3.5	23.5	34.5	H
VSD	Odd field	tVFP	1.5	1.5	128.5	1 11
front porch Even field			1	1	128	H
VSD pulse width		tVSW	1	1	200	CLKIN
1 Frame			585	625	901	H

8-bit Dummy RGB (360 mode/NTSC/27Mhz) input timing

Parameter		Symbol		Interlace		Unit
Parameter		Symbol	Min.	Тур.	Max.	Unit
CLKIN frequ	CLKIN frequency		23	27	30	MHz
HSD period		tH	1466	1716	1907	CLKIN
HSD display	y period	tHD		1440		CLKIN
HSD back p	orch	tHBP	3	241	255	CLKIN
HSD front porch		tHFP	25	35	212	CLKIN
HSD pulse width		tHSW	1	1	200	CLKIN
VSD period	time	tV	242.5	262.5	450.5	Н
Vertical disp	olay area	tVD	240			H
VSD	Odd field	tVBP	3	21	31	1 1
back porch	Even field	J MBP [3.5	21.5	31.5	Н
VSD Odd field		tVFP	1.5	1.5	179.5	1
front porch Even field			1	1	179	H
VSD pulse width		tVSW	1	1	200	CLKIN
1 Frame			485	525	901	Н

TM027CDH02 V1.1

8-bit Dummy RGB (360 mode/PAL/27Mhz) input timing

Parameter	<u>.</u>	Symbol		Interlace		Unit
raiaiiietei	raiainetei		Min.	Тур.	Max.	Oilit
CLKIN frequ	iency	fCLKIN	23	27	30	MHz
HSD period		tH	1466	1728	1920	CLKIN
HSD display	period	tHD		1440		CLKIN
HSD back p	orch	tHBP	3	241	255	CLKIN
HSD front porch		tHFP	25	47	225	CLKIN
HSD pulse width		tHSW	1	1	200	CLKIN
VSD period	time	tV	292.5 312.5		450.5	H
Vertical disp	lay area	tVD		288		H
VSD	Odd field	tVBP	3	23	34	Н
back porch	Even field	J MADE [3.5	23.5	34.5	F1
VSD	Odd field	tVFP	1.5	1.5	128.5	Н
Front porch Even field] [VFP]	1	1	128	
VSD pulse width		tVSW	1	1	200	CLKIN
1 Frame			585	625	901	Н

YUV720 and YUV640 input timing YUV 720 mode/NTSC input timing

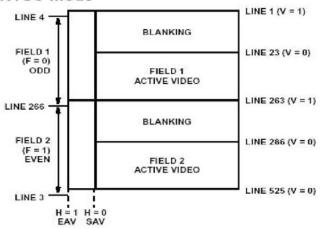
Danamatan		Symbol		Interlace		1144
Parameter	Parameter		Min.	Тур.	Max.	Unit
CLKIN frequ	iency	fCLKIN	=.	27		MHz
HSD period		tH	-	1716	12	CLKIN
HSD display	period	tHD		1440		CLKIN
HSD back p	orch	tHBP	=	240		CLKIN
HSD front porch		tHFP	-	36	-	CLKIN
HSD pulse width		tHSW	-	1		CLKIN
VSD period	VSD period time		-	262.5	=	H
Vertical disp	lay area	tVD		240		Н
VSD	Odd field	tVBP	-	21	21	н
back porch	Even field	J MAN L		21.5		
VSD	Odd field	tVFP	-	1.5	-	101
front porch Even field				1	-	H H
VSD pulse width		tVSW	-	1	. 8	CLKIN
1 Frame			-	525	-	Н

YUV 720 mode/PAL input timing

Dorom eter		Symbol		Interlace		I I mid
Parameter	Parameter		Min.	Тур.	Max.	Unit
CLKIN frequ	uency	fCLKIN	-	27	-	MHz
HSD period		tH	- 8	1728	91	CLKIN
HSD display	period	tHD		1440		CLKIN
HSD back p	orch	tHBP	-	240	-	CLKIN
HSD front porch		tHFP	=	48	-	CLKIN
HSD pulse width		tHSW	-	1	8	CLKIN
VSD period time		tV	4	312.5	8	Н
Vertical disp	olay area	tVD		288		Н
VSD	Odd field	W/DD	-	24	9	11
back porch	Even field	tVBP	40	24.5	-	Н
VSD	Odd field	tVFP	-	0.5		- 17
front porch Even field			=:	0	-	H
VSD pulse width		tVSW	-	1	-	CLKIN
1 Frame			E.	625	8:	Н

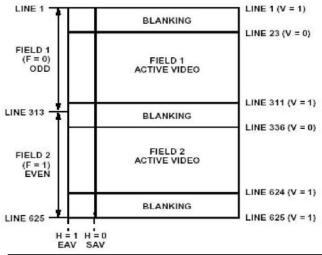
TM027CDH02 V1.1

YUV 640 mode/NTSC input timing


Parameter		Symbol		Interlace		Unit
Parameter	raiaiiietei		Min.	Тур.	Max.	OIIIL
CLKIN frequ	iency	fCLKIN	-	24.535		MHz
HSD period		tH	-	1560	-	CLKIN
HSD display	/ period	tHD		1280		CLKIN
HSD back p	orch	tHBP	<u>u</u>	240		CLKIN
HSD front porch		tHFP	- 40		2	CLKIN
HSD pulse width		tHSW	<u> </u>	1	=	CLKIN
VSD period time		tV	-	262.5	4	Н
Vertical disp	olay area	tVD		240	2 0	H
VSD	Odd field	tVBP	-	21	-	Н
back porch	Even field] IVBP [<u>e</u>	21.5	2	
VSD	Odd field	tVFP	2	1.5		1.1
front porch Even field		7 (75)	=	1	_	H
VSD pulse width		tVSW	_	1	-	CLKIN
1 Frame			-	525	-	Н

YUV 640 mode/PAL input timing

Parameter		Symbol		Interlace		Unit
raiailletei		Syllibol	Min.	Тур.	Max.	Oilit
CLKIN frequ	iency	fCLKIN	-	24.375	-	MHz
HSD period		tH	7.0	1560		CLKIN
HSD display	period	tHD		1280		CLKIN
HSD back p	orch	tHBP	4	240	=	CLKIN
HSD front porch		tHFP	-	40	-	CLKIN
HSD pulse width		tHSW	÷	1	=	CLKIN
VSD period	VSD period time		+	312.5	÷	Н
Vertical disp	lay area	tVD		288		Н
VSD	Odd field	tVBP	5	24	-	- 13
back porch	Even field	J MADE L		24.5		- H
VSD	Odd field	N/ED	4	0.5	<u>10</u> 4	17
front porch	Even field	tVFP	=	0	2	- H
VSD pulse width		tVSW	-	1	=	CLKIN
1 Frame			-	625	-	Н


CCIR656 input timing NTSC mode

LINE NUMBER	F	v	H (EAV)	H (SAV)
1-3	1	1	1	0
4-22	0	1.	1	0
23-262	0	0	-1	0
263-265	0	1	1	-0
266-285	1	1	1	0
286-525	1	0	1	0

	F	Ή	V
1	EVEN Field	EAV	BLANKING
0	ODD Field	SAV	ACTIVE VIDEO

PAL mode

	F	Н	٧
1	EVEN Field	EAV	BLANKING
0	ODD Field	SAV	ACTIVE VIDEO

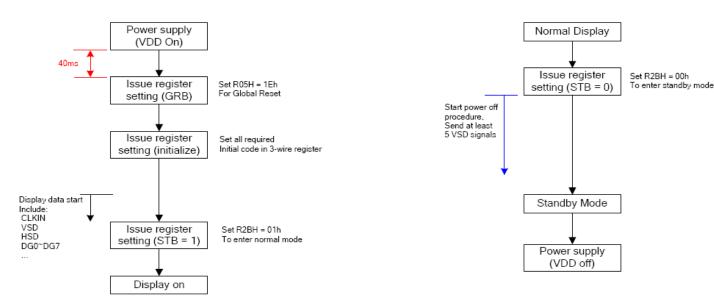
LINE NUMBER	F	v	H (EAV)	H (SAV)
1-22	0	1	1	0
23-310	0	0	1	0
311-312	0	1	1	0
313-335	1	.1	1.	0
336-623	1	0	1	0
624-625	-1.	1	1	0

Twh

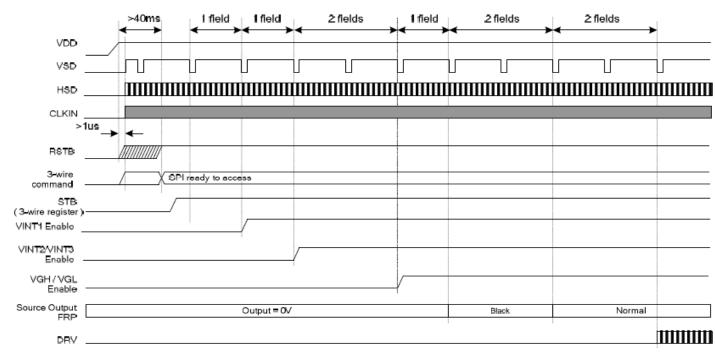
5.6 AC Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
HSD period time	Th	60	63.56	67	us		
VSD setup time	Tvst	12	-	-	ns		
VSD hold time	Tvhd	12	_	4	ns		
HSD setup time	Thst	12	-		ns		
HSD hold time	Thhd	12	-	-	ns		
Data setup time	Tdsu	12	į.	-	ns	DB0~DB7 to	
Data hold time	Tdhd	12	-	-	ns	DB0~DB7 to	
Time that VSD to 1st Gate output	Tstv	0	21	31	Н	@ 8-bit RGB, 8-bit Dummy RGB NTSC, Delay by VBLK setting.	
Time that CCIR_V to 1st Gate output	Tstv	0	22	31	Н	@ CCIR656 NTSC, Delay by VBLK setting.	
Time that CCIR_V to 1st Gate output	Tstv	3	24	34	Н	@ 8-bit Dummy RGB & CCIR656 PAL, Delay by VBLK setting.	
Source output setting time (*1)	Tst	•	-	8	us	R= 25K ohm , C= 30 pF 10% → 90% final.	
Gate output setting time (*1)	Tstg		0.5	1	us	R= 3K ohm , C= 25 pF 10% → 90% final.	
VCOM setting time (*1)	Tst,vcom		_	9	us	R= 200 ohm , C= 5 nF 10% → 90% final.	

Ps. (*1) Test Condition:

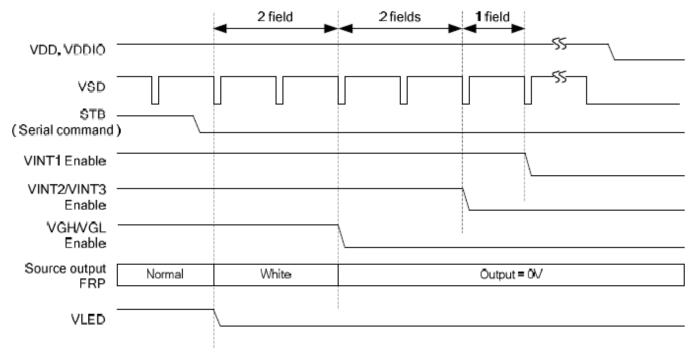

Time that HSD width

When the tested signal is changed from Vo, min to Vo, max, the time that is from the start of change to the time that the swing voltage at point B is less than +/- 20 mV is called the setting time of the tested signal.


CLKIN

5.7 Power On/Off Sequence

5.7.1 Initialize Flow Chart


5.7.2 Power On Sequence

Note: 1. The RSTB should keep low state till VDD was stable, and set to high state before SPI command start.

2. After STB set to 1, it takes 9 VSD pulse for power on operation.

5.7.3 Power Off Sequence

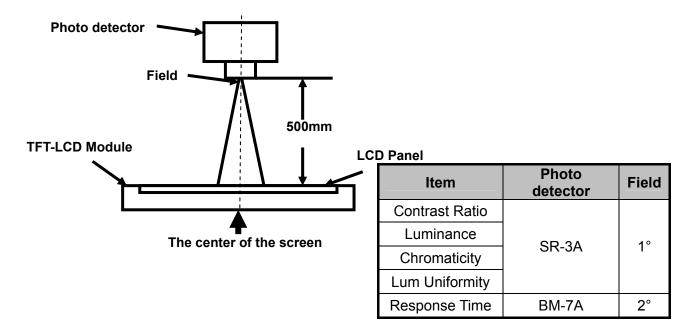
Note: For properly power off operation, the extra 5 VSD pulses (or more) after STB set to low were required.

6 Optical Characteristics

6.1 Optical Specification

Ta=25°C

Item		Symbol	Condition	Min	Тур.	Max.	Unit	Remark
				50	55	-		
Viou Angles		θВ	CR≧10 -	60	65	-	Dograd	Note O
View Angles		θL	UN≦ IU	60	65	-	Degree	Note 2
		θR		60	65	-		
Contrast Ratio)	CR	θ=()°	300	400	-		Note1 Note3
Response Tim	10	Ton	25℃		25	40	me	Note1
response in	ie	Toff	250	-	25	40	ms	Note4
	White	х		0.257	0.307	0.357		
	vviile	у	Backlight is	0.290	0.340	0.390		
	Red	х		0.540	0.590	0.640		
Chromaticity	Reu	у		0.300	0.350	0.400		Note5,
Chilomaticity	Croon	х	on	0.291	0.341	0.391		Note1
	Green	у		0.481	0.531	0.581		
	Blue	х		0.095	0.145	0.195		
	Diue	у		0.073	0.123	0.173		
Uniformity		U		75	80	-	%	Note1 Note6
NTSC				-	40	-	%	Note 5
Luminance		L		250	300	-	cd/m ²	Note1 Note7


Test Conditions:

- 1. V_F =3.2V, I_L =20mA(Backlight current), the ambient temperature is 25°C.
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

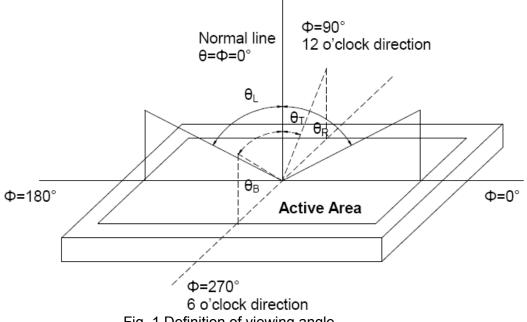
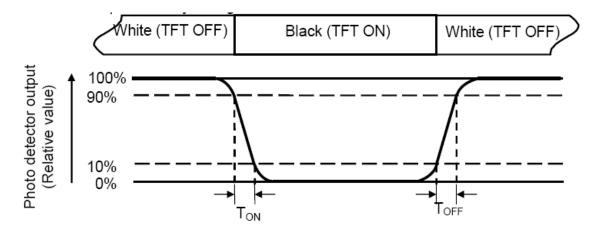


Fig. 1 Definition of viewing angle

Note 3: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD is on the "White" state

Luminance measured when LCD is on the "Black" state


"White state ": The state is that the LCD should driven by Vwhite.

"Black state": The state is that the LCD should driven by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/Lmax

L----- Active area length W----- Active area width

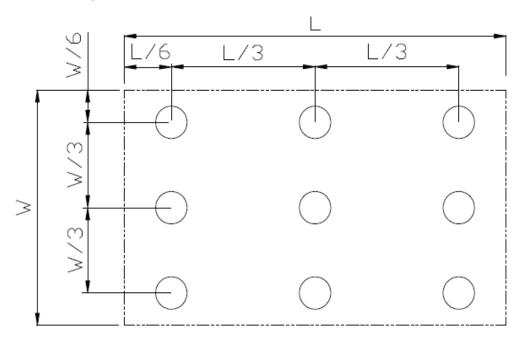


Fig. 2 Definition of uniformity

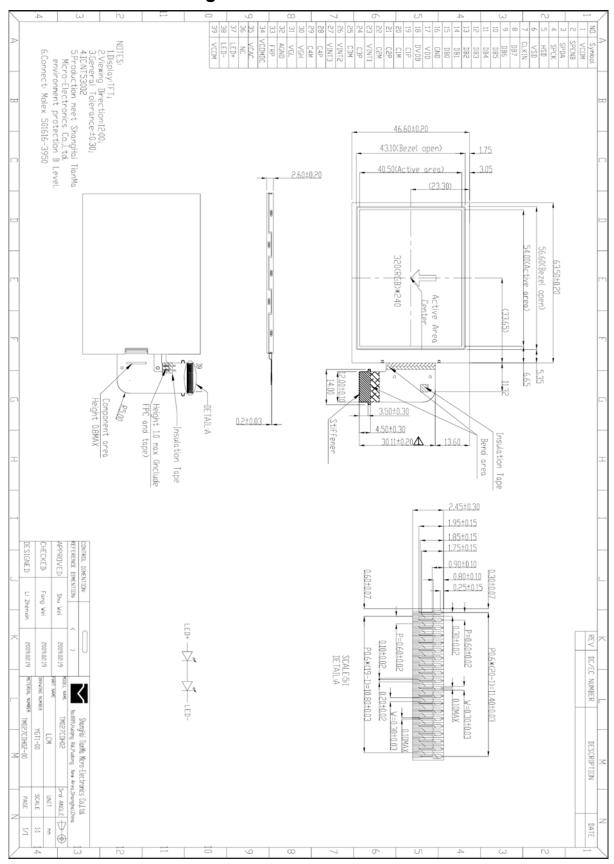
Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

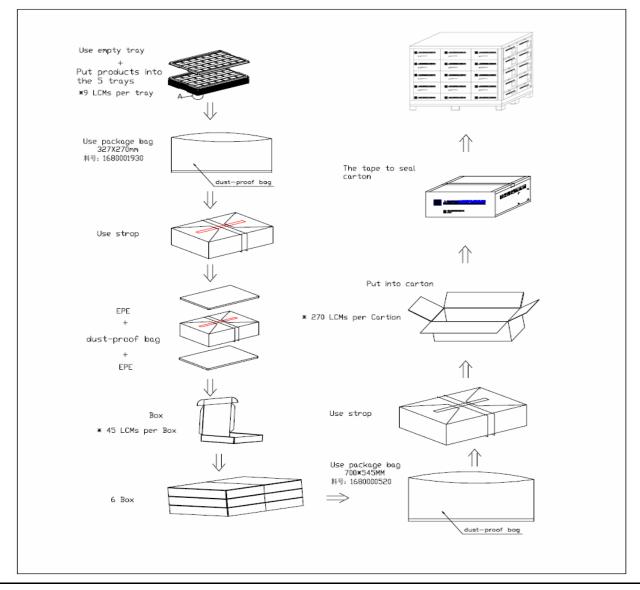
7 Environmental / Reliability tests


No	Test Item	Condition	Remark
1	High Temperature Operation	Ts=+60℃, 240hrs	Note1 IEC60068-2-2,GB2423.2—89
2	Low Temperature Operation	Ta=-20℃, 240hrs	IEC60068-2-1 GB2423.1—89
3	High Temperature Storage	1a=+70 C, 240nrs	IEC60068-2-2, GB2423.2—89
4	Low Temperature Storage		IEC60068-2-1 GB2423.1—89
5	High Temperature & High Humidity Storage	Ta=+60°C, 90% RH 240 hours	Note2 IEC60068-2-3, GB/T2423.3—2006
6	Thermal Shock (Non-operation)	-30°C 30 min~+70°C 30 min, Change time:5min, 20 Cycles	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22—87
7	Electro Static Discharge (Operation)	C=150pF, R=330 Ω , 5points/panel Air: \pm 8KV, 5times; Contact: \pm 4KV, 5 times; (Environment: 15°C \sim 35°C, 30% \sim 60%, 86Kpa \sim 106Kpa)	IEC61000-4-2 GB/T17626.2—1998
8	Vibration (Non-operation)	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total) (Package condition)	IEC60068-2-6 GB/T2423.10—1995
9	Shock (Non-operation)	60G 6ms, ±X,±Y,±Z 3times, for each direction	IEC60068-2-27 GB/T2423.5—1995
10	Package Drop Test	Height:80 cm, 1 corner, 3 edges, 6 surfaces	IEC60068-2-32 GB/T2423.8—1995

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.

8 Mechanical Drawing



9 Packing Drawing

9.1 Packaging Material Table

No	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark
1	LCM module	TM027CDH01	63.5x46.6x2.6	TBD	270	
2	Tray	PET(Transmit)	315×247×10.4	0.166	36	Anti-static
3	EPE	EPE	315×247×5	0.08	6	
4	Dust-proof bag	PE	700x545	0.05	1	
5	Anti-static bag	PE	327x270	TBD	6	
6	Вох	Corrugated Paper	345x260x70	0.44	6	
7	Carton	Corrugated Paper	544x365x250	1.01	1	
8	Total weight		TBD			

10 Precautions For Use Of LCD Modules

- 10.1 Handling Precautions
- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 10.2 Storage precautions
- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature: 0°C ~ 40°C Relatively humidity: ≤80%

- 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- 10.3 Transportation Precautions:

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.