

MODEL NO. : _	TM035KBH02	
ISSUED DATE:	2009-08-11	
VERSION :_	Ver1.3	

□ Preliminary Specification■ Final Product Specification

Customer:

SHANGHAI TIANMA Confirmed:

Prepared by	Checked by	Approved by
四. 卷光	JANS 1 9 2 9. 8.11	练的。9.8.11

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 1 of 28

Table of Contents

Co	oversheet	1
Tal	able of Contents	2
Re	ecord of Revision	3
1	General Specifications	4
2	Input/Output Terminals	5
3	Absolute Maximum Ratings	7
4	Electrical Characteristics	8
5	Timing Chart	10
6	Optical Characteristics	17
7	Environmental / Reliability Tests	21
8	Mechanical Drawing	23
9	Mechanical Design Guide	
10	Packing Drawing	27
11	Precautions for Use of LCD Modules	29

Record of Revision

1.0 2008-10-14 Rev 1.0 was issued. Change the model number from TS035KAAVB02-00 to TM035KBH02Modify the input signal voltage. 1.1 2009-04-13 Color filter design change,modify the chromaticity Yan Song 1.2 2009-04-20 Add the mechanical design guide. Lei Peng ChenYanguan.	Rev	Issued Date	Description	Editor
signal voltage. 1.1 2009-04-13 Color filter design change,modify the chromaticity Yan Song 1.2 2009-04-20 Add the mechanical design guide. Lei Peng	1.0	2008-10-14	Rev 1.0 was issued. Change the model number from	
1.12009-04-13Color filter design change,modify the chromaticityYan Song1.22009-04-20Add the mechanical design guide.Lei Peng			TS035KAAVB02-00 to TM035KBH02Modify the input	Lei Peng
1.2 2009-04-20 Add the mechanical design guide. Lei Peng			signal voltage.	
	1.1	2009-04-13	Color filter design change,modify the chromaticity	Yan Song
1.3 2009-08-11 Update power on/off sequence ChenYanguan ChenYanguan ChenYanguan	1.2	2009-04-20	Add the mechanical design guide.	Lei Peng
	1.3	2009-08-11	Update power on/off sequence	ChenYanguang

1 General Specifications

	Feature	Spec	
	Size	3.5inch	
	Resolution	320(RGB) x 240	
	Interface	RGB/CCIR656/601	
	Color Depth	16.7M dithering	
	Technology Type	a-Si TFT	
Dianley Spee	Dot Pitch (mm)	0.073 x 0.219	
Display Spec.	Pixel Configuration	R.G.B. Vertical Stripe	
	Display Mode	TM with Normally White	
	Surface Treatment(Up Polarizer)	Clear type (3H)	
	Surface Treatment(TSP)	Anti-glare type (3H)	
	Viewing Direction	12 o'clock	
	Gray Scale Inversion Direction	6 o'clock	
	LCM (W x H x D) (mm)	76.90 x 63.90 x 4.00	
Mechanical Mechanical	Active Area(mm)	70.08 x 52.56	
Characteristics	With /Without TSP	With TSP	
	Weight (g)	38. 3	
	LED Numbers	6 LEDs Serial	
Electronic	Driver IC	Novatek NT39016D	

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

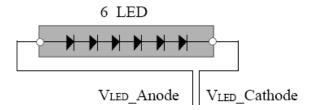
Note 2: Requirements on Environmental Protection: RoHS

2 Input/Output Terminals

2.1 TFT LCD Panel

Recommend connector: Kyocera elco: 6240 serials

No	Symbol	I/O	Description	Remark	
1,2	LED_Cathode		LED_Cathode	Note 2-1	
3,4	LED_Anode	Į	LED_Anode	Note 2-1	
5	NC	-	No Connect		
6	RESET		Reset		
7	NC	-	No Connect		
8	YU		Y_Up		
9	XR		X_Right		
10	YD	l	Y_Bottom		
11	XL		X_Left		
12	D00	l	Data 00	Note 2-2	
13	D01	l	Data 01	Note 2-2	
14	D02	l	Data 02	Note 2-2	
15	D03		Data 03	Note 2-2	
16	D04		Data 04	Note 2-2	
17	D05		Data 05	Note 2-2	
18	D06	l	Data 06	Note 2-2	
19	D07	I	Data 07	Note 2-2	
20	D08	l	Data 08	Note 2-2	
21	D09	I	Data 09	Note 2-2	
22	D10	I	Data 10	Note 2-2	
23	D11	I	Data 11	Note 2-2	
24	D12	I	Data 12	Note 2-2	
25	D13	I	Data 13	Note 2-2	
26	D14	I	Data 14	Note 2-2	
27	D15		Data 15	Note 2-2	
28	D16	I	Data 16	Note 2-2	
29	D17	ı	Data 17 Note 2		
30	D18		Data 18 Note 2-2		
31	D19		Data 19 Note 2-2		
32	D20		Data 20 Note 2-2		
33	D21		Data 21	Note 2-2	
34	D22	I	Data 22	Note 2-2	


The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

35	D23	I	Data 23	Note 2-2
36	HSYNC	I	Horizontal Synchronous Signal	
37	VSYNC	I	Vertical Synchronous Signal	
38	CLK	I	Data Clock	
39	NC	ı	No Connect	
40	NC	-	No Connect	
41	VDD	Р	power supply	
42	VDD	Р	power supply	
43	SPENA	I	Serial port data enable signal	
44	NC	-	No Connect	
45	NC	-	No Connect	
46	NC	ı	No Connect	
47	NC	ı	No Connect	
48	NC	ı	No Connect	
49	SPCK	-	SPI Serial Clock	
50	SPDA	I/O	SPI Serial Data Input/output	
51	NC	-	No Connect	
52	DEN	I	Data enabling signal	
53	GND	Р	Ground	
54	GND	Р	Ground	

I: input O: output

tput P: power

Note 2-1: The figure below shows the connection of LED

Note 2-2:

Mode	D(23:16)	D(15:8)	D(7:0)	HSYNC	VSYNC	DEN
CCIR 656	D(23:16)	GND	GND	NC	NC	NC
CCIR 601	D(23:16)	GND	GND	HSYNC	VSYNC	NC
8 Bit RGB	D(23:16)	GND	GND	HSYNC	VSYNC	NC for HV mode
0 DIL NGD	D(23.10)	GND	GND	HOTING	VOTING	DEN for DEN mode
24 Bit RGB	D(7:0)	G(7:0)	P(7:0)	HSYNC	VSYNC	NC for HV mode
24 DIL RGD	R(7:0)	G(7:0)	B(7:0)	HOTING	VOTING	DEN for DEN mode

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

3 Absolute Maximum Ratings

Ta = 25°C

Item	Symbol	MIN	MAX	Unit	Remark
Power Supply Voltage	VDD	-0.3	5.0	V	
Back Light Forward Current	ILED		25	mA	One LED
Operating Temperature	T _{OPR}	-20	60	$^{\circ}\!\mathbb{C}$	
Storage Temperature	T _{STG}	-30	70	$^{\circ}\mathbb{C}$	

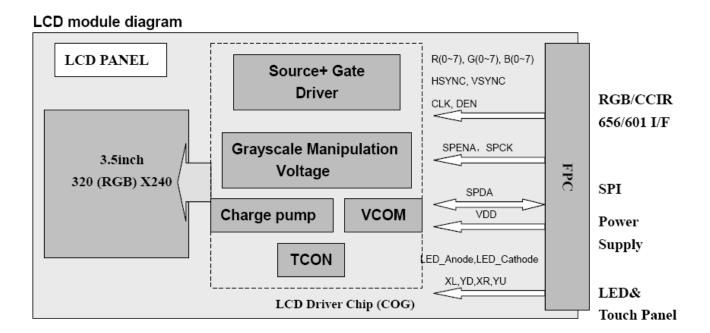
Page: 7 of 28

4 Electrical Characteristics

4.1. Driving TFT LCD Panel

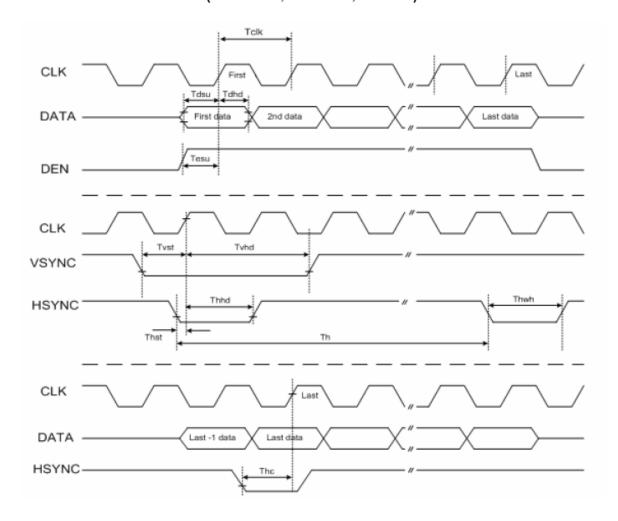
GND=0V, Ta=25°C

Ite	m	Symbol	MIN	TYP	MAX	Unit	Remark
Power Supp	oly Voltage	VDD	3.0	3.3	3.6	٧	
Input Signal	Low Level	V_{IL}	0		0.2xVCC	V	
Voltage	High Level	V _{IH}	0.8xVCC		VCC	V	
(Panel+LSI) Power Consumption		Black Mode(60HZ)		35	50	mW	
	•	Standby Mode		0.1	0.15	mW	


4.2 Driving Backlight

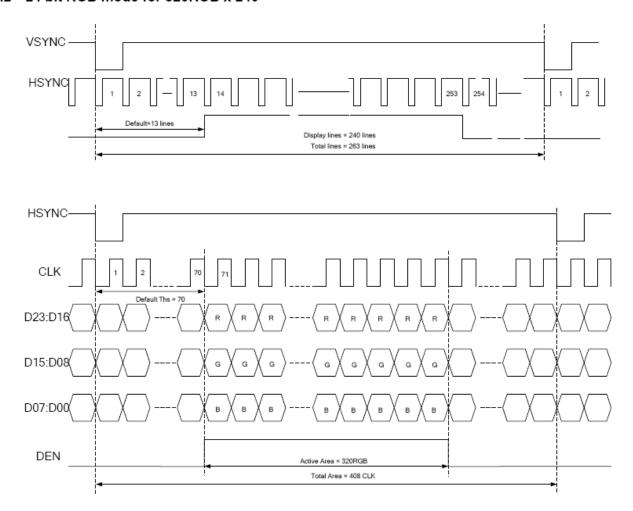
Ta=25°C

Item	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	I _F	1	20	25	mA	
Forward Current Voltage	V_{F}	16.8	19.2	21.6	V	
Backlight Power Consumption	W_{BL}		384		mW	


4.3 Block Diagram

5 Timing Chart

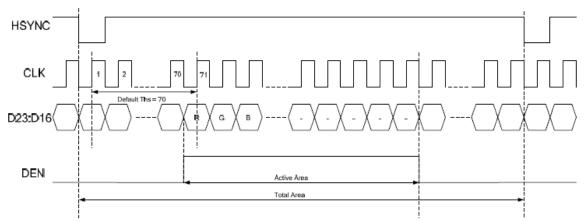
5.1 AC Electrical Characteristics (VDD=3.3V, GND= 0V,Ta=25℃)



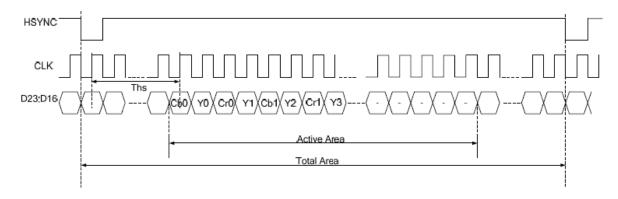
Page: 10 of 28

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
CLK clock time	Tclk	-	-	35.7	ns	CLK=28MHz
CLK pulse duty	Tchw	40	50	60	%	Tclk
HSYNC to CLK	Thc	-	-	1	CLK	
HSYNC width	Thwh	1	-	-	CLK	
VSYNC width	Tvwh	1	-	-	Th	
HSYNC period time	Th	60	63.56	67	us	
VSYNC setup time	Tvst	12	-	-	ns	
VSYNC hold time	Tvhd	12	-	-	ns	
HSYNC setup time	Thst	12	-	-	ns	
HSYNC hold time	Thhd	12	-	-	ns	
Data set-up time	Tdsu	12	-	-	ns	D[23:00] to CLK
Data hold time	Tdhd	12	-	-	ns	D[23:00] to CLK
DEN setup time	Tesu	12	-	-	ns	DEN to CLK

5.2 24 bit RGB mode for 320RGB x 240


The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

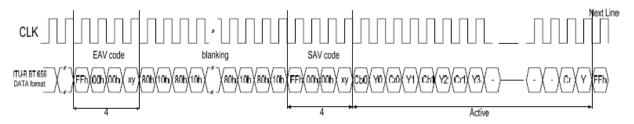
Page: 11 of 28


Parameter	Symbol	Min.	Тур.	Мах.	Unit	Conditions
CLK frequency	Fclk	-	6.4	-	MHz	VDD=3.0~3.6∨
CLK cycle time	Tclk	-	156	-	ns	
Time that HSYNC to	Ths	40	70	255	CLK	
1'st data input(NTSC)						

5.3 8 bit RGB mode for 320RGB x 240

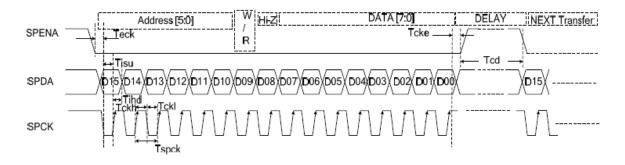
Parameter	Symbol	Min.	Тур.	Мах.	Unit	Conditions
CLK frequency	Fclk	-	27	-	MHz	VDD=3.0~3.6∨
CLK cycle time	Tclk	-	37	-	ns	
Time that HSYNC to	Ths	35	70	255	CLK	
1'st data input(NTSC)						

5.4 ITU-R BT 601



The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 12 of 28


Parameter	Symbol	Min.	Тур.	Мах.	Unit	Conditions
CLK frequency	Fclk	-	24.54/27	-	MHz	VDD=3.0~3.6V
CLK cycle time	Tclk	-	40/37	-	ns	
Time from HSYNC to	Ths	128	264	-	CLK	
1'st data input(PAL)						
Time from HSYNC to	Ths	128	244	-	CLK	
1'st data input(NTSC)						

5.5 ITU-R BT 656

Parameter	Symbol	Min.	Тур.	Мах.	Unit	Conditions
CLK frequency	Fclk	-	27	-	MHz	VDD=3.0~3.6V
CLK cycle time	Tclk	-	37	-	ns	
Time from EAV to 1'st	Ths	128	288	-	CLK	
data input(PAL)						
Time from EAV to 1'st	Ths	128	276	-	CLK	
data input (NTSC)						

5.6 3-Wire Serial Communication AC Timing

Page: 13 of 28

Parameter	Symbol	Min.	Тур.	Мах.	Unit	Conditions
SPCK cycle time	Tspck	320	-	-	ns	
SPCK pulse duty	Tscdut	40	50	60	%	
Serial data setup time	Tisu	120	-	-	ns	
Serial data hold time	Tihd	120	-	-	ns	
Serial clock high/low	Tssw	120	-	-	ns	
Chip select distinguish	Tcd	1	-	-	us	

5.7 3-Wire Control Registers List

3-Wire Re	gister			Register Description
D[15:10]	Name	Init	R/W	Function Description
000000b	R00	07h	R/W	System control register
000001b	R01	00h	R/W	Timing Controller function register
000010b	R02	03h	R/W	Operation control register
000011b	R03	CCh	R/W	Input data Format control register
000100b	R04	46h	R/W	Source Timing delay control register
000101b	R05	0Dh	R/W	Gate Timing delay control register
000110b	R06	00h	R/W	Reserved
000111b	R07	00h	R/W	Internal function control register
001000b	R08	08h	R/W	RGB Contrast control register
001001b	R09	40h	R/W	RGB Brightness control register
001010b	R0A	88h	R/W	Hue / Saturation control register
001011b	R0B	88h	R/W	R / B Sub-Contrast control register
001100b	R0C	20h	R/W	R Sub-Brightness control register
001101b	R0D	20h	R/W	B Sub-Brightness control register
001110b	R0E	10h	R/W	VCOMDC Level control register
001111b	R0F	A4h	R/W	VCOMAC Level control register
010000b	R10	04h	R/W	VGAM2 Level control register
010001b	R11	24h	R/W	VGAM3/4 Level control register
010010b	R12	24h	R/W	VGAM5/6 Level control register
011110b	R1E	00h	R/W	Reserved
100000b	R20	00h	R/W	Wide and narrow display mode control
				register

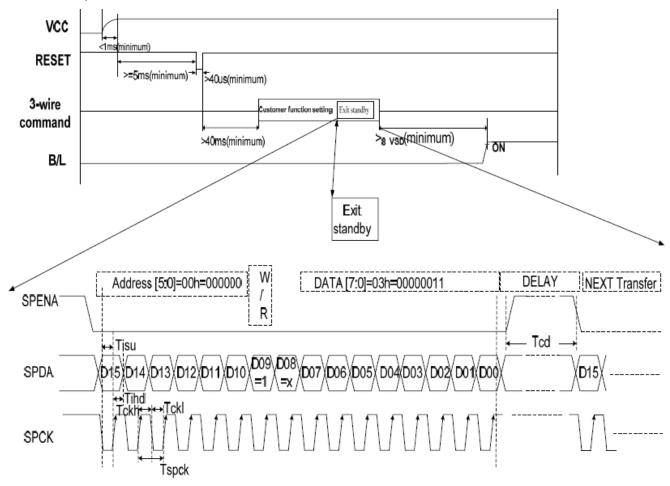
Page: 14 of 28

Note 5-1:

R03: c4h:ITU-R BT 656 Mode

c2h:ITU-R BT 601 Mode

c8h:8 bit RGB Mode(HV Mode)


c9h:8 bit RGB Mode(DE Mode)

cch(default):24 bit RGB Mode (HV mode)

cdh:24 bit RGB Mode (DE mode)

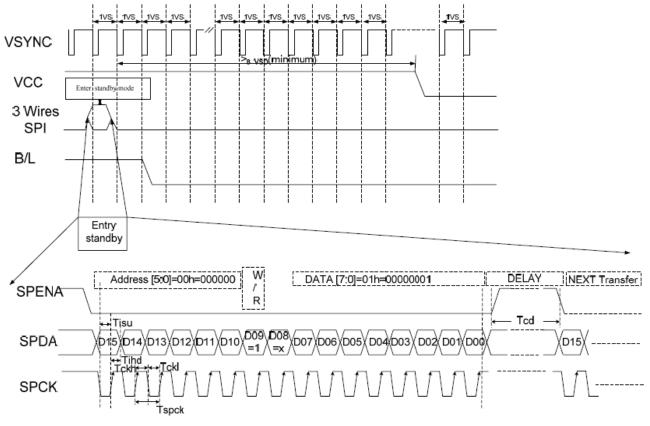
5.8 Power on/off sequence

Power on sequence

Note

- 1. Please exit to Standby Mode through 3-wire command, detail sequence that exit to Standby Mode under power on mode presentation as below.
- 2. Exit to standby mode, you can write data "0x03" to Register R00,D09=1 for writing data to register. D09=0 for reading data from register.

Under SPI write mode D08=X, and 'X' means don't care D08='1' or '0'.


The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 15 of 28

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Serial Clock	Tspck	320	-	-	ns	
SPCK Pulse Duty	Tscdut	40	50	60	%	
Serial Data Setup Time	Tisu	120	-	-	ns	
Serial Data Hold Time	Tihd	120	-	-	ns	
Serial Clock High/Low	Tssw	120	-	-	ns	Tckh or Tckl
Chip Select Distinguish	Tcd	1	-	-	us	

Power off sequence

Note

- 1. 1Vs=1vsync, Please enter the standby mode through 3-wire command, detail sequence which enter standby mode under power off sequence as below.
- 2. Enter standby mode ,you can write data "0x01" to register "R00", D09=1 for write data to register, D09=0 for reading data from register.

Under SPI write mode D08=X, and 'X' means don't care D08='1' or '0'.

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Serial clock	Tspck	320	-	-	ns	
SPCK pulse duty	Tscdut	40	50	60	%	
Serial data setup time	Tisu	120	-	1	ns	
Serial data hold time	Tihd	120	-	-	ns	
Serial clock high/low	Tssw	120	-	-	ns	Tckh or Tckl
Chip select distinguish	Tcd	1	-	-	us	

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 16 of 28

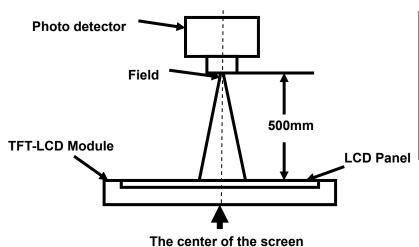
6 Optical Characteristics

6.1 Optical Specification

Ta=25°C

Item		Symbol	Condition	Min	Тур.	Max.	Unit	Remark
		θТ		30	40			
View Ang	nloe	θВ	CR≧10	50	60		Degree	Note 2
VIEW AII	yies	θL	OIX≦ IU	50	60		Degree	Note 2
		θR		50	60			
Contrast F	Ratio	CR	θ=0ο		350			Note1,3
Dognongo	Timo	Ton	25 ℃		25	40	mo	Note1 4
Response	Time	Toff	25 (25	40	ms	Note1,4
	White	х		0.240	0.290	0.340		
	vviille	у		0.270	0.320	0.370		
	RED	х		0.500	0.550	0.600		
Chromaticity	KED	у		0.270	0.320	0.370		Note 1 F
Chromaticity	GREEN	х		0.300	0.350	0.400		Note1,5
	GREEN	У		0.520	0.570	0.620		
	BLUE	х		0.100	0.150	0.200		
	DLUE	у		0.045	0.095	0.145		
Uniform	ity	U		75	80		%	Note1,6
NTSC	;				50		%	Note 5
Luminance(w TSP)	L		280	350		cd/m2	Note1,7

Test Conditions:


- 1. VDD=3.3V, I_L =20mA(Backlight current), the ambient temperature is 25 $^{\circ}$ C.
- 2. The test systems refer to Note 1 and Note 2.

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 17 of 28

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Item	Photo Detector	Field
Contrast Ratio		
Luminance	SR-3A	1°
Chromaticity	SK-3A	'
Lum Uniformity		
Response Time	BM-7A	2°

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

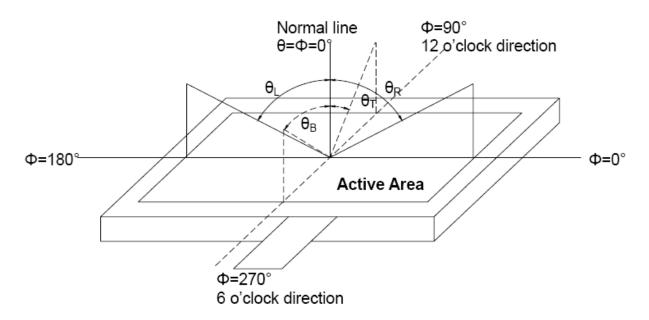


Fig. 1 Definition of viewing angle

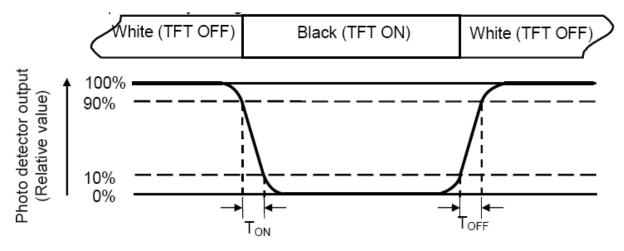
The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 18 of 28

Note 3: Definition of contrast ratio

Contrast ratio (CR) =
Luminance measured when LCD is on the "White" state

Luminance measured when LCD is on the "Black" state


"White state ":The state is that the LCD is driven by Vwhite.

"Black state": The state is that the LCD is driven by Vblack.

Vwhite: To be determined **V**black: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)
Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Page: 19 of 28

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/Lmax

L-----Active area length W----- Active area width

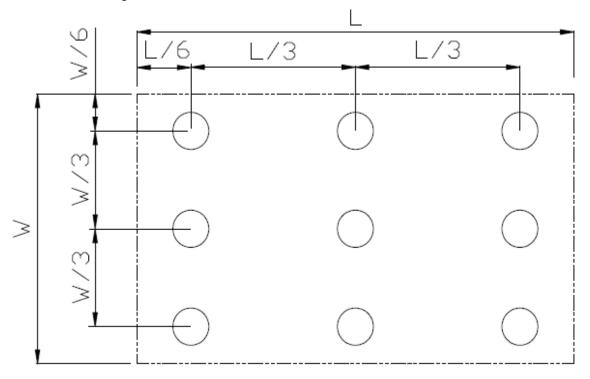


Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point

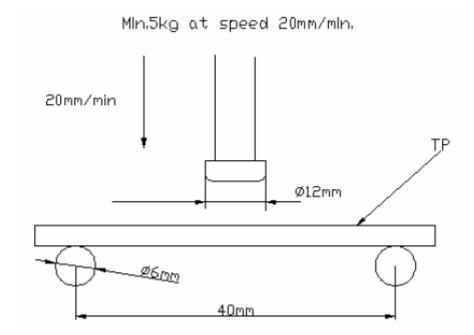
The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 20 of 28

7 Environmental / Reliability Tests

No	Test Item	Condition	Remark
1	High Temperature Op-	Ts=+60°C, 240hrs	Note1
'	eration		IEC60068-2-2,GB2423.2—89
2	Low Temperature Op-	Ta=-20℃, 240hrs	Note 2, IEC60068-2-1
	eration		GB2423.1—89
3	High Temperature Stor-	Ta=+70°C, 240hrs	IEC60068-2-2,
3	age		GB2423.2—89
4	Low Temperature Stor-	Ta=-30℃, 240hrs	IEC60068-2-1
	age		GB2423.1—89
	High Temperature &	+60℃, 90% RH max,240 hours	IEC60068-2-3,
5	High Humidity		GB/T2423.3—2006
	(Non-Operation)		
	Thermal Shock	-30℃ 30 min~+70℃ 30 min,	Start with cold temperature, end
6	(Non-operation)	Change time:5min, 30 Cycle	with high temperature
	(Non-operation)		IEC60068-2-14,GB2423.22—87
		C=150pF, R=330 Ω , 5points/panel	IEC61000-4-2
7	Electro Static Discharge	Air:±8KV , 5times;Contact:±4KV , 5 times;	GB/T17626.2—1998
'	(Operation)	(Environment: 15° C \sim 35° C , 30% \sim 60% ,	
		86Kpa∼106Kpa)	
	Vibration	Frequency range:10~55Hz, Stroke:1.5mm	IEC60068-2-6
8	(Non-operation)	Sweep:10Hz~55Hz~10Hz 2 hours for each	GB/T2423.10—1995
	(Non operation)	direction of X.Y.Z.(package condition)	05/12/120:10
9	Shock (Non-operation)	60G 6ms, ±X,±Y,±Z 3times for each di-	IEC60068-2-27
Ľ	- Check (Herr operation)	rection	GB/T2423.5—1995
10	Package Drop Test	Height:80 cm, 1 corner, 3 edges, 6	IEC60068-2-32
		surfaces	GB/T 2423 .8—1995
		No glass break when Φ9.0mm steel ball	
11	Impact Resistance	is dropped on the panel film surface	
	pact i toolotailoo	which places on the plastic board di-	
		rectly from 30 cm height at one time	
12	Static Load Test	Min 5 Kg at speed of 20mm/min	Note 3

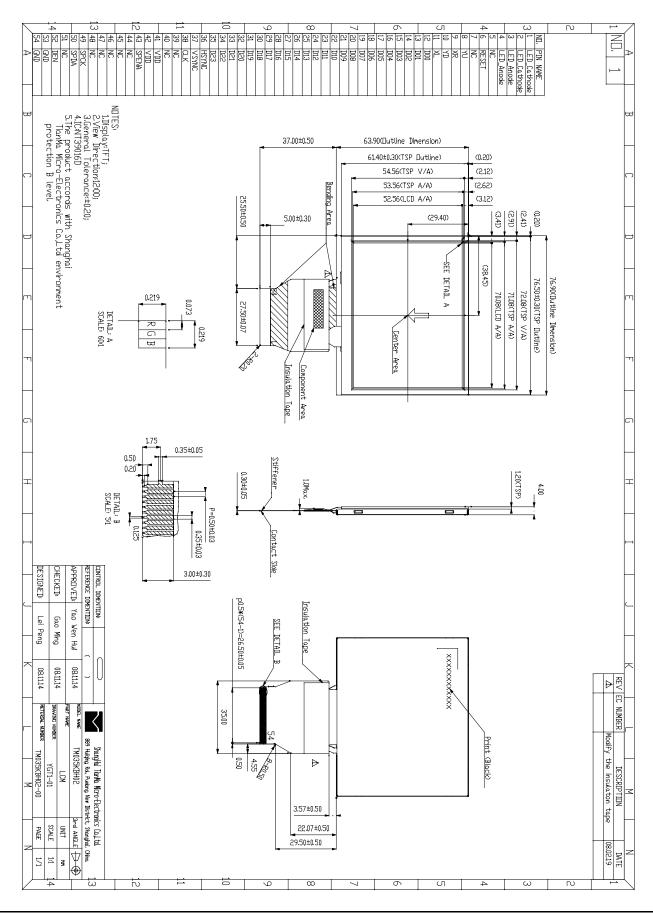
Note1: Ts is the temperature of panel's surface.


Note2: Ta is the ambient temperature of sample.

Note3:

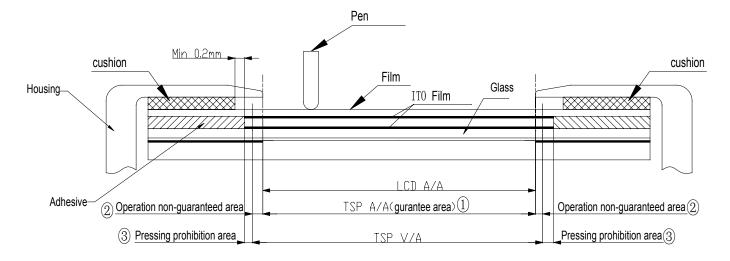
The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 21 of 28

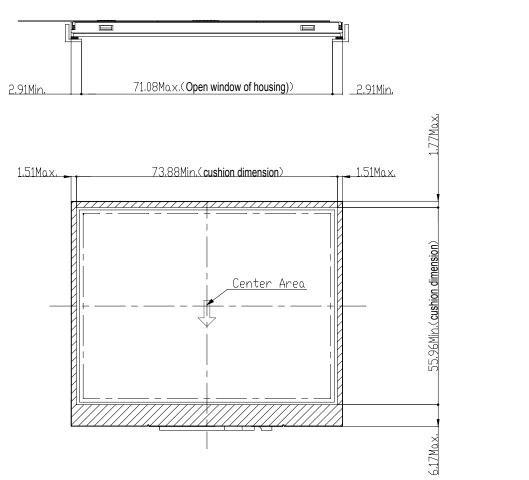


Page: 22 of 28

8 Mechanical Drawing



The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.


Page: 23 of 28

9 Mechanical Design Guide

Propositional Dimension

Page: 24 of 28

9.1.1. Explain:

(1) Active area

The area which guarantees a touch panel operation normally when pressed.

2Operation non-guaranteed area

The area which does not guarantee a touch panel operation and its function. When this area is pressed, touch panel shows degradation of its performance and durability such as a pen sliding durability becomes about one-tenth compared. With the active area(Area-(a) as guaranteed area) and its operation force requires about double. About 0.5mm~1mm out side form a boundary of the active corresponds to this area.

③Pressing prohibition area

The area which forbids pressing, because an excessive load is applied a transparent electrode and a serious damage is given to touch panel function by pressing.

4 Non-Active area

The area which does not activate even if passed.

9.1.2. The handling of sensitive area:

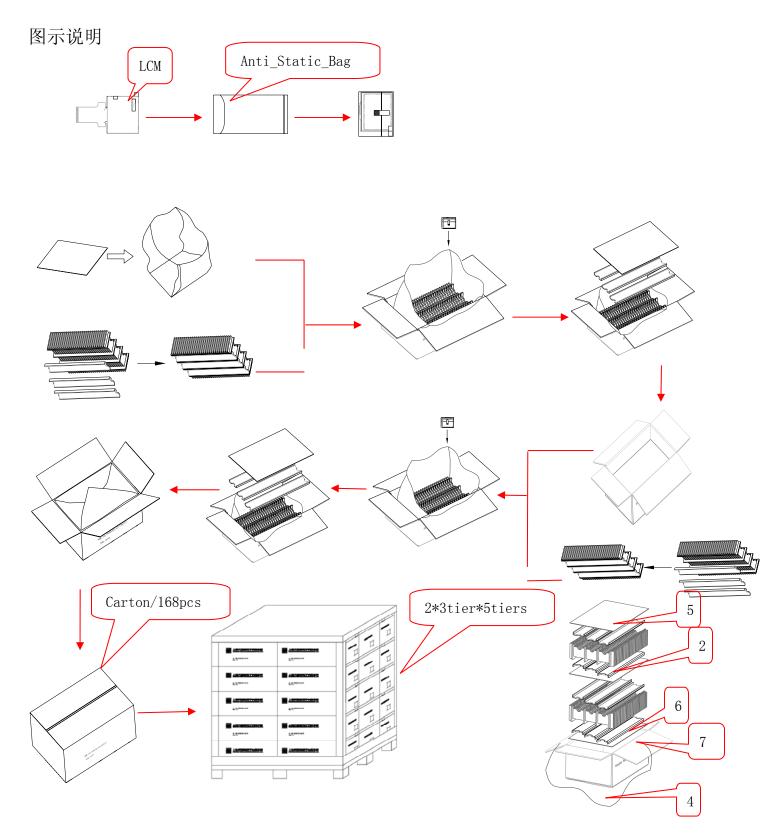
- (1) The sensitive area is between the edge of the double-side tape and the edge of the active area. Because the double-side tape has a certain height, the more transformative the ITO layer is pressed, the easier it would be to be broken. So it is suggested that pointed tools should be put away from the sensitive area to avoid them touching the sensitive area during operation.
- (2) When assembling the touch panel, it would be better to add a protective gasket on the surface of the product before assembling on to the housing. The gasket should be placed on the double-side tape and should not go beyond it.
- (3) If the housing is designed bigger than the active area, the edge of the sensitive area would be left outside of it. In addition, the protective gasket adds the thickness of this area, so do not use pens or other pointed tools to score along with the screen edge which may cause the damage of the

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 25 of 28

ITO layer. If the panel is drawn with large force, the glass would even be broken.

(4) If the housing is designed smaller than the active area, it can cover the sensitive area completely, in which case the scoring along with screen edge does no harm to the ITO layer. Nevertheless, due to the housing extending into the active area, the thickness of the gasket is very important. If it is too thick, the gap between the housing and the ITO film surface would be too wide which may affect the appearance of the product. If it is too thin, the housing would be pressed on the film surface which may cause short-circuit. The gap between the housing and the film should better be kept between 0.2mm and 0.3mm.


Page: 26 of 28

10 Packing Drawing

LCM quantity per Partition: 3rows x 28 pcs = 84 pcs

Total quantity in carton: 2 layers x 84 pcs per partition= 168 pcs

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 27 of 28

TM035KBH02 V1.3

Per carton:

No	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark
1	LCM module	TM035KBH02	76.90 x 63.90 x 4.00	0.04	168	
2	Partition_1	Corrugated Paper	513 x 333 x 106	0.782	2	
3.	Anti-Static Bag	PE	155 x 85 x 0.05	0.003	168	Anti-static
4	Dust-Proof Bag	PE		0.060	1	
5	Partition_2	Corrugated Paper	505 x 332 x 4.00	0.095	3	
6	Corrugated Bar	Corrugated Paper	513 x 117 x 4	0.032	12	
7	Carton	Corrugated Paper	530 x 350 x 250	1.1000	1	
8	Total weight		10.617±5%			

Page: 28 of 28

11 Precautions for Use of LCD Modules

- 11.1 Handling Precautions
- 11.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 11.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 11.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 11.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 11.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
- Isopropyl alcohol
- Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:— Water, Ketone, Aromatic solvents

- 11.1.6. Do not attempt to disassemble the LCD Module.
- 11.1.7. If the logic circuit power is off, do not apply the input signals.
- 11.1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- a. Be sure to ground the body when handling the LCD Modules.
- b. Tools required for assembly, such as soldering irons, must be properly ground.
- c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- d. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 11.2 Storage precautions
- 11.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 11.2.2. The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0°C ~ 40°C Relatively humidity: ≤80%

- 11.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.
- 10.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page: 29 of 28