

MODEL NO. : TM032LDH03

ISSUED DATE: ____2010-01-15

VERSION : Ver 2.1

□Preliminary Specification ■Final Product Specification

Customer:

Approved by	Notes

SHANGHAI TIANMA Confirmed:

Prepared by	Checked by	Approved by
康新年210.1.15	16 - 11 - 15	劉慶全

This technical specification is subjected to change without notice

Table of Contents

Cov	versheet	1
Tab	ole of Contents	2
Red	cord of Revision	3
1	General Specifications	4
2		5
3		
4	Electrical Characteristics	
5	Timing Chart	10
6	Optical Characteristics	27
7	Environmental / Reliability Tests	31
8	Mechanical Drawing	32
9	Packing Drawing	33
10	Precautions for Use of LCD Modules	

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2009-1-16	Preliminary Specification Release	Xinhua Kang
1.1	2009-9-10	Modify Up-Polarizer Size &Update Mechanical Drawing	Xinhua Kang
1.2	2009-10-21	Update Mechanical Drawing, Add the Mark of Driver IC	Xinhua Kang
2.0	2009-10-23	Final Specification Release	Xinhua Kang
2.1	2010-1-15	Update Optical Specification, Add the Water Mark from Tianma and Add the Life of LED.	Xinhua Kang
	1112		

1 General Specifications

	Feature	Spec		
	Size	3.2 inch		
	Resolution	240(RGB) x 400		
	Interface	CPU/SPI+RGB 18 bits/16 bits/8 bits		
	Color Depth	262K/65K		
	Technology Type	a-Si		
Display Spec.	Pixel Pitch (mm)	0.174X0.174		
	Pixel Configuration	R.G.B. Vertical Stripe		
	Display Mode	TM with Normally White		
	Surface Treatment(Up Polarizer)	Clear Type(3H)		
	Viewing Direction	6 o'clock		
	Gray Scale Inversion Direction	12 o'clock		
	LCM (W x H x D) (mm)	48.40x81.50x2.15(Exclude Pol.&Tape)		
.	Active Area(mm)	41.76x69.60		
Mechanical Characteristics	With /Without TSP	Without TSP		
Onaracteristics	Weight (g)	16.6		
	LED Numbers	6 LEDs		
Electronic	Driver IC	HX8352-A		

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3: LCM weight tolerance: +/- 5%

2 Input/Output Terminals

2.1 TFT LCD Panel

Connector Type:FH26-45S-0.3SHW

No	SYMBOL	I/O	Description	Remark
1	FLM	0	Tearing effect output	
2	GND	Р	Ground	
3	ENABLE	I	A data ENABLE signal in RGB I/F mode; Has to be fixed to GND level if is not used	
4	DOTCLK	I	Dot clock signal in RGB I/F mode; Has to be fixed to GND level if is not used	
5	VSYNC	I	Frame synchronizing signal in RGB I/F mode; Has to be fixed to IOVCC level if is not used	
6	GND	Р	Ground	
7	HSYNC		Line synchronizing signal in RGB I/F mode; Has to be fixed to IOVCC level if is not used	
8	BS0	I	Interface selection	Note 2
9	BS1	ı	Interface selection	Note 2
10	BS2	I	Interface selection	Note 2
11	IOVCC	Р	Digital I/O power supply	
12	VCC	Р	Digital power supply	
13	SDI		Serial data input; If not used, please let it connected to IOVCC or GND level	
14	SDO	0	Serial data output	
15	D17	ı	Data input	
16	D16	I	Data input	
17	D15	I	Data input	
18	D14	I	Data input	
19	D13	1	Data input	
20	D12	Ī	Data input	
21	D11		Data input	
22	D10		Data input	
23	D9	Ť	Data input	
24	D8		Data input	
25	D7	I	Data input	
26	D6	ı	Data input	
27	D5	I	Data input	
28	D4	I	Data input	
29	D3	I	Data input	
30	D2		Data input	
31	D1		Data input	
32	D0	ı	Data input	
33	RESET	I	Reset signal; Must be reset after power is supplied	
34	RD	l	Read signal; Fix it to IOVCC or GND level when using serial bus interface	

SHANGHAI TIANMA MICRO-ELECTRONICS

TM032LDH03 V2.1

35	WR	I	Write signal; Fix it to IOVCC or GND level when using serial bus interface
36	RS/SCL	I	Command or parameter select signal under parallel mode; Low: command, High: parameter. When under serial interface, it servers as clock signal.
37	CS	I	Chip select signal, low: chip can be accessed; Must be connected to GND if is not used
38	LED6	Р	Back light cathode LED6
39	LED5	Р	Back light cathode LED5
40	LED4	Р	Back light cathode LED4
41	LED3	Р	Back light cathode LED3
42	LED2	Р	Back light cathode LED2
43	LED1	Р	Back light cathode LED1
44	LEDA	Р	Back light anode
45	LCM_ID	0	ID pin

Note 1: I/O definition:

I----Input O---Output P----Power(Ground)

Note 2: Interface selection:

BS2	BS1	BS0	Interface Mode	DB Pins
0	0	0	16-bit bus interface,80-system, 65K-color	D15-D0: Data ; D17-D16: Unused
0	0	1	16-bit bus interface,80-system, 262K-color	D15-D0: Data ; D17-D16: Unused
0	1	0	18-bit bus interface,80-system, 262K-color	D17-D0: Data
0	1	1	8-bit bus interface,80-system, 262K-color	D7-D0: Data ; D17-D8: Unused
1	0	0	8-bit bus interface, 80-system, 65K-color	D7-D0: Data; D17-D8: Unused
1	1	ID.	Serial bus IF + RGB interface	D17-D0: Data

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

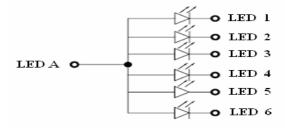
 $Ta = 25^{\circ}C$

Item	Symbol	Min.	Max.	Unit	Remark
Supply Voltage	VCC	-0.3	4.6	V	
Supply Voltage	IOVCC	-0.3	4.6	V	
Input Signal Voltage	D[17: 0], CS,RD, WR,RS/SCL, SDI,VSYNC,HSYNC,DOTCLK, ENABLE, RESET, BS[2:0]	-0.3	VCC +0.3	V	
Back Light Forward Current	I _{LED}	/	25	mA	For each LED
Operating Temperature	T _{OPR}	-20	70	${\mathbb C}$	
Storage Temperature	T _{STG}	-30	80	${\mathbb C}$	

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

GND=0V, Ta=25℃


Iter	Item		Min.	Тур.	Max.	Unit	Remark
_	Logic & Analog Power Supply		2.5	2.8	3.3	>	
IO Pad Pow	er Supply	IOVCC	1.65	2.8	3.3	V	
Input Signal	Low Level	VıL	0		0.2xIOVCC	V	D[17: 0], CS,RD, WR,RS/SCL, SDI,VSYNC,HSYNC,
Voltage	High Level	Vін	0.8xIOVCC		IOVCC	>	DOTCLK, ENABLE, RESET, BS[2:0]
Output Signal	Low Level	V_{OL}	0		0.3xIOVCC	V	000 EIM
Voltage	High Level	V_{OH}	0.7xIOVCC		IOVCC	V	SDO, FLM
				-	25	mA	
(Panel+ LSI) Power Consumption		8 color Mode	1		15	mA	
	·				100	uA	

4.2 **Driving Backlight**

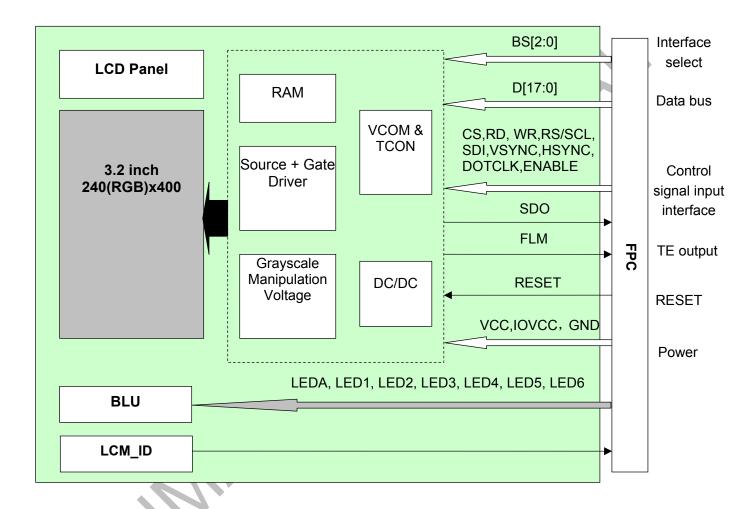
Ta=25°C

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Forward Current	I _F		15	25	mA	OLED-
Forward Voltage	V_{F}		3.2		V	6LEDs (in parallel)
Power Consumption	W_{BL}		288		mW	(iii paraiici)
Operating Life Time		10000	(20000)	-	Hrs	

Note1: Figure below shows the connection of backlight LED.

Note 2: One LED : I_F =15mA, V_F =3.2V Note 3: I_F is defined for one channel LED.

Optical performance should be evaluated at Ta=25°C only.

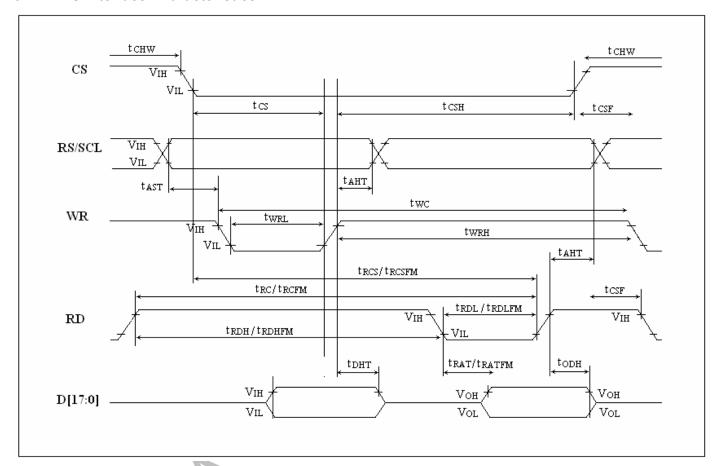

SHANGHAI TIANMA MICRO-ELECTRONICS

TM032LDH03 V2.1

If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced.

Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

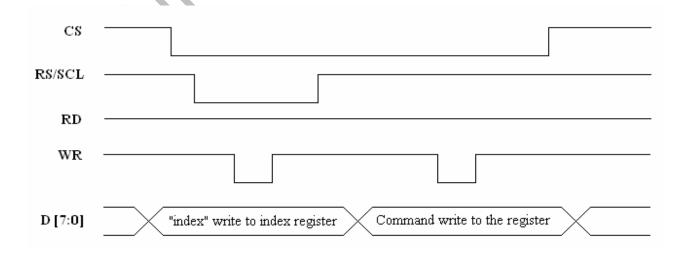
4.3 Block Diagram



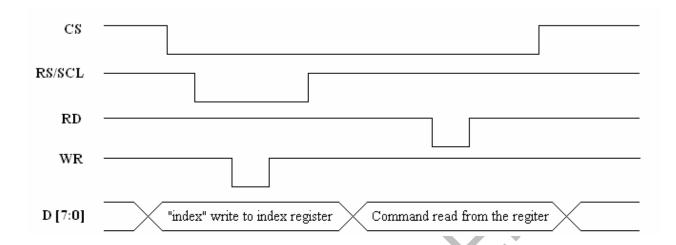
5 Timing Chart

5.1 CPU interface

5.1.1 CPU Interface Characteristics

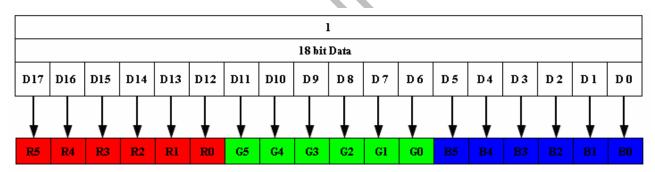

5.1.2 CPU Interface Timing Parameters

Normal Write Mode (IOVCC=1.65~3.3V, VCC=2.3~3.3V)

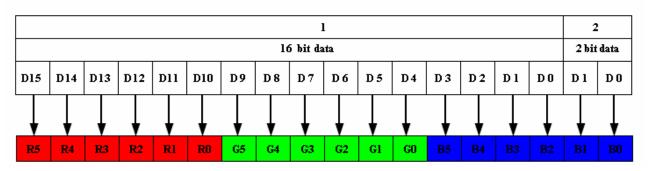

Signal	Cymbol	Parameter		Spec.		Description
Signal	Symbol	Parameter	Min.	Max.	Unit	Description
RS/SCL	t _{AST}	Address setup time	10		ns	
N3/3CL	t_AHT	Address hold time(Write/Read)	10	-	115	
	t_CHW	Chip select "H" pulse width	0			
	t_{CS}	Chip select setup time (Write)	35			
CS	t _{RCS}	Chip select setup time (Read ID)	100		ns	
03	t_{RCSFM}	Chip select setup time (Read FM)	100	_	113	
	t_{CSF}	Chip select wait time(Write/Read)	10			
	t _{CSH}	Chip select hold time	10			
	t_WC	Write cycle	100			
WR	t_WRH	Control pulse "H" duration	20	-	ns	-
	t_{WRL}	Control pulse "L" duration	20			
	t_RC	Read cycle (ID)	150			
RD	t_{RDH}	Control pulse "H" duration (ID)	40	-	ns	When read ID data
	t_{RDL}	Control pulse "L" duration (ID)	50			
	t_{RCFM}	Read cycle (FM)	250			When read from
RD	t_{RDHFM}	Control pulse "H" duration (FM)	50	-	ns	frame memory
	t_{RDLFM}	Control pulse "L" duration (FM)	150			maine memory
	t_{DST}	Data setup time	20	-		For maximum
	t_DHT	Data hold time	20	-		C _L =30pF
D[17:0]	t_RAT	Read access time (ID)	-	70	ns	For minimum
	t_{RATFM}	Read access time (FM)	-	100		C _L =8pF
	t _{ODH}	Output disable time	20	80		OL-oht

5.1.3 CPU Interface Register Write/Read Timing

5.1.3.1 System Bus Interface Register Write Timing

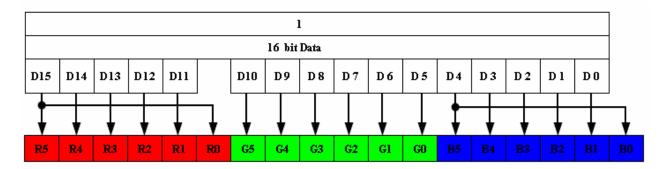


5.1.3.2 System Bus Interface Register Read Timing

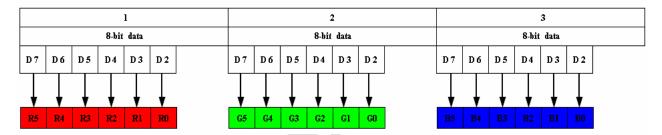


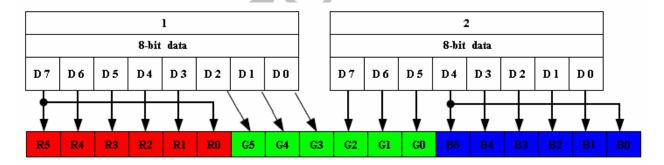
5.1.4 GRAM Write/Read Data Format

5.1.4.1 18-bit Read/Write GRAM Data Format(262K)



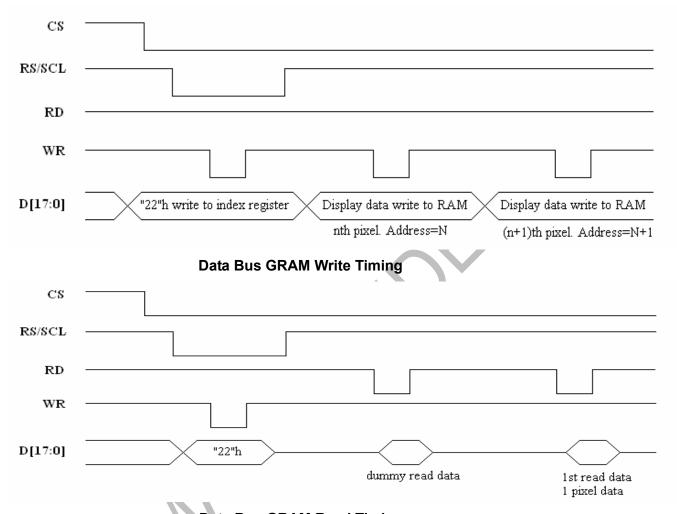
5.1.4.2 16-bit Read/Write GRAM Data Format(262K/65K)


16-bit Read/Write GRAM Data Format 262K

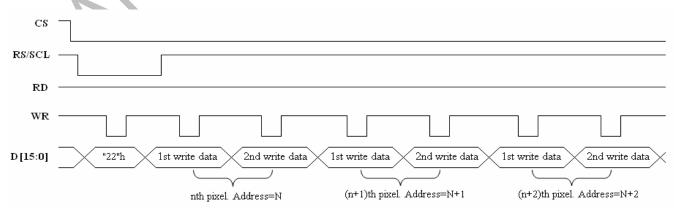


16-bit Read/Write GRAM Data Format 65K

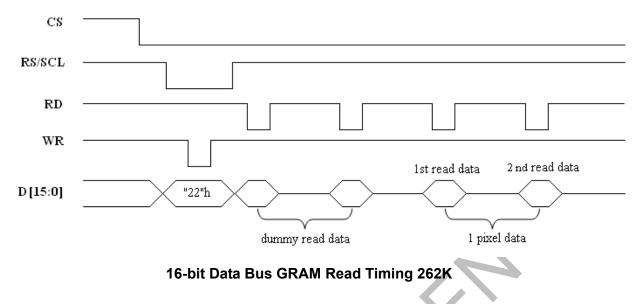
5.1.4.3 8-bit Read/Write GRAM Data Format(262K/65K)

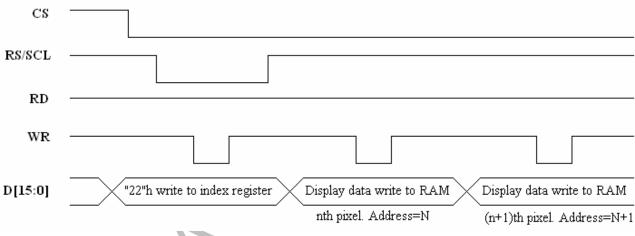

8-bit Read/Write GRAM Data Format 262K

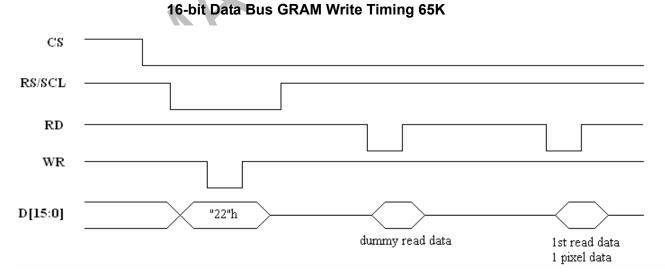
8-bit Read/Write GRAM Data Format 65K


5.1.5 Data Bus GRAM Write/Read Timing

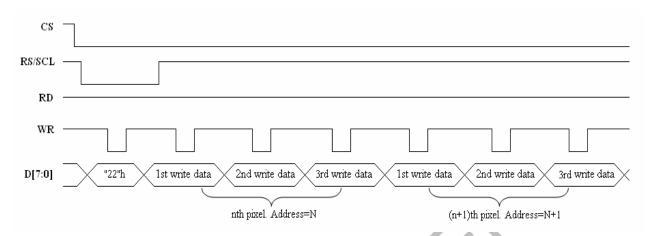
5.1.5.1 18-bit Data Bus GRAM Write/Read Timing(262K)

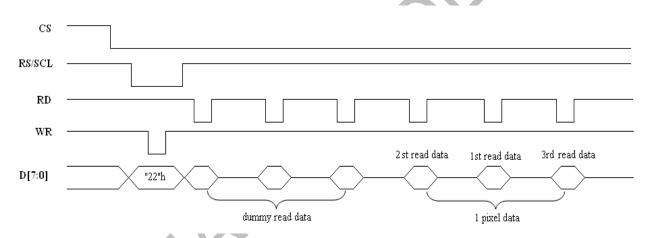

Data Bus GRAM Read Timing


5.1.5.2 16-bit Data Bus GRAM Write/Read Timing(262K/65K)



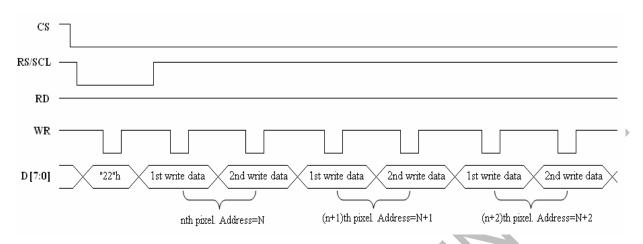
16-bit Data Bus GRAM Write Timing 262K



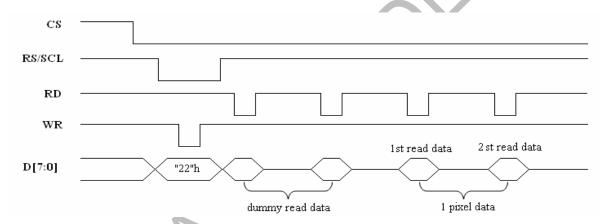


16-bit Data Bus GRAM Read Timing 65K

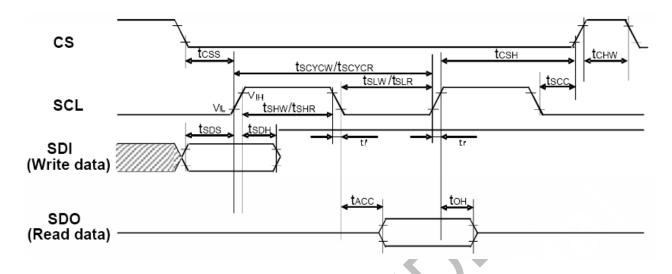
5.1.5.3 8-bit Data Bus GRAM Write/Read Timing(262K/65K)



8-bit Data Bus GRAM Write Timing 262K

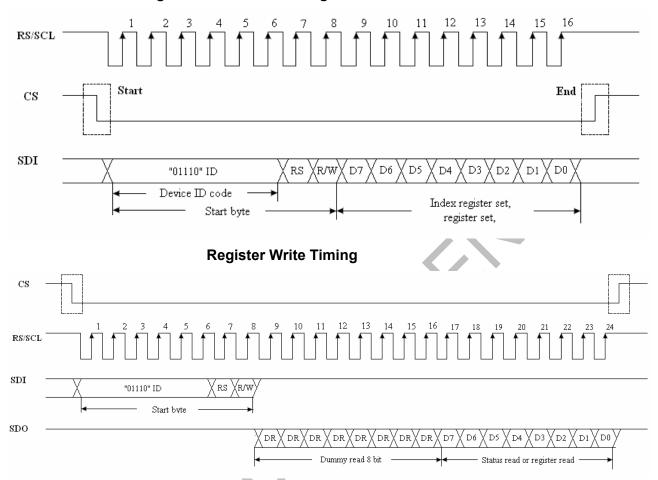


8-bit Data Bus GRAM Read Timing 262K


8-bit Data Bus GRAM Write Timing 65K

8-bit Data Bus GRAM Read Timing 65K

5.2 SPI interface


5.2.1 SPI Interface Characteristics

5.2.2 SPI Interface Timing Parameters

Item		Symbol	Unit	Min.	Тур.	Max.
Social alook avalo timo	Write	t _{scycw}	ns	100	-	-
Serial clock cycle time	Read	t _{scyc}	ns	150	-	-
Social clock high lovel pulse width	Write	t _{SHW}	ns	35	-	1
Serial clock high level pulse width	Read	t _{SHR}	ns	60	-	-
Serial clock low level pulse width	Write	t _{SLW}	ns	35	-	1
Serial clock low level pulse width	t_{SLR}	ns	100	-	ı	
Access Time		t _{ACC}	ns	10	-	100
Chip select set up time		t_{CSS}	ns	60	-	-
Chip select hold time		t _{CSH}	ns	60	-	-
Data set up time		t _{SDS}	ns	30	-	-
Data hold time		t _{SDH}	ns	30	-	-
Output disable time		t _{OH}	ns	15	-	100
CS "H" pulse width	t _{CHW}	ns	45	-	-	
SCL to Chip select		t _{SCC}	ns	50	-	1

5.2.3 SPI Interface Register Write/Read Timing

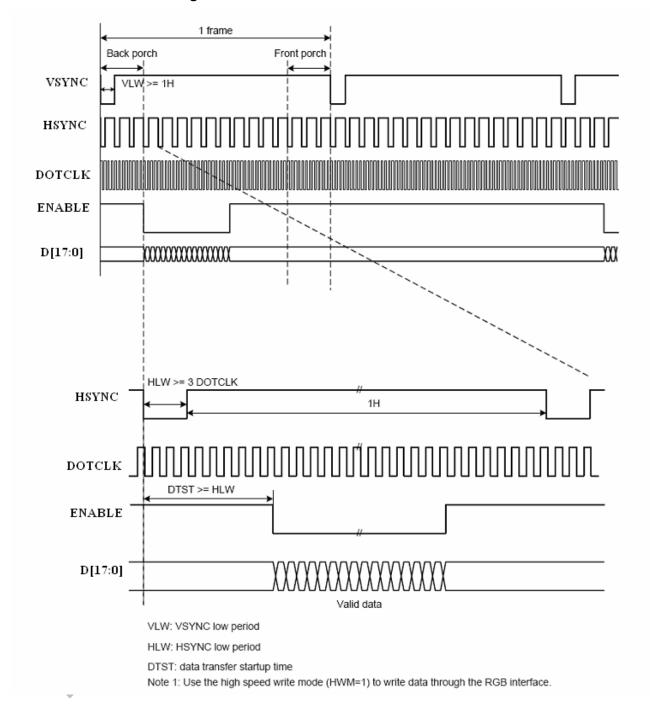
Register Read Timing

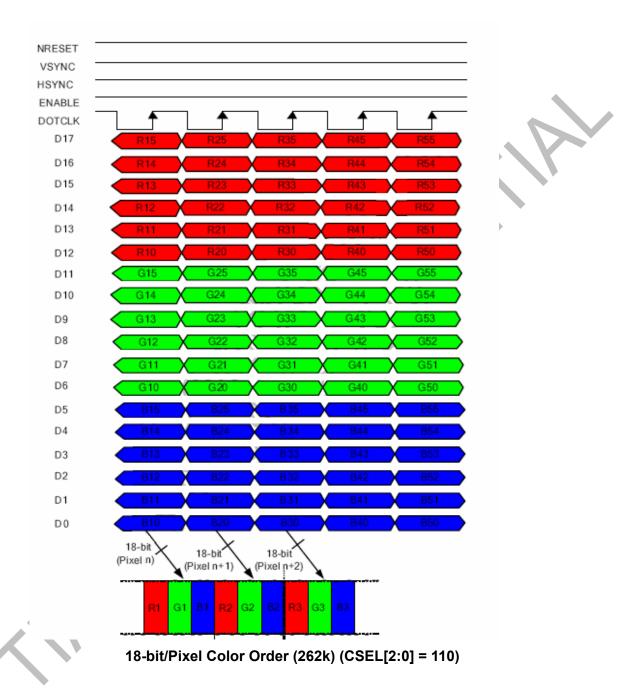

5.2.4 SPI Interface Start Byte Format

Transferred Bits	S	1	2	3	4	5	6	7	8
Start Byte Format Transfer Sta	Transfer Start			Devic	e ID Co	ode		RS	R/W
	Transier Start	0	1	1	1	0	ID(BS0)	1/0	1/0

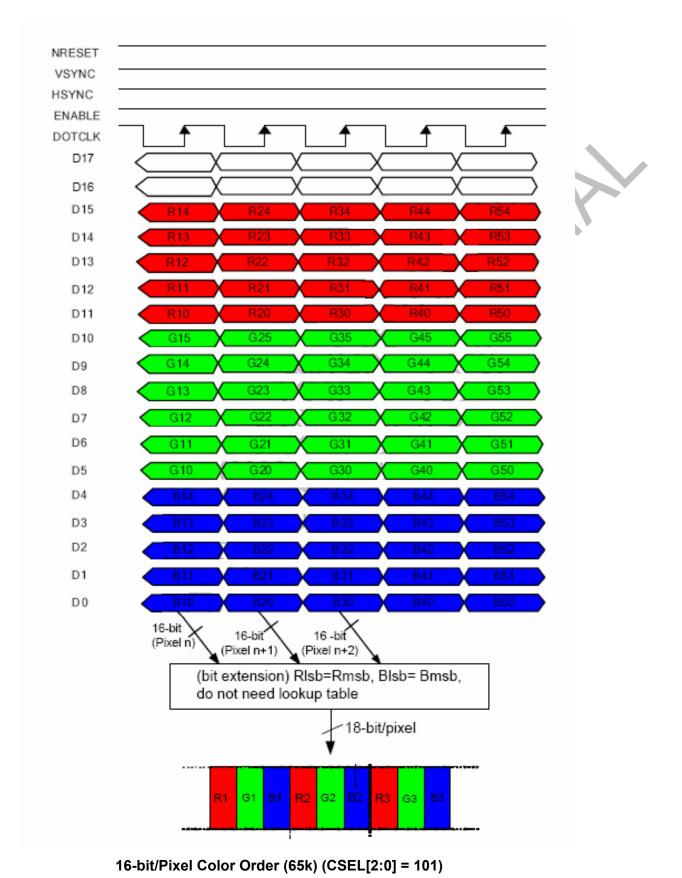
RS	R/W	Function				
0	0	Set an index register				
1	0	Write a register or GRAM data				
1	1	Read a register or GRAM data				

5.3 RGB Interface

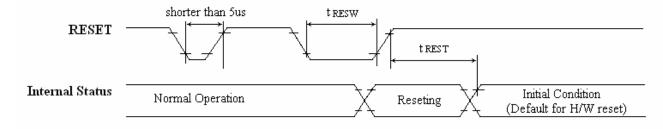

5.3.1 RGB Interface Characteristics


5.3.2 RGB Interface Timing Parameters

Symbol	Parameter	Related		Unit		
Syllibol	Farameter	Pins	Min.	Тур.	Max.	Ollit
t _{DSYN}	VSYNC/HSYNC setup time		15	-	-	ns
t _{DCSS}	ENABLE setup time	ENABLE	15	ı	ı	ns
t _{DCSH}	ENABLE hold time	ENABLE	15	ı	ı	ns
t _{DDS}	RGB Data setup time	DOTCLK	15	-	-	ns
t _{DDH}	RGB Data hold time	D[17:0]	15	-	-	ns
t _{DHW}	DOTCLK high-level pulse width		20	-	-	ns
t _{DLW}	DOTCLK low-level pulse width	DOTCLK	20	-	-	ns
t _{DCYC}	DOTCLK cycle time		100	-	-	ns


5.3.3 RGB Interface Timing Chart

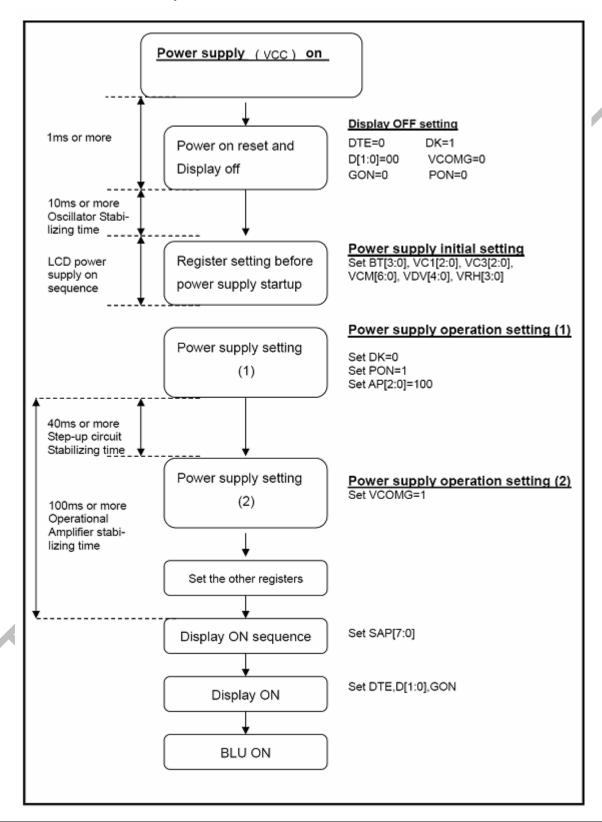
5.3.4 RGB Interface Data Format



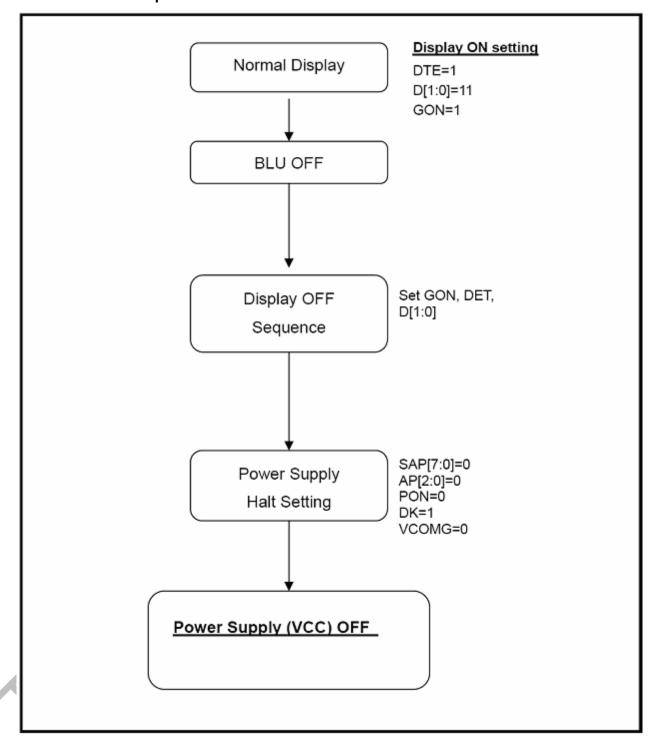
5.4 Reset Timing Characteristics

IOVCC=1.65~3.3V, VCC=2.3~3.3V

Reset Timing Parameters


Symbol	Parameter	Related	Spec.			Note	Unit
Symbol	Parameter	Pins	Min.	Тур.	Max.	Note	Uillt
t _{RESW}	Reset low pulse width	RESET	10		-	-	us
+	Reset complete	-	-	-	5	When reset applied during "Sleep In mode"	ms
t _{REST}	time)`	-	120	When reset applied during "Sleep Out mode"	ms

Note 1:


RESET Pulse	Action
Shorter than 5µs	Shorter than 5µs
Longer than 10µs	Reset
Between 5µs and 10µs	Reset Start

5.5 Power On/Off Sequence

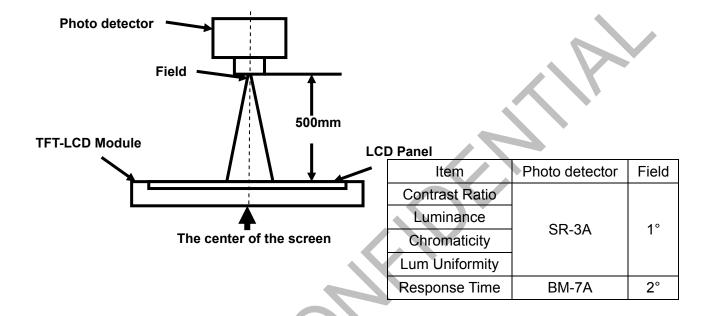
5.5.1 Power on Sequence

5.5.2 Power off Sequence

6 Optical Characteristics

6.1 Optical Specification

Ta=25°C


Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
		θТ		60	70	-		
View Ameleo		θВ	CR≧10	50	60	-	Dograd	Mata 0
View Angles		θL	CR≦ IU	60	70	-	Degree	Note 2
		θR		60	70	-		
Contrast Ratio		CR	θ=0°	400	500	-		Note1 Note3
		T_{ON}						Note1
Response Time		T _{OFF}	25℃	-	20	30	ms l	Note4
	White	X		0.230	0.280	0.330		
		у		0.240	0.290	0.340		Note5, Note1
	Red	X	Backlight is on	0.561	0.611	0.661		
Chromaticity		у		0.288	0.338	0.388		
Cilioniaticity	Green	X		0.274	0.324	0.374		
	Oreen	у		0.562	0.612	0.662		
	Blue	X		0.095	0.145	0.195		
	Dide	у		0.041	0.091	0.141		
Uniformity		U		-	80	-	%	Note1 Note6
NTSC				-	60	-	%	Note 5
Luminance		L		300	350	-	cd/m ²	Note1 Note7

Test Conditions:

- 1. V_F =3.2V, I_F=15mA(Backlight current), the ambient temperature is 25℃.
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

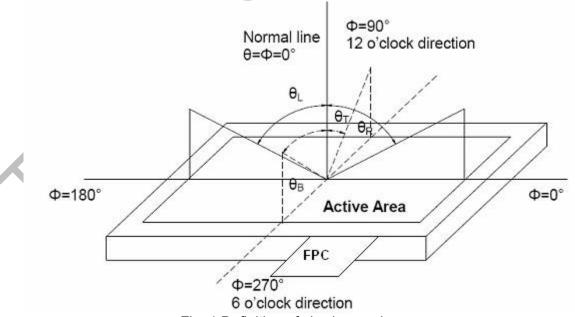
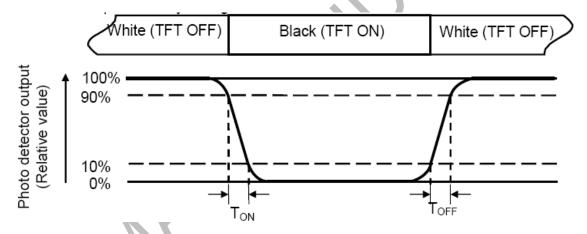


Fig. 1 Definition of viewing angle

Note 3: Definition of contrast ratio

Contrast ratio (CR) =
\[\frac{\text{Luminance measured when LCD is on the "White" state}}{\text{Luminance measured when LCD is on the "Black" state}} \]


"White state ":The state is that the LCD should be driven by Vwhite.

"Black state": The state is that the LCD should be driven by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/Lmax

L----- Active area length W----- Active area width

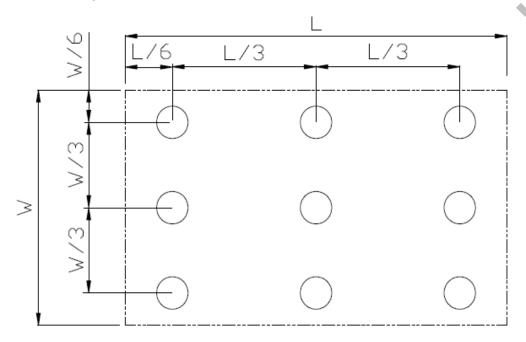


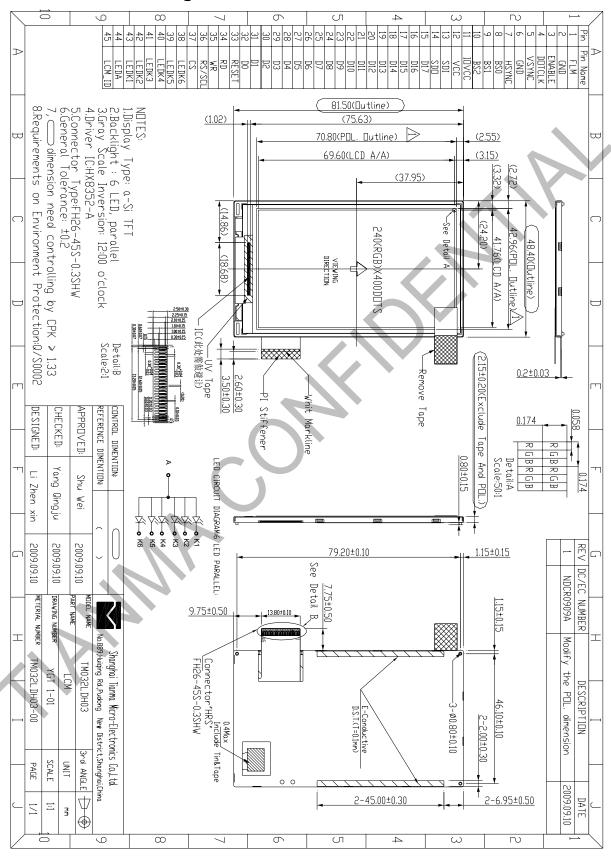
Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

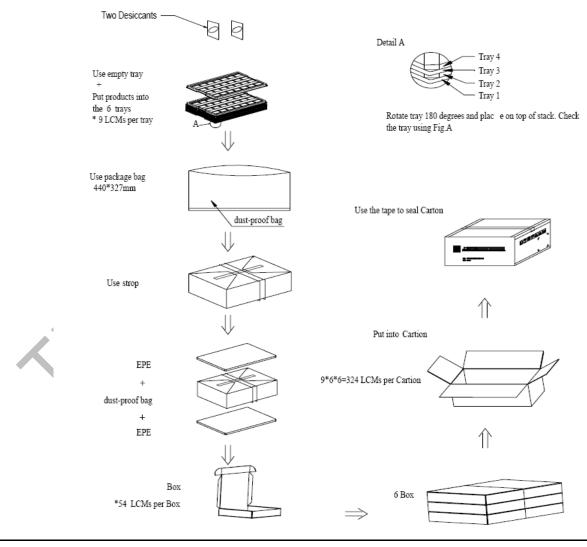

7 Environmental / Reliability Tests

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts=+70℃, 240hrs	Note1 IEC60068-2-1:2007,GB2423.2-2008
2	Low Temperature Operation	Ta=-20℃, 240hrs	IEC60068-2-1:2007 GB2423.1-2008
3	High Temperature Storage	Ta=+80℃, 240hrs	IEC60068-2-1:2007 GB2423.2-2008
4	Low Temperature Storage	Ta=-30℃, 240hrs	IEC60068-2-1:2007 GB2423.1-2008
5	High Temperature & High Humidity Storage	Ta=+60℃, 90% RH 240 hours	Note2 IEC60068-2-78 :2001 GB/T2423.3—2006
6	Thermal Shock (Non-operation)	-30℃ 30 min~+80℃ 30 min, Change time:5min, 20 Cycles	Start with cold temperature, End with high temperature, IEC60068-2-14:1984,GB2423.22-2002
7	Electro Static Discharge (Operation)	C=150pF, R=330 Ω , 5points/panel Air:±8KV, 5times; Contact:±4KV, 5 times; (Environment: 15 $^{\circ}$ C $^{\circ}$ 35 $^{\circ}$ C, 30% $^{\circ}$ 60%, 86Kpa $^{\circ}$ 106Kpa)	IEC61000-4-2:2001 GB/T17626.2-2006
8	Vibration (Non-operation)	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total)(Package condition)	IEC60068-2-6:1982 GB/T2423.10—1995
9	Shock (Non-operation)	60G 6ms, ±X,±Y,±Z 3times, for each direction	IEC60068-2-27:1987 GB/T2423.5—1995
10	Package Drop Test	Height:80 cm, 1 corner, 3 edges, 6 surfaces	IEC60068-2-32:1990 GB/T2423.8—1995

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.

8 Mechanical Drawing



SHANGHAI TIANMA MICRO-ELECTRONICS

Packing Drawing

No	Item	Model(Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark			
1	LCM module	TM032LDH03	48.4x81.5x2.15	0.0166	324				
2	Tray	PET (Transmit)	315×247×10.8	0.083	42	Anti-stati c			
3	EPE	EPE	315×247×5	0.009	12				
4	Anti-static bag	PE	327×440	0.021	6				
5	вох	CORRUGATED PAPER	345×260×70	0.227	6				
6	Desiccant	Desiccant	45×50	0.0035	12				
7	Carton	CORRUGATED PAPER	544×365×250	1.01	1				
8	Total Weight(Kg)		10.8+/- 5%						

SHANGHAI TIANMA MICRO-ELECTRONICS

10 Precautions for Use of LCD Modules

- 10.1 Handling Precautions
- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 10.2 Storage precautions
- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0°C ~ 40°C Relatively humidity: ≤80%

- 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- 10.3 Transportation Precautions:

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.