MODEL NO. : TM035HBHT1

ISSUED DATE: 2010-11-16

VERSION : Ver 2.0

Preliminary Specification
Final Product Specification

Customer :

customer.		
	Approved by	Notes
	WIL WILLIAM .	

SHANGHAI TIANMA Confirmed :

Prepared by	Checked by	Approved by

This technical specification is subjected to change without notice

4

Table of Contents

Rec	ord of Revision	. 3
1.	General Specifications	. 4
2.	Input/Output Terminals	. 5
3	Absolute Maximum Ratings	. 6
4	Electrical Characteristics	
	4.1 Driving TFT LCD Panel	. 7
	4.2 Driving Backlight	. 7
	4.3 Block Diagram	. 8
5. C	Pata input timing	. 9
	5.1 Signal AC Timing	. 9
	5.2 Recommend RGB Interface Timing	10
	5.3 Reset Timing	13
	5.4 Power ON/OFF Sequence	14
6.	Optical Characteristics	15
7.	Environmental / Reliability Test	18
8.	Environmental / Reliability Test	19
9.	Packing Drawing	20
10.	Precaution for Use of LCD Modules	22

SHANGHAI TIANMA MICRO-ELECTRONICS Record of Revision

TM035HBHT1 V2.0

Rev	Issued Date	Description	Editor
1.0	2010-06-22	Preliminary release.	Haitao Chen
1.1	2010-07-12	1revise type contrast ratio from 100 to 150 2revise chromaticity x:3.20 \rightarrow 3.01;y:3.30 \rightarrow 3.21 3.update power supply current(15mA)	Haitao Chen
2.0	2010-11-16	Add Touch panel Pin Assignmentpage 6	Lu Bai 🔪
			•
	A		

1. General Specifications

	Feature	Spec
	Size	3.5 inch
	Resolution	240(RGB) x 320
	Interface	RGB 6 bit+SPI
	Color Depth	262K
	Technology Type	a-Si
	Pixel Pitch (mm)	0.2235x0.2235
Display Spec.	Pixel Configuration	R.G.B. Vertical Stripe
	Display Mode	Transflective
	Surface Treatment(Up Polarizer)	НС
	Viewing Direction	6 o'clock
	Gray Scale Inversion Direction	12 o'clock
	LCM (W x H x D) (mm)	64.0x85.0x4.13
	Active Area(mm)	53.64x71.52
Mechanical	With /Without TSP	With TSP
Characteristics	Weight (g)	TBD
	LED Numbers	6 LEDs

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3: LCM weight tolerance: ± 5%

TM035HBHT1 V2.0

SHANGHAI TIANMA MICRO-ELECTRONICS

2. Input/Output Terminals

2.1 J1 Pin Assignment

	Connector type: F					
No	Symbol	I/O	Description	Comment		
1	VL1	P	Power supply for LED(High voltage)			
2	GND	P	Ground			
3	VL2	P	Power supply for LED(Low voltage)			
4	GND	Р	Ground			
5	VSHD	P	Power supply for digital			
6	GND	Р	Ground			
7	GND	Р	Ground			
8	GND	Р	Ground	× *		
9	VSYNC		Vertical sync. in RGB mode			
10	GND	Р	Ground			
11	RESET	I	Reset(Low active)			
12	GND	Р	Ground			
13	GND	Р	Ground			
14	GND	Р	Ground			
15	CS	I	Chip select input(Low enable)			
16	GND	Р	Ground			
17	SDO	0	Serial data output			
18	SDI	I	Serial data input			
19	GND	Р	Ground			
20	SCL	I	Serial interface clock			
21	GND	Р	Ground			
22	B5	I	Blue data input(MSB)			
23	B4	I	Blue data input			
24	B3	I	Blue data input			
25	B2		Blue data input			
26	B1		Blue data input			
27	B0		Blue data input(LSB)			
28	ENAB		Data enable in RGB mode			
29	GND	P	Ground			
30	HSYNC		Horizontal sync. in RGB mode			
31	GND	P	Ground			
32	DCLK		Pixel clock signal in RGB mode			
33	GND	Р	Ground			
34	G5	I	Green data input(MSB)			
35	G4	I	Green data input			
36	G3		Green data input			
37	G2	I	Green data input			
38	G1		Green data input			
39	G0	I	Green data input(LSB)			
40	GND	Р	Ground			
41	R5	I	Red data input(MSB)			
42	R4	I	Red data input			
43	R3	I	Red data input			
44	R2		Red data input			

V	SHANGHA	TIANM	A MICRO-ELECTRONICS	TM035HBHT1 V2.0
45	R1		Red data input	
46	R0		Red data input(LSB)	
47	GND	Р	Ground	
48	GND	Р	Ground	
49	GND	Р	Ground	
50	GND	Р	Ground	
50	GND	P	Ground	

Note1: I/O definition:

I----Input O----Output P----Power/Ground

2.2 Touch panel Pin Assignment

Pin	Symbol	I/O	Description	Remark	
1	YU	0	Y+ Channel input		K
2	XR	0	X+ Channel input		¢
3	YD	0	Y- Channel input		
4	XL	0	X- Channel input		

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

GND=0V.Ta=25℃

		NID. 417	7 V		,
Item	Symbol	Min	Max	Unit	Remark
Supply Voltage	VSHD	-0.3	4.6	V	
Driver supply voltage	VGH-VGL	-0.3	+32.0	V	
Logic input voltage range	VIN	-0.3	VSHD + 0.3	V	
Logic output voltage range	VO	-0.3	VSHD + 0.3	V	
Operating temperature	Тор	-20.0	60.0	°C	Note1
Storage temperature	Tst	-30.0	70.0	°C	Note1

Note1: The parameter is for driver IC (gate driver, source driver) only.

Note2: Signals include R0~R5, G0~G5, B0~B5, DCLK, Hsync, Vsync, Reset, CS, SDI, SCL, ENABLE Table 3.1 absolute maximum rating

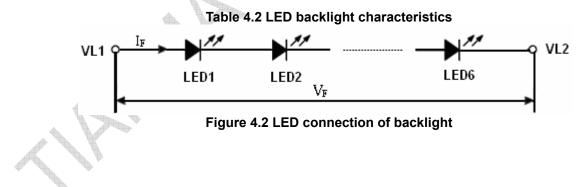
Electrical Characteristics

4.1 Driving TET I CD Panel

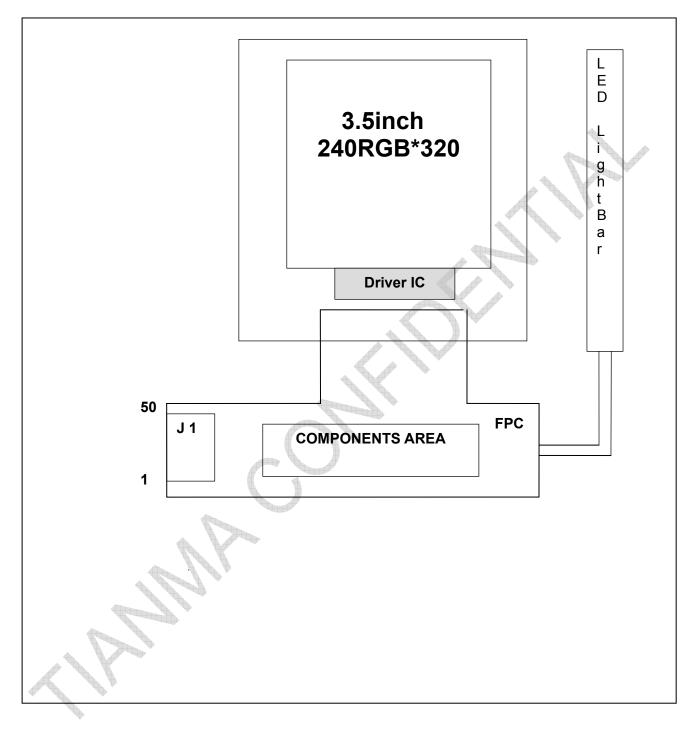
4.1 Driving	TFT LCD	Panel					GND=0V, Ta=25 ℃
	ltem	Symbol	Min	Тур	Max	Unit	Remark
Supply Volta	ge	VCC	2.5	2.8	3.2	V	
Gate on volta	age	VGH	13.5	15.0	16.5	V	
Gate off voltage		VGL	-11.0	-10.0	-9.0	V	
Input Signal	Low Level	V _{IL}	0	-	0.3xVCC	V	R0~R5;G0~G5;B0~B5 DOTCLK; Hsync; Vsync
Voltage	High Level	V _{IH}	0.7xVCC	-	VCC	V	ENABLE;R/L;U/D
Current of VSHD Power supply		I _{CC}	-	15	-	mA	Note 1

Note1: For different LCM, the value may have a bit of difference.

Note2: To test the current dissipation, use "all Black Pattern".


Table 4.1 LCD module electrical characteristics

4.2 Driving Backlight


Item	Symbol	Min	Тур	Max	Unit	Remark
Forward Current	I _F	-	20	-	mA	
Forward Voltage	V_BL	-	19.2	-	V	
Backlight Power Consumption	W _{BL}		384	-	mW	
Life Time	-	10,000	-	-	Hrs	Note 3

Note 1: I_F is defined for one channel LED. There are total three LED channels in back light unit Note 2: Optical performance should be evaluated at Ta=25°C only.

Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

4.3 Block Diagram

5. Data input timing

5.1 Signal AC Timing

0	5			(VSHD=2.5~	3.2V,Ta=25 ℃
Parameter	Description	Min	Max	Unit	Remark
tSYNCS	VSYNC/HSYNC setup time	15		ns	
tSYNCH	VSYNC/HSYNC hold time	15		ns	
tENS	ENAB setup time	15		ns	
tENH	ENAB hold time	15		ns	
tPOS	Data setup time	15		ns	
tPDH	Data hold time	15		ns	
PWDH	DCLK high-level period	15		ns	
PWDL	DCLK low-level period	15		ns	►
tCYCD	DCLK cycle time	100		ns	
trgbr , trgbf	DCLK,HSYNC,VSYNC rise/fall		15	ns	

Table 5.1 RGB Interface Characteristics

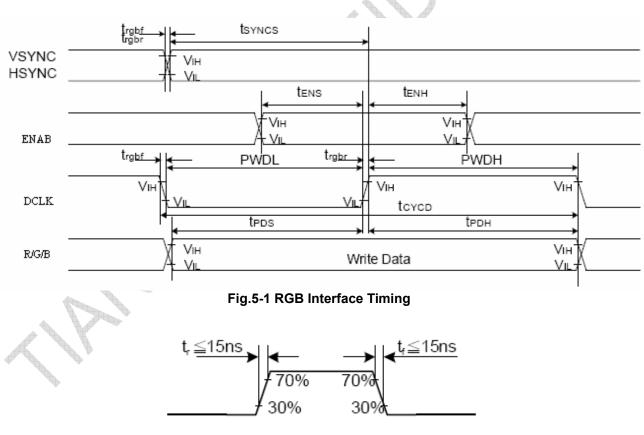
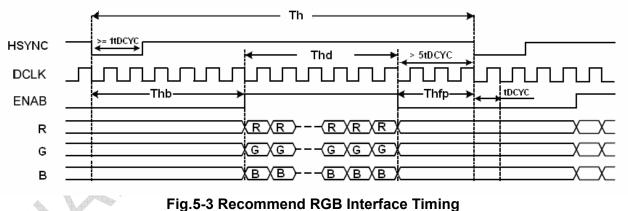


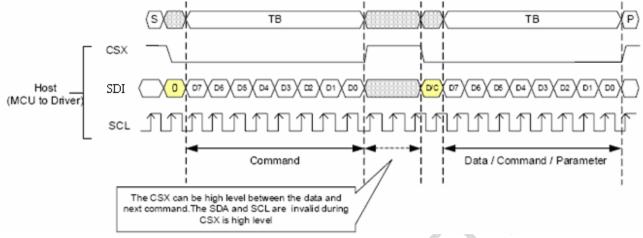
Fig.5-2 Input signal's rise and fall times

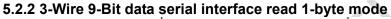

TM035HBHT1 V2.0

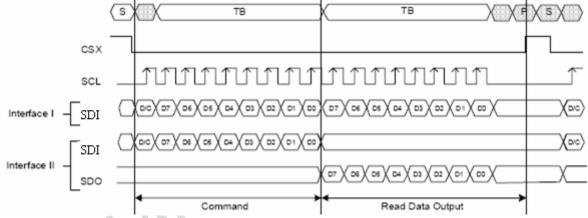

5.2 Recommend RGB Interface Timing

(VSHD=2.5~3.2V,Ta=25℃)

Parameter	Symbol	Symbol	Min	Тур	Max	Unit	Remark
DCLK	DCLK frequency	fDCYC	-	5.64	10	MHz	
DOLK	DCLK period	tDCYC	100	177.15	-	ns	
	Horizontal	Thd		240			
HSYNC	1horizontalline	Th	-	310	-	DCLK	4
norno	Horizontal blank	Thb	56	60	-	DOLK	
	Horizontal front porch	Thfp	2	10	16		X
	Vertical display area	Tvd		320			
VSYNC	Vsync period time	Τv	-	328	- 4	Line	4
	Vsync blank	Tvb	2	4	-	Lille	
	Vsync Front porch	T∨fp	2	4			


Tab.5-2 Recommend Input Timing (DCLK, HSYNC, VSYNC, ENAB)




5.2 3-Wire 9-BIT Serial Interface

5.2.1 3-Wire 9-Bit data serial interface write mode

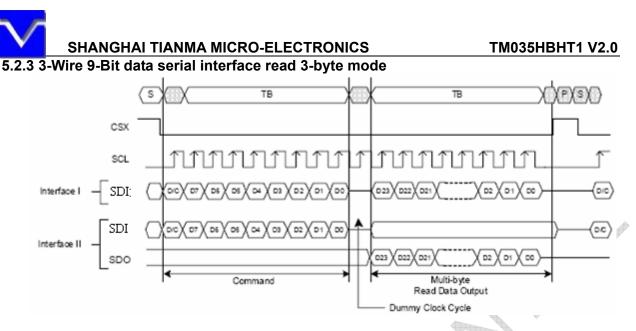


Figure. 5-4 3-Wire 9-Bit Serial Interface I Bus Protocol, Write to Register or Display RAM Note: D/C =0, Transfer Command; D/C =1, Transfer Data.

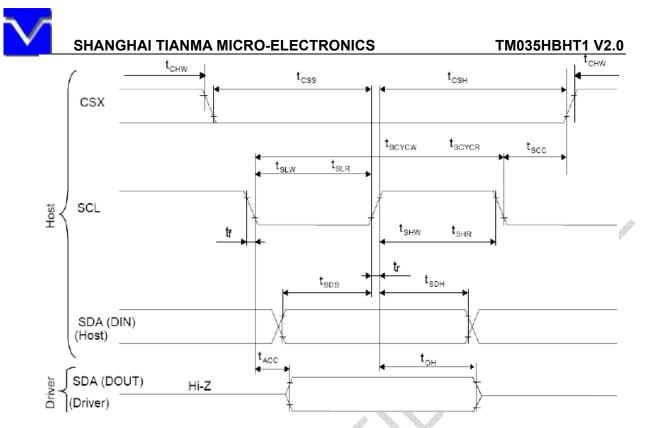
Figure. 5-5 3-Wire 9-Bit Serial Interface I/II Bus Protocol, Read 1-Byte From Register Note: D/C=0, Transfer Command; D/C=1, Transfer Data.

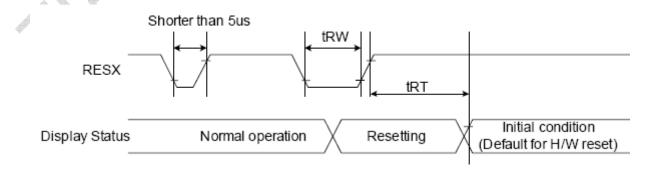
Figure. 5-6 3-Wire 9-Bit Serial Interface I/II Bus Protocol, Read 3-Byte From Register Note: D/C=0, Transfer Command; D/C=1, Transfer Data.

5.2.4 3-Wire 9-Bit serial interface Timing

				(VSHD	=2.5~3.2	V,Ta=25℃)
Parameter	Symbol	Conditions	Min	Max	Unit	Remark
Serial Clock Cycle(Write)	tscycw	SCL	• 100	-	ns	
SCL "H" pluse width(Write)	tshw	SCL	40	-	ns	
SCL "L" pluse width(Write)	tslw	SCL	40	-	ns	
Data setup time(Write)	tsds	SDI	30	-	ns	
Data hold time(Write)	tsdh	SDI	30	-	ns	
Serial Clock Cycle(Read)	tscycr	SCL	150	-	ns	
SCL "H" pluse width(Read)	tshr	SCL	60	-	ns	
SCL "L" pluse width(Read)	tslr	SCL	60	-	ns	
Access time	tacc	SDO(Read)	10		ns	
Output disable time	toh	SDO(Read)	10	50	ns	
CS "H" pluse width	tchw	CS	40	-	ns	
CS-SCL time	tcss	CS (Write)	60	-	ns	
	tcsh	CS (Write)	65	-	ns	

Tab.5-3 AC Characteristics of 3-Wire 9-Bit Serial Interface




Fig.5-7 AC Characteristics of 3-Wire 9-Bit Serial Interface timing

5.3 Reset Timing

Parameter	Symbol	MIN	TYP	MAX	Unit	Remark
	tRW	10	-	-	us	-
RESET	tRT	-	-	5	ms	note 1
		-	-	120	ms	note 2

Tab.5-4 Reset input timing

Note1: When Reset applied during Sleep In Mode. Note2: When Reset applied during Sleep Out Mode.

Fig.5-8 Reset timing

5.4 Power ON/OFF Sequence

ltem	Symbol	Min	Тур	Max	Unit	Remark
VSHD to RESET2 ending/ RESET2 starting to VSHD	t1	10			ms	
RESET2 ending to SPI starting/ SPI ending to RESET2 starting	t2	10	-	50	ms	
SPI starting to RGB starting/ RGB ending to SPI ending	t3	20	-	50	ms	
RGB starting to BLU starting/ BLU ending to RGB ending	t4	50	-	-	ms	
RGB ending to RESET1 starting	t5	20	-	-	ms	

Table 5.5 Power on/off sequence

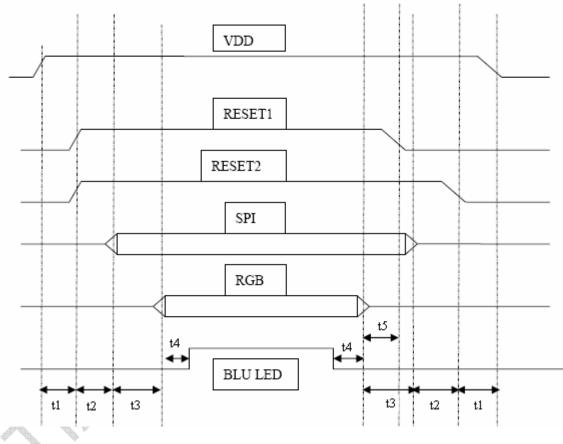


Figure 5.5 Power on/off sequence

Note1:RESET1Power down in sleep out mode. Note2:RESET2 Power down in sleep in mode.

To - 25°∩

Optical Characteristics

6.1 Driving the backlight condition

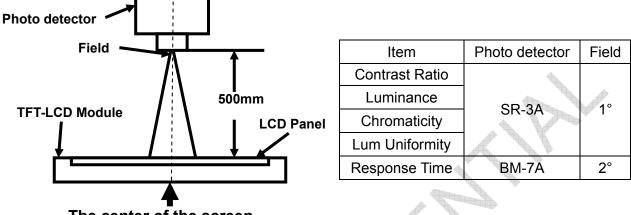
		0						Ta=25℃
ltem		Symbol	Condition	Min	Тур	Max	Unit	Remark
		θΤ			55	60		
View Angles			CR≧10		40	45	Degree	Note 2
view Angles		θL			40	45	Degree	
		θR			45	50		
Contrast Ratio		CR	θ=0°	100	150			Note1、Note3
Response Time		T _{ON}	25 ℃	-	35		ms	Note1
	-	T _{OFF}						Note4
Chromoticity	\//bita	Х	Backlight is		0.301	🐳		Note5
Chromaticity	White	у	on		0.321	ł		Note1
Luminance		L		60	80		cd/m ²	Note1、Note7

6.2 Not driving the backlight condition

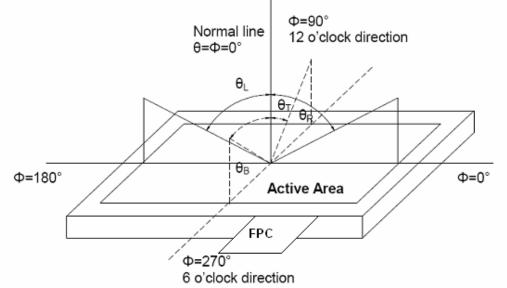
								la=25 €
ltem		Symbol	Condition	Min	Тур	Max	Unit	Remark
		θΤ			60			
View Angles		θΒ	CR≧2		60		Degree	Note 2
view Aligies		θL			55		Degree	
		θR		¢ F	60			
Contrast Rat	io	CR	θ=0°	6.5			Note1、	
Contrast Rat	10				0.5			Note3
Chromoticity	W/bito	Х	Backlight		0.310			Note5
Chromaticity	vvnite	У	is off		0.320			Note1
Deflectores					7.0		%	Note1、
Reflectance					7.0		70	Note6
Test Conditions:								

Test Conditions:

1. I_F = 20mA, V_F =19.2V, the ambient temperature is 25 °C.


2. The test systems refer to Note 1 and Note 2.

TM035HBHT1 V2.0


Note 1: Definition of optical measurement system.

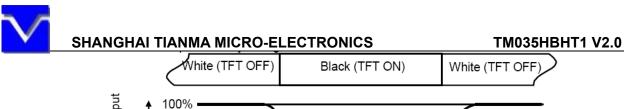
The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

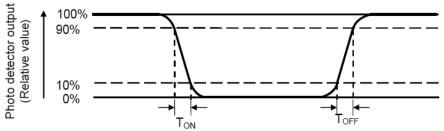
The center of the screen

Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

Note 3: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD is on the "White" state


"White state ": The state is that the LCD should drive by Vwhite.

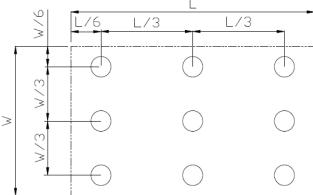

"Black state": The state is that the LCD should drive by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)


Color coordinates measured at center point of LCD.

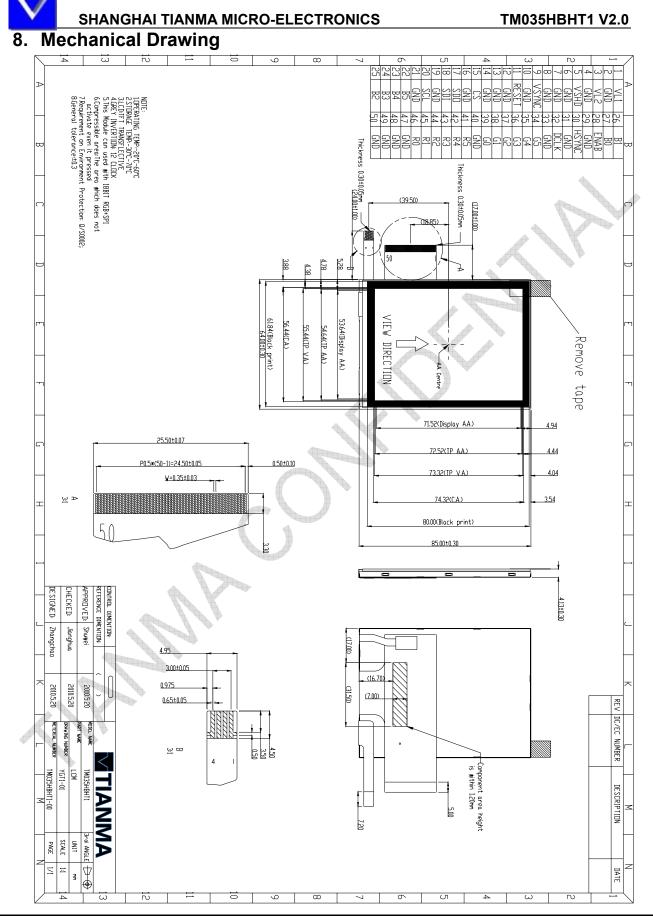
Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/ Lmax

L-----Active area length W----- Active area width

Lmax: The measured Maximum luminance of all measurement position. Lmin: The measured Minimum luminance of all measurement position. Note 7: Definition of Luminance: Measure the luminance of white state at center point.



7. Environmental / Reliability Test

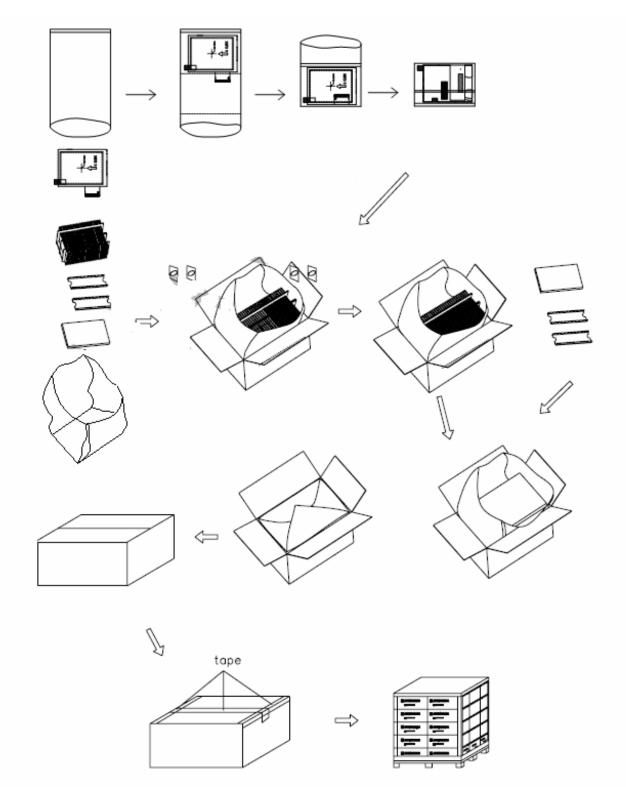
No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts = +60℃, 240 hours	Note1 IEC60068-2-1,GB2423.2
2	Low Temperature Operation	Ta = -20℃, 240 hours	IEC60068-2-1 GB2423.1
3	High Temperature Storage	Ta = +70℃, 240 hours	IEC60068-2-1 GB2423.2
4	Low Temperature Storage	Ta = -30℃, 240 hours	IEC60068-2-1 GB2423.1
5	Storage at High Temperature and Humidity	Ta = +40℃, 90% RH max,240hours	Note2 IEC60068-2-78 GB/T2423.3
6	Thermal Shock (non-operation)	-30℃ 30 min~+70℃ 30 min, Change time:5min, 20 Cycle	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22
7	ESD	C=150pF,R=330Ω,5point/panel Air:±8Kv,5times; Contact:±4Kv,5times (Environment:15℃~35℃, 30%~60%.86Kpa~106Kpa)	IEC61000-4-2 GB/T17626.2
8	Vibration Test	Frequency range:10~55Hz Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 30 minutes for each direction of X.Y.Z. (1.5 hours for total)	IEC60068-2-6 GB/T2423.10
9	Mechanical Shock (Non Op)	Half Sine Wave 100G 6ms, ±X,±Y,±Z 3times for each direction	IEC60068-2-27 GB/T2423.5
10	Package Drop Test	Height:60cm, 1corner,3edges,6surfaces	IEC60068-2-32 GB/T2423.8

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of samples.

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

9. Packing Drawing


9.1 Packaging Material

No	Item	Model(Material)	Dimensions (mm)	Unit Weigt (Kg)	Quantity	Remark	
1	LCM module	TM035HBHT1-00	64.0x85.0x2.93	TBD	112		
2	Partition_1	Corrugated paper	513X333X106	TBD	2		
3	Anti-static Bag	PE	170X105X0.05	0.001	112	Anti-static	
4	Dust-Proof Bag	PE	700X530	0.06	1		
5	Partition_2	Corrugated Paper	505X332X4.0	0.098	3		
6	Corrugated Bar	Corrugated paper	513X126	0.048	8		
7	Carton	Corrugated paper	516X336X226	1.12	1		
8	Total weight	TBD					

Note: Packaging Specification and Quantity

Module quantity in a carton: 28pcs(per row)x2(per column)x2= 112pcs

9.2 Packing Instruaction

10. Precautions for Use of LCD Modules

10.1 Handling Precautions

10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.

10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

10.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

Isopropyl alcohol

Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water

- Ketone

Aromatic solvents

10.1.6 Do not attempt to disassemble the LCD Module.

10.1.7 If the logic circuit power is off, do not apply the input signals.

10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

10.1.8.1 Be sure to ground the body when handling the LCD Modules.

10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.

10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.

10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage precautions

10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° C ~ 40° C Relatively humidity: $\leq 80^{\circ}$

10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

10.3 Transportation Precautions

10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.