MODEL N	10.	:	TM070RBH01

ISSUED DATE: _____2009-12-14

VERSION : Ver 2.2

Preliminary Specification
 Final Product Specification

Approved by	Notes
	# 2
2.	

SHANGHAI TIANMA Confirmed :

1	Prepared by	Checked by	Approved by
1	AZ	传播系	刻画人
	1 2 20 10. 1.13	20/0-01-13	到厦王

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Page 1 of 34

Table of Contents

Tab	le of Contents	2
Rec	cord of Revision	3
1	General Specifications	4
2	Input/Output Terminals	. 5
3	Absolute Maximum Ratings	
4	Electrical Characteristics	9
5	Timing Chart	14
6	Optical Characteristics	
7	Environmental / Reliability Test	22
8	Touch Screen Panel	
9	Mechanical Design Guide	26
10	Mechanical Drawing	
11	Packing Drawing	
12	TFT-LCD Module Incoming Inspection Standard	30
13	Precautions for Use of LCD Modules	34

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2008-11-10	Preliminary Specification Release	Yuna Wang
1.1	2008-11-25	Update Model Name from TS070RAATB01-00 to TM070RBH01	Yuna Wang
2.0	2009-04-08	Final Product Specification Release	Yuna Wang
2.1	2009-09-24	Update Source driver input timing parameters; Add Gamma Correction Reference Voltage Setting Note	Xing Nie
2.2	2009-12-14	Revise Interface to RGB18 bits without TCON in page 4 Update Operating Life Time in page 12 Revise View Angles in page 19 Update Reliability Test Remarks in page 22	Xing Nie
		·	
$\langle \rangle$			
	V		
, in the second s			

1 General Specifications

	Feature	Spec
	Size	6.95 inch
	Resolution	800(RGB) x 480
	Interface	RGB18 bits without TCON
	Color Depth	262K
	Technology Type	a-Si
Display Spec.	Pixel Pitch (mm)	0.1965x0.1715
Display Spec.	Pixel Configuration	R.G.B. Vertical Stripe
	Display Mode	TM with Normally White
	Surface Treatment(Up Polarizer)	Anti Glare
	Surface Treatment(TSP)	Anti Glare
	Viewing Direction	12 o'clock
	Gray Scale Inversion Direction	6 o'clock
	LCM (W x H x D) (mm)	167.40x93.70x4.69
	Active Area(mm)	157.20x82.32
Mechanical Characteristics	With /Without TSP	With TSP
	Weight (g)	146.5
	LED Numbers	27 LEDs

Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3: LCM weight tolerance: +/- 5%

2 Input/Output Terminals

TFT-LCD Panel Driving

	J1	of	FPC2
--	----	----	------

Matching Connector of SUNCAGEY BL114-35-RU-TAND

J1 of F Pin	Symbol	I/O	Description	Remark	
1	LED+	Р	LED Anode		
2	NC	Ν	No connection		
3	LED1-	Р	LED Cathode		
4	LED2-	Р	LED Cathode		
5	LED3-	Р	LED Cathode		
6	DIO1	I/O	Horizontal start pulse signal	Note2	
7	VSS1	Р	Ground	Note1	
8	VDD1	Р	Power supply	Note1	
9	CLK	Ι	Horizontal shift clock		
10	VSS1	Р	Ground	Note1	
11	R/L	Ι	Right/left selection	Note2	
12	R0	I	Red data(LSB)		
13	R1	I	Red data		
14	R2	- 1	Red data		
15	R3	I	Red data		
16	R4		Red data		
17	R5	I	Red data		
18	VSS1	Р	Ground Note		
19	GO	I	Green data(LSB)		
20	G1	Ι	Green data		
21	G2		Green data		
22	G3	Ι	Green data		
23	G4	Ι	Green data		
24	G5	I	Green data		
25	VSS1	Р	Ground	Note1	
26	B0		Blue data(LSB)		
27	B1		Blue data		

🗸 сн	ANGHAI TIANM	A MICR	O-ELECTRONICS TM070	RBH01 V2.2
28	B2		Blue data	
29	B3	I	Blue data	
30	B4	Ι	Blue data	
31	B5	Ι	Blue data	
32	LD	Ι	Load output signal	Note2
33	REV	Ι	Data invert control	
34	POL	Ι	Polarity selection	
35	DIO2	I/O	Horizontal start pulse signal	Note2
	28 29 30 31 32 33 34	28 B2 29 B3 30 B4 31 B5 32 LD 33 REV 34 POL	28 B2 I 29 B3 I 30 B4 I 31 B5 I 32 LD I 33 REV I 34 POL I	28B2IBlue data29B3IBlue data30B4IBlue data31B5IBlue data32LDILoad output signal33REVIData invert control34POLIPolarity selection

J2 of FPC1

Pin	Symbol	I/O	Description	Remark
1	VSS2	Р	Ground No.	
2	V1	I	Gamma voltage 1	Note1
3	V2	I	Gamma voltage 2	
4	V3	_	Gamma voltage 3	
5	V4	I	Gamma voltage 4	
6	V5	_	Gamma voltage 5	
7	V6	_	Gamma voltage 6	
8	V7	I	Gamma voltage 7	
9	VSS2	Р	Ground No	
10	V8		Gamma voltage 8	
11	V9	I	Gamma voltage 9	
12	V10		Gamma voltage 10	
13	V11	I	Gamma voltage 11	
14	V12	I	Gamma voltage 12	
15	V13	_	Gamma voltage 13	
16	V14	_	Gamma voltage 14	
17	VSS2	Р	Ground	
18	VDD2	Р	Voltage for analog circuit Not	
19	VCOM	Р	Common voltage	
20	XON	Ν	No connection	
21	OE		Output enable Note?	

\sim	SHANGHAI TIANM	A MICR	O-ELECTRONICS TM070R	BH01 V2.2
22	U/D	Ι	Up/down selection	Note2
23	CKV	I	Vertical shift clock	Note1
24	STVU	I/O	Vertical shift pulse signal	Note1,2
25	STVD	I	Vertical shift pulse signal	Note2
26	VGG	Р	Gate on voltage	
27	GND	Р	Ground	
28	VCC	Р	Voltage for logic circuit	\sim
29	GND	Р	Ground	N -
30	VEE	Р	Gate off voltage	
31	NC	N	No connection	
32	XL	Р	Touch panel left	
33	YD	Р	Touch panel down	
34	XR	Р	Touch panel right	
35	YU	Р	Touch panel up	

Note1: I/O definition.

I---Input pin, O---Output pin, P--- Power/Ground, N--- No connection

Note2:

Scan Control Input		IN/OUT State For Start Pulse			Scanning Direction		
U/D	R/L	STVD	STVU	DIO2	DIO1		
GND	VCC	0		0	I	Up to down, left to right	
VCC	GND	1	0	I	0	Down to up, right to left	
GND	GND	0	I	I	0	Up to down, right to left	
VCC	VCC		0	0	I	Down to up, left to right	

SHANGHAI TIANMA MICRO-ELECTRONICS

Absolute Maximum Ratings 3

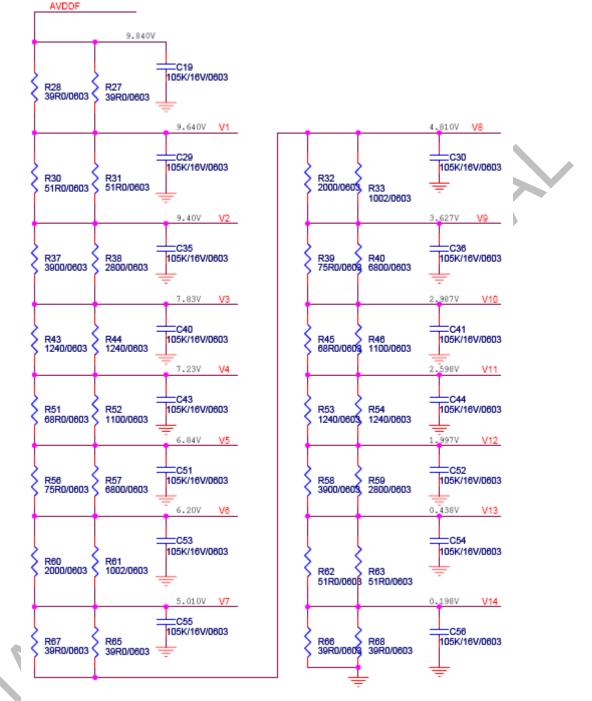
			VSS1	=VSS2=GN	\D=0V, Ta = 25 ℃
Item	Symbol	Min	Max	Unit	Remark
	VCC	-0.50	5.00	V	
	VDD1	-0.50	5.00	V	
Power Veltage	VDD2	-0.50	13.50	V	
Power Voltage	VGG	-0.30	40.00	V	
	VEE	-20.00	0.30	V	
	VGG-VEE	-0.30	40.00	V	
Touch Panel Forward Voltage	V _{TP}	-	7.0	V	
Backlight Forward Current	I _{LED}	-	25.0	mA	For each LED
Operating Temperature	T _{OPR}	-20	60	°C	
Storage Temperature	T _{STG}	-30	70	°C	

4 Electrical Characteristics

4.1 Recommended Operating Condition

4.1 10000	VSS1=VSS2=GND=0V, Ta = 25℃									
I	tem	Symbol	Min	Тур	Max	Unit	Remark			
Digital Su	pply Voltage	VDD1	3.00	3.30	3.60	V				
Digital Su	pply Voltage	VCC	3.00	3.30	3.60	V				
Analog Si	upply Voltage	VDD2	9.45	9.84	10.23	V				
Gate On V	Voltage	VGG	17.10	19.00	20.90	V				
Gate Off	Voltage	VEE	-7.70	-7.00	-6.30	V				
Common Driving Si	Electrode	VCOM	-	4.21	-	V				
Input Leve	el Of	V1~V7	0.4xAVDD	-	VDD2-0.1	V				
Gamma V	/oltage	V8~V14	0.10	-	0.6xVDD2	v				
Input	Low Level	V _{IL}	0	-	0.2xVDD1	v	CLK,R/L,R0~R5,G0~G5, DIO1,B0~B5,LD,REV,			
Signal Voltage	High Level	V _{IH}	0.8xVDD1	-	VDD1	V	POL,DIO2,V1~V14,OE, U/D,CKV,STVD,STVU,			
Output Signal	Low Level	V _{OL}	0		0.2xVDD1	V	STVU,DIO2,DIO1			
Voltage	High Level	V _{OH}	0.8xVDD1		VDD1	V	51 00,0102,0101			

Note: The value is for design stage only.



Parameter	Symbol	Min	Тур	Max	Unit	Remark
	V1	-	9.640	VDD2-0.1	V	
	V2	-	9.400	-	V	
	V3	-	7.830	-	V	
	V4	-	7.230	-	V	
	V5	-	6.840	-	V	$\boldsymbol{>}$
	V6	-	6.200	-	V	
Gamma correction	V7	-	5.010	-	V	
reference voltage V1~V14	V8	-	4.810		V	
	V9	-	3.627		V	
	V10	-	2.987		V	
	V11	-	2.598	-	V	
	V12	-	1.997	-	V	
	V13	-	0.438	-	V	
	V14	VSS2+0.1	0.198	-	V	

4.2 Gamma Correction Reference Voltage Setting

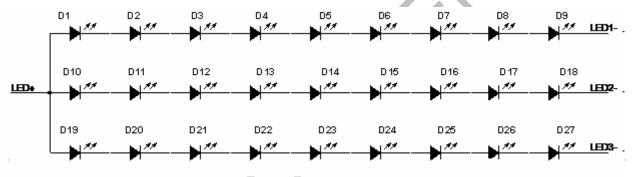
Note: the value is for design stage only;

VDD2-0.1>V1>V2>V3>V4>V5>V6>V7, V8>V9>V10>V11>V12>V13>V14>VSS2+0.1

NOTE: The gamma circuit only apply to AVDD=9.840V,Connect LCM to the gamma circuit and keep LCM operation, you can get correct gamma voltage, V1=9.64V \ V2=9.40V etc.

TM070RBH01 V2.2

4.3 Recommended Driving Condition for Backlight


Item	Symbol	Min	Тур	Max	Unit	Remark			
Forward Current	I _{LED}	-	60.00	75.00	mA				
Forward Voltage	V_{LED}	27.45	28.80	31.05	V				
Power Consumption	P _{BL}	-	1.73	2.33	W				
Operating Life Time		10000	(20000)		hrs				

Note1: The LED driving condition is defined for each LED module (9 LED Serial, 3 LED Parallel).

Input current = 20 mA x 3 = 60 mA

Note2: Under LCM operating, the stable forward current should be inputted. And forward voltage is for reference only.

Note3: The LED driving condition is defined for each LED module.

Note 4: I_F is defined for one channel LED. Optical performance should be evaluated at Ta=25℃ only.

If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced.

Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

4.4 Power Consumption

VSS1=VSS2=GND=0V, Ta = 25℃

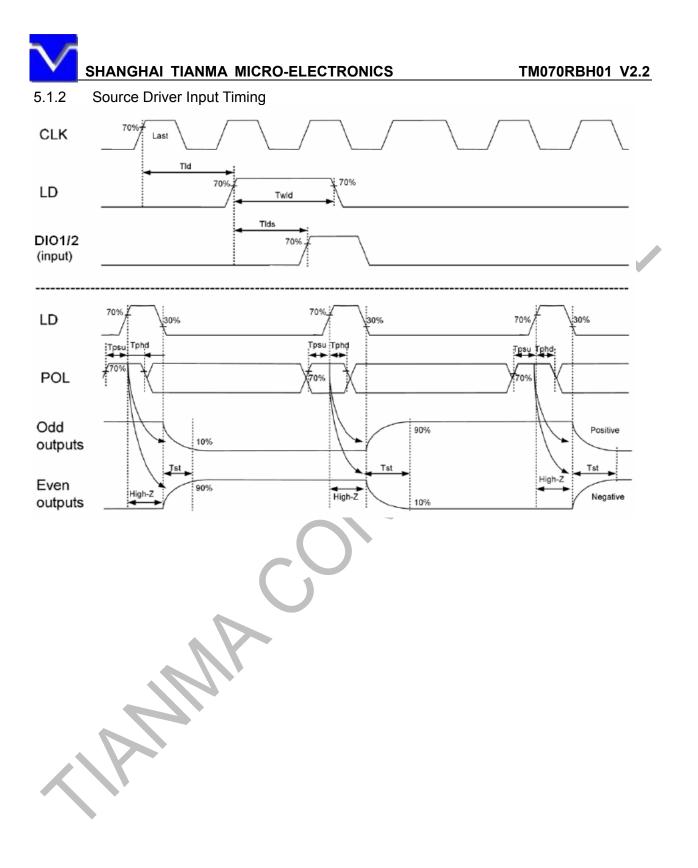
						,	
Item	Symbol	Condition	Min	Тур	Мах	Unit	Remark
Digital Supply Current	I _{VDD1}	VDD1=3.3V	-	3.50	5.16	mA	
Digital Supply Current	I _{VCC}	VCC=3.3V	-	3.50	5.16	mA	
Analog Supply Current	I _{VDD2}	VDD2=9.84V	-	39.00	56.00	mA	
Gate On Current	I _{VGG}	VGG=19.0V	-	0.22	0.40	mA	
Gate Off Current	I _{VEE}	VEE=-7.0V	-	0.22	0.40	mA	
	Panel γ		-	0.42	0.60	W	
Power Consumption	Backlight		-	1.73	2.33	W	
	Total		-	2.15	2.93	W	

Note: Analog Supply Current and Power Consumption condition is defined as colorbar pattern and with gamma circuit.

4.5 Block Diagram

L E D L i g h t B a r	6.95' 800 RGB x 480	T P
	FPC -	
	J1 J2	

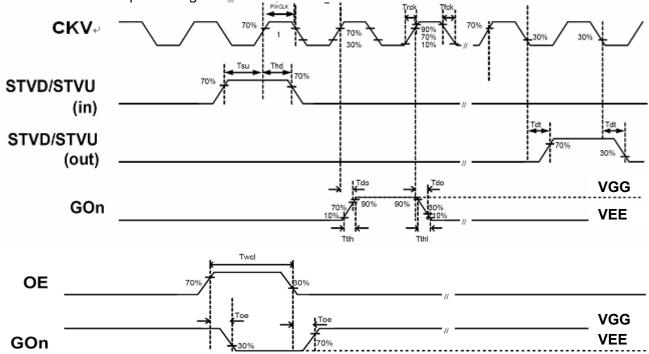
5 Timing Chart


5.1 Source Driver Input Timing

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
CLK frequency	Fclk	-	33.3	40.0	MHz	EDGSL="0"
CLK high/low Pulse Width	Tcw	10	-	-	ns	Tcph is CLK cycle 1 Tcw=1/Fclk
Data Set-up Time	Tsu	6	-	-	ns	R0~R5 ,G0~G5 , B0~B5 , REV and DIO1/2 to CLK
Data Hold Time	Thd	4	-	-	ns	R0~R5 ,G0~G5 , B0~B5 ,REV and DIO1/2 to CLK
Propagation delay of STHR/L	Tphl	5	10	15	ns	CL=25pF
Time that the last data to LD	Tld	1		-	Tcph	
Pulse width of LD	Twld	2	-	-	Tcph	
Time that LD to STHL/R	Tlds	5		-	Tcph	
POL set-up time	Tpsu	6		-	ns	POL to LD
POL hold time	Tphd	6	-	-	ns	POL to LD
Output stable time	Tst	-	-	12	us	10% or 90% Target voltage. CL=60pF, R=2Kohm

(VDD1=3.3V, VDD2=9.84V, VSS1=VSS2=GND=0V, Ta=25°C)

5.1.1 EDGSL='0', Source Driver Input Timing

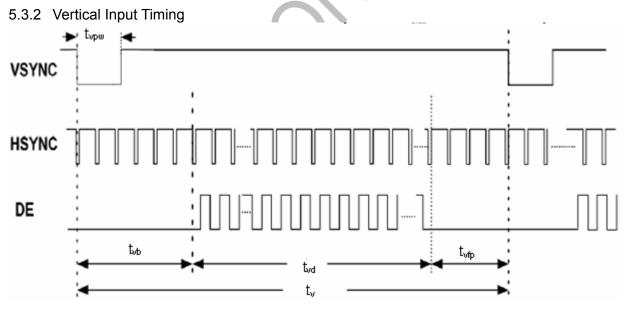


5.2 Gate Driver Input Timing

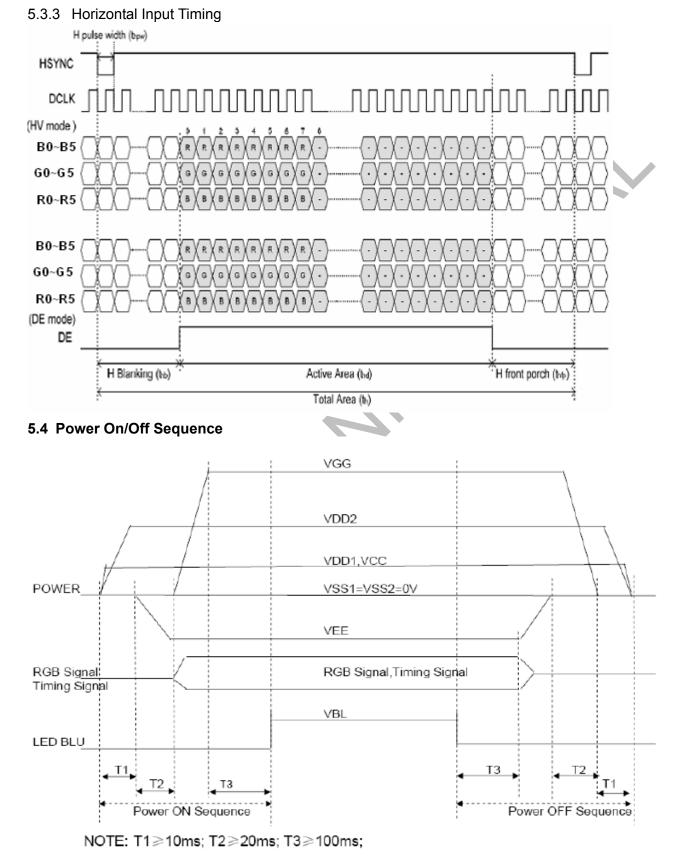
(VGG=19V, VEE=-7V, VDD1=3.3V, VSS1=GND=0V, Ta=25℃)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
STVD/STVU Delay Time	Tdt	-	-	500	ns	CL=20pF
Driver Output Delay Time	Tdo	-	-	900	ns	CL=200pF
Output Falling Time	Tthl	-	400	800	ns	CL=200pF 90% to 10%
Output Rising Time	Ttlh	-	500	1000	ns	CL=200pF 10% to 90%
XON To Driver Output Delay Time	Txon	-	-	20	ns	CL=200pF
OE To Driver Output Delay Time	Тое	-	-	900	ns	CL=200pF
Clock Frequency	Fclk	-	-	200	KHz	In cascade connection
Clock Rising Time	Trck	-	-	100	ns	CL=20pF
Clock Falling Time	Tfck	-	-	100	ns	CL=20pF
Clock Pulse Width(High & Low)	PWCLK	500	-		ns	
STVD/STVU Set-up Time	Tsu	200	-	-	ns	
STVD/STVU Hold Time	Thd	300		-	ns	
Output Enable Pulse Width	Twcl	1	-	-	us	

5.2.1 Gate Driver Input Timing



5.3 Recommended Timing Setting Of TCON At HV Mode


5.3.1 DCLK/ HSYNC/VSYNC Timing

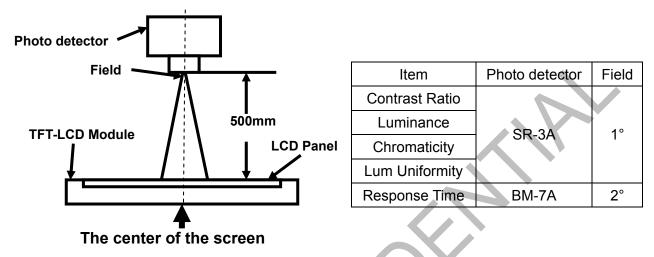
Parameter	Symbol	Min	Тур	Max	Unit	Remark
DCLK	Fclk	26.4	33.3	40.0	MHZ	
DOLK	Tclk	37.9	30.0	25.0	ns	
	t _h	862	1056	1200	Tclk	
	t _{hd}	800	800	800	Tclk	
HSYNC	t _{hpw}	1	-	40	Tclk	
	t _{hb}	46	46	46	Tclk	
	t _{hfp}	16	210	354	Tclk	
	t _v	510	525	650	th	
	t _{vd}	480	480	480	th	
VSYNC	t _{vpw}	1	-	20	th	
	t _{vb}	23	23	23	th	
	t _{vfp}	7	22	147	th	

Note: Base on TCON NT39703-5

6 **Optical Characteristics**

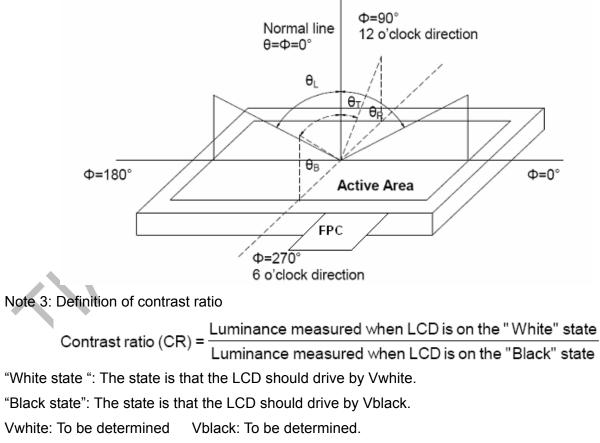
								Ta=25 ℃
ltem		Symbol	Condition	Min	Тур	Max	Unit	Remark
		θΤ		50	60	-		
Viow Angles		θΒ	CR≧10	60	70	-	Dograa	Note2,3
View Angles		θL	GR≡ IU	60	70	-	Degree	NOIEZ,5
		θR		60	70	-	•	
Contrast Ratio)	CR $\theta=0^{\circ}$		300	400	-		Note 3
Response Tim		T _{ON}	25 ℃	-	25	40	me	Note 4
	Sponse Time		200	-	20	40	ms	
	White	X		0.271	0.321	0.371		Note 1,5
	VVIIILE	У		0.298	0.348	0.398	2	
	Red	х		0.528	0.578	0.628		Note 1,5
Chromaticity	Reu	У	Backlight is	0.302	0.352	0.402		NOLE 1,5
Chromaticity	Green	х	on	0.293	0.343	0.393		Note 1,5
	Green	У		0.532	0.582	0.632		
	Blue	х		0.096	0.146	0.196		Note 1,5
	Dide	У		0.056	0.106	0.156		1,0
Uniformity		U		70	80	-	%	Note 6
NTSC				-	50	-	%	Note 5
Luminance(w	ith TSP)	L		220	280	-	cd/m ²	Note 7

Test Conditions:


- 1. I_F = 20 mA, and the ambient temperature is 25 °C.
- 2. The test systems refer to Note 1 and Note 2.

TM070RBH01 V2.2

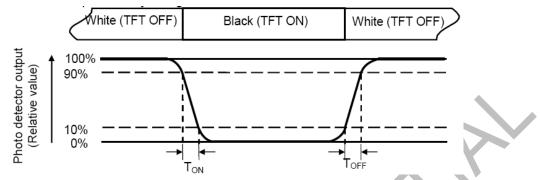
SHANGHAI TIANMA MICRO-ELECTRONICS


Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

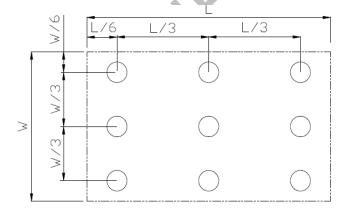

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and

TM070RBH01 V2.2

"Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)


Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/ Lmax

L-----Active area length W----- Active area width

Lmax: The measured Maximum luminance of all measurement position.

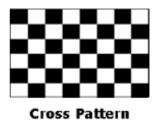
Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

7 Environmental / Reliability Test

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts = +60℃, 240 hours	Note1 IEC60068-2-1,GB2423.2
2	Low Temperature Operation	Ta = -20℃, 240 hours	IEC60068-2-1 GB2423.1
3	High Temperature Storage	Ta = +70℃, 240 hours	IEC60068-2-1 GB2423.2
4	Low Temperature Storage	Ta = -30℃, 240 hours	IEC60068-2-1 GB2423.1
5	Operation at High Temperature and Humidity	Ta = +40℃, 90% RH max,240hours	Note2 IEC60068-2-78 GB/T2423.3
6	Thermal Shock (non-operation)	-20℃ 30 min~+60℃ 30 min, Change time:5min, 30 Cycle	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22
7	Electro Static Discharge (Operation)	C=150pF,R=330Ω,5point/panel Air:±8Kv,5times; Contact:±4Kv,5times	IEC61000-4-2 GB/T17626.2
8	Vibration (Non-operation)	Sine Wave Frequency range:10~55Hz Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total)	IEC60068-2-6 GB/T2423.10
9	Shock (Non-operation)	Half Sine Wave 60G 6ms, ±X,±Y,±Z 3times for each direction	IEC60068-2-27 GB/T2423.5
10	Package Drop Test	Height:60cm, 1corner,3edges,6surfaces	IEC60068-2-32 GB/T2423.8
11	Baseline Function Test	Room Temp 72 hours	Note3
12	Operating Temp & Humidity Test	Temp -20℃~+60℃, Humi 0~90%RH,96 hours	Note3
13	Storage Test	Temp -40℃~+75℃, Humi 0~90%RH,96 hours	Note3
14	Thermal Shock Test	-20℃~+60℃, 10 cycle -40℃~+75℃, 10 cycle	Note3
15	Image Sticking	Room Temp,24 hours	Note4


Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of samples.

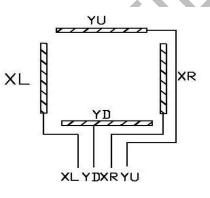
Note3: The conditions is requested by MITAC.

Note4: Image Sticking Bum In Pattern is the following Cross pattern. And check patterns are Full Screen White, Red, Blue, Green and Black Pattern.

Judgment:

Main LCD should work under the normal condition.

After the temperature and humidity test, the luminance and CR (Contrast Ratio) should not be changed over 50% compared with those before the test.


8 Touch Screen Panel

8.1 Electrical Characteristics

Item	Min	Тур	Max	Unit	Remark
Linearity	-1.5	-	1.5	%	Analog X and Y directions
Terminal Resistance	100	-	1300	ohm	x
Terminal Resistance	100	-	900	ohm	Y
Insulation Resistance	10	-	-	ohm	DC 25V
Voltage	-	5	7	V	DC
Chattering	-	-	10	Ms	100k pull-up
Transparency	78	-	-	%	JIS-K7105,ASTM D1003,@550nm

Note1: Do not operate it with a thing except a placental pen (tip R0.8mm or more) or a finger, especially those with hard or sharp tips such as a ball point pen or a mechanical pencil.

Note2: The figure below shows the connection of touch panel.

\sim

SHANGHAI TIANMA MICRO-ELECTRONICS

8.2 Mechanical& Reliability Characteristics

ltem	Min	Тур	Мах	Unit	Remark
Activation Force	-	-	80	g	Note1
Durability(Surface Scratching)	Write 100,000	-	-	characters	Note2
Durability(Surface Pitting)	1,000,000	-	-	touches	Note3
Surface Hardness	3	-	-	Н	JIS-K5400, ASTM D3363

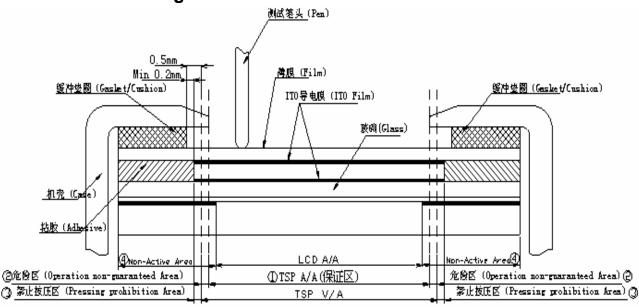
Note1: Stylus pen input: R0.8mm placental pen or finger.

Note2: Measurement for surface area:

Scratch 100,000 times straight line on the film with a stylus change every 20,000 times

Force: 250gf

Speed: 60 mm/sec


Stylus: R0.8 placental tip

Note3: Pit 1,000,000 times on the film with a R8.0 silicon rubber.

Force: 250gf

Speed: 2 times/sec

9 Mechanical Design Guide

9.1 Explain

9.1.1 Active area

The area which guarantees a touch panel operation normally when pressed.

9.1.2 Operation non-guaranteed area

The area which does not guarantee a touch panel operation and its function. When this area is pressed, touch panel shows degradation of its performance and durability such as a pen sliding durability becomes about one-tenth compared. With the active area (Area-(a) as guaranteed area) and its operation force requires about double. About 0.5mm~1mm out side form a boundary of the active corresponds to this area.

9.1.3 Pressing prohibition area

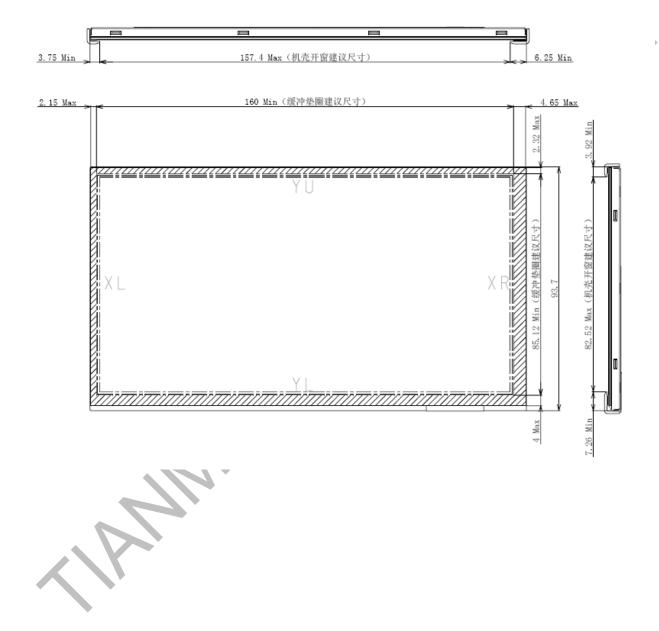
The area which forbids pressing, because an excessive load is applied a transparent electrode and a serious damage is given to touch panel function by pressing.

9.1.4 Non-Active area

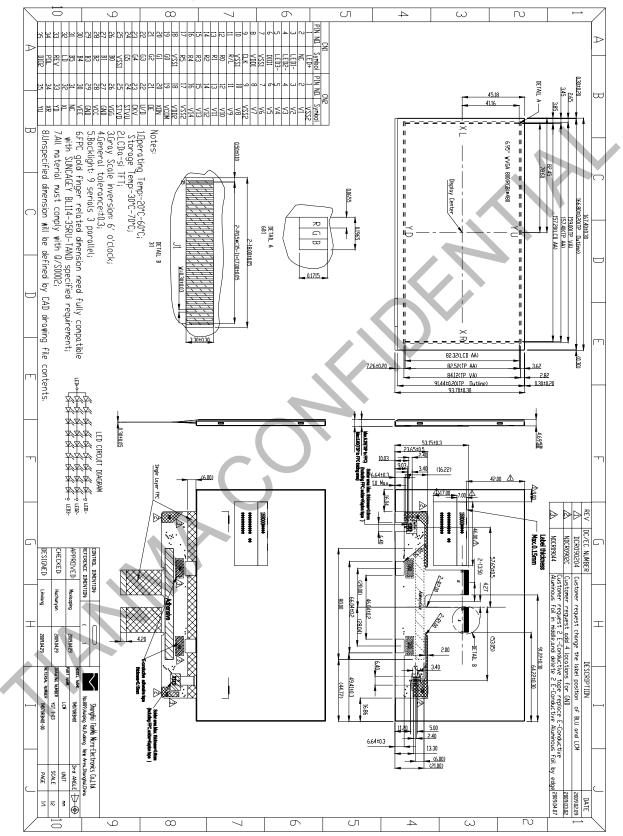
The area which does not activate even if passed.

9.2 The handling of sensitive area

9.2.1 The sensitive area is between the edge of the double-side tape and the edge of the active area. Because the double-side tape has a certain height, the more transformative the ITO layer is pressed, the easier it would be to be broken. So it is suggested that pointed tools should be put away from the sensitive area to avoid them touching the sensitive area during operation.

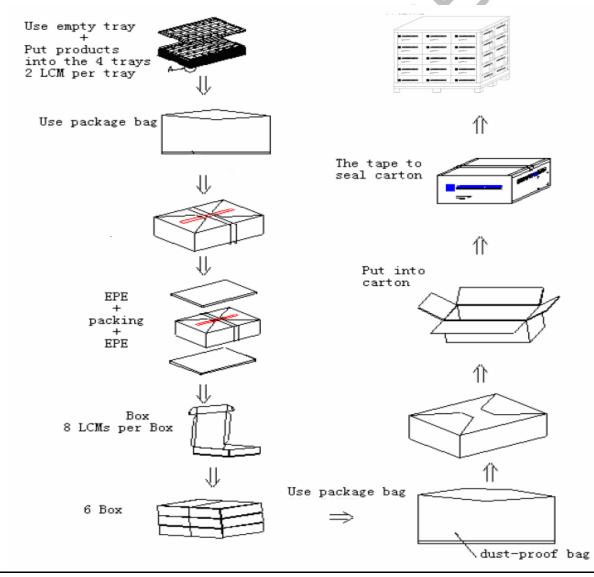

9.2.2 When assembling the touch panel, it would be better to add a protective gasket on the surface of the product before assembling on to the housing. The gasket should be placed on the double-side tape and should not go beyond it.

9.2.3 If the housing is designed bigger than the active area, the edge of the sensitive area would be left outside of it. In addition, the protective gasket adds the thickness of this area, so do not use pens or other pointed tools to score along with the screen edge which may cause the damage of the ITO layer. If the panel is drawn with large force, the glass would even be broken.



TM070RBH01 V2.2

9.2.4 If the housing is designed smaller than the active area, it can cover the sensitive area completely, in which case the scoring along with screen edge does no harm to the ITO layer.Nevertheless, due to the housing extending into the active area, the thickness of the gasket is very important. If it is too thick, the gap between the housing and the ITO film surface would be too wide which may affect the appearance of the product. If it is too thin, the housing would be pressed on the film surface which may cause short-circuit. The gap between the housing and the film should better be kept between 0.2mm and 0.3mm.


10 Mechanical Drawing

11 Packing Drawing

No	Item	Model(Material)	Dimensions (mm)	Unit Weigt (Kg)	Quantit y	Remar k
1	LCM module	TM070RBH01	167.40x93.70x4.69	0.146	48	
2	Tray	PET(Transmit)	315x247x13	0.087	30	Anti-sta tic
3	EPP	EPE	315x247x5	0.009	12	
4	Dust-Proof Bag	PE	700x545	0.05	1	
5	Box	Corrugated Paper	260x345x70	0.227	6	
6	Dust-Proof Bag	PE	327x270	0.021	6	
7	Carton	Corrugated Paper	544x365x250	1.01	1	
8	Total Weight (Kg)	12.274				

12 TFT- LCD Module Incoming Inspection Standard

12.1 Scope

The incoming inspection standards shall be applied to TFT-LCD Modules (hereinafter called "Modules") that supplied by Shanghai Tianma Micro-Electronics Corporation.

12.2 Incoming Inspection

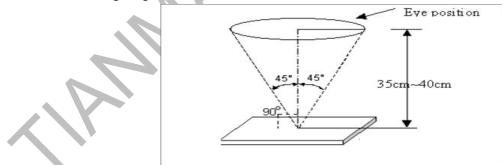
The customer shall inspect the modules within twenty calendar days of the delivery date (the "inspection period) at its own cost. The result of the inspection (acceptance or rejection) shall be recorded in writing, and a copy of this writing will be promptly sent to the seller, If the results of the inspecting from buyer does not send to the seller within twenty calendar days of the delivery date. The modules shall be regards as acceptance.

Should the customer fail to notify the seller within the inspection period, the buyer's right to reject the modules. Shall be lapsed and the modules shall be deemed to have been accepted by the buyer.

12.3 Inspection Sampling Method

Lot size: Quantity per shipment lot per model

Sampling type: Normal inspection, Single sampling


Inspection level: II

Sampling table: MIL-STD-105D

- Acceptable quality level (AQL)
 - Major defect: AQL=0.65
 - Minor defect: AQL=1.00

12.4 Inspection Conditions

- 12.4.1 ambient conditions:
 - a. Temperature: Room temperature 25±5°C
 - b. Humidity: (60±10) %RH
 - c. Illumination: Single fluorescent lamp non-directive (1000 to 1200 Lux)
- 12.4.2 The viewing distance between the LCD and the inspector's eyes shall be at least 30±5 cm.
- 12.4.3 Viewing Angle: U/D: 45°/45°, L/R: 45°/45°

12.5 Inspection Criteria

Defects are classified as major defects and minor defects according to the degree of defectiveness defined herein.

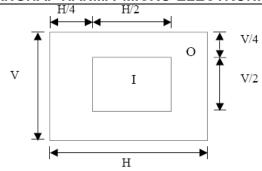
Item	Inspection Standard	
All Functional Defects	1) No display 2) Display abnormally 3) Short circuit 4) line defect	
Missing	Missing function component	
Crack	Glass Crack	

Minor defect

No	ltem	Inspection Standard		
	Spot Defect (Including black spot and white spot)	$\varphi = (\mathbf{x} + \mathbf{y}) / 2$ $\Rightarrow \mathbf{x} + \mathbf{y} + \mathbf{y}$ For black/white spot is defined		
1		Size φ(mm)	Acceptable Quantity	
		φ≤0.20	Ignore	
		0.20<φ≤0.30	2	
		0.30<φ≤0.40	1	
		0.40<φ	Not allowed	
	Line Defect (Including	Length Vidth Define:		
2 blac	black line, white line and	Width(mm) Length(mm)	Acceptable Quantity	
	scratch)	W≤0.03	Ignore	
		0.03 <w≤0.1 0.8<l≤2.0<="" td=""><td>2</td></w≤0.1>	2	
K		0.1 <w l="" or="">2.0</w>	Not allowed	
	Polarizer Dent/Bubble	Sizeφ(mm)	Acceptable Quantity	
3		φ≤0.1	Ignore	
		0.1<Φ≤0.3	2	
		0.3<φ	0	

	Electrical Dot Defect	Bright and black dot define:		
4		^{亮點} ■		
		Inspection pattern: Full white, Full black, Red, green and blue screens		
		Item	Acceptable Quantity	
		Black dot defect	2	
		Bright dot defect	1	
		Total Dot	2	
5	Touch Panel Scratch	Width(mm) Length(mm)	Acceptable Quantity	
		W≤0.03	Ignore	
		0.03 <w≤0.1 0.8<l≤2.0<="" td=""><td>2</td></w≤0.1>	2	
		0.1 <w l="" or="">2.0</w>	Not allowed	
	Touch Panel Bubble/Dent	Width(mm) Length(mm)	Acceptable Quantity	
		φ≤0.20	Ignore	
6		0.20<φ≤0.30	2	
		0.30<φ≤0.40	1	
		0.40<φ	Not allowed	
7	TSP Bagginess	Sizeφ(mm)	Acceptable Quantity	
7		D≤0.4	Ignore	
0	Newton Ring	Sizeφ(mm)	Acceptable Quantity	
8		D <15mm	1	

Note1: Dot defect is defined as the defective area of the dot area is larger than 50% of the dot area.


Note2: The distance between two bright dot defects (red, green, blue, and white) should be larger than 10mm.

Note3: The distance between black dot defects or black and bright dot defects should be more than 5mm apart.

Note4: The definitions of the inner display area and outer display area

I: Inner display area O: Outer display area

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Note5: Polarizer bubble is defined as the bubble appears on active display area. The defect of polarizer bubble shall be ignored if the polarizer bubble appears on the outside of active display area.

12.6 Mechanics specification

As for the outside dimension, weight of the modules, please refer to product specification for more details

13 Precautions for Use of LCD Modules

13.1 Handling Precautions

13.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.

13.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

13.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

13.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

13.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

Isopropyl alcohol

Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents

13.1.6 Do not attempt to disassemble the LCD Module.

13.1.7 If the logic circuit power is off, do not apply the input signals.

13.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

13.1.8.1 Be sure to ground the body when handling the LCD Modules.

13.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.

13.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.

13.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

13.2 Storage precautions

13.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

13.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: $\leq 80\%$

13.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

13.3 Transportation Precautions

13.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.