

MODEL NO.	•	1W1045DHG30-00
ISSUED DATE	:	2015-04-27
VERSION	:	Ver 1.0
	_	Specification ct Specification

Cue	tome	r	
Cus	COILLE	71	

Approved by	Notes

SHANGHAI TIANMA Confirmed:

Prepared by	Checked by	Approved by
Gang.li		

This technical specification is subjected to change without notice

Table of Contents

Co	/ersheet	1
Tab	ole of Contents	2
	cord of Revision	
1	General Specifications	4
2	Input/Output Terminals	5
3	Absolute Maximum Ratings	7
4	Electrical Characteristics	7
5	Timing Chart	11
6	Optical Characteristics	12
7	Environmental / Reliability Test	19
8	Mechanical Drawing	20
9	Packing Drawing	22
10	Precautions For Use of LCD Modules	24

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2015-04-27	Preliminary Release	Gang.li

SHANGHAI TIANMA MICRO-ELECTRONICS

1 General Specifications

	Feature	Spec
	Size	10.4 inch
	Resolution	800(RGB) x 600
	Interface	TTL 24bits
	Color Depth	16.2M
	Technology Type	a-Si
Diaplay Space	Pixel Pitch (mm)	0.264x0.264
Display Spec.	Pixel Configuration	R.G.B. Vertical Stripe
	Display Mode	TM with Normally White
	Surface Treatment(Up Polarizer)	Anti-Glare(3H)
	Surface Treatment(TSP)	Anti-glare type (3H)
	Viewing Direction	12 o'clock
	Gray Scale Inversion Direction	6 o'clock
	LCM (W x H x D) (mm)	228.40x175.40x6.20
Mechanical	Active Area(mm)	211.20x158.40
Characteristics	With /Without TSP	Without TSP
	Weight (g)	TBD

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3 : LCM weight tolerance : +/- 5%

2 Input/Output Terminals

2.1 TFT LCD Panel

Connector: Hirose FH28-60S-0.5SH

No	Symbol	I/O	Description Comm			
1	GND	P	Power Ground	Comment		
2	AVDD	Р	Power Supply			
3	VCC	Р	Power Supply			
4	 R0	ı	Red data Input(LSB)			
5	R1	1	Red data Input			
6	R2	1	Red data input			
7	R3	1	Red data input			
8	R3 	1	Red data input			
9	R4 	! 	Red data input			
10	R5	1	Red data input			
11	R7	1				
12	K/ G0	1	Red data Input(MSB)			
13	G0 G1	1	Green data Input(LSB)			
-		1	Green data Input			
14	G2	1	Green data Input			
15	G3	I	Green data Input			
16	G4	l	Green data Input			
17	G5	I	Green data Input			
18	G6	I	Green data Input			
19	G7	I	Green data Input(MSB)			
20	B0	l	Blue data Input(LSB)			
21	B1	I	Blue data Input			
22	B2	I	Blue data Input			
23	B3	I	Blue data Input			
24	B4	I	Blue data Input			
25	B5	I	Blue data Input			
26	В6	- 1	Blue data Input			
27	B7	I	Blue data Input(MSB)			
28	DCLK	I	Clock input(Latch data at falling edge)			
29	DE	I	Data enable			
30	HSYNC	ı	Horizontal sync input. Negative polarity			
31	VSYNC	ı	Vertical sync input. Negative polarity			
32	MODE	ı	DE/SYNC mode select .normally pull high			
		-	H:DE mode .L:HV sync mode			
33	NC	-	No connection			
34	NC	-	No connection			
35	NC	-	No connection			
36	VCC	Р	Power Supply			
37	NC	-	No connection			
38	GND	Р	Power Ground			
39	GND	Р	Power Ground			
40	AVDD	Р	Power Supply			
41	VCOM		VCOM DC input			
42	DITH	ı	Dithering setting			
42	חווט	I	DITH="H" 6bit resolution;			

V	SHANGHAI	TIANN	A MICRO-ELECTRONICS	TM104SDHG30 V1.0
			DITH="L" 8bit resolution	
43	NC	-	No connection	
44	NC	-	No connection	
45	NC	-	No connection	
46	NC	-	No connection	
47	NC	-	No connection	
48	NC	-	No connection	
49	NC	-	No connection	
50	NC	-	No connection	
51	NC	-	No connection	
52	NC	-	No connection	
53	NC	-	No connection	
54	NC	-	No connection	
55	NC	-	No connection	
56	VGH	Р	TFT turn on voltage	
57	VCC	Р	Power Supply	
58	VGL	Р	TFT turn off voltage	
59	GND	Р	Power Ground	

Note: I/O definition:

60

I-----Input O---Output P----Power/Ground

No connection

2.2 CN2(BackLight Connector)

NC

Connector: JST BHSR-02VS-1

No	Symbol	1/0	Description	Wire Color
1	LEDA	Р	LED driving anode (high voltage)	Red
2	LEDK	Р	LED driving cathode (low voltage)	White

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

 $GND=0V,Ta = 25^{\circ}C$

Item	Symbol	MIN	MAX	Unit	Remark
	VCC	-0.50	5.00	V	
	AVDD	-0.50	15.00	V	
Power Voltage	VGH	-0.30	42.00	V	
	VGL	-20.00	0.30	V	
	VGH-VGL	-0.30	40.00	V	
Operating Temperature	Тор	-10.0	60.0	$^{\circ}\!\mathbb{C}$	
Storage Temperature	Tst	-20.0	70.0		
Operating and Storage Humidity	HSTG	10	80	% (RH)	

Table 3.1 absolute maximum rating

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

VCC=3.3V,GND=0V, Ta=25

It	em	Symbol	MIN	TYP	MAX	Unit	Remark
Digital s Voltage	upply	VCC	3.00	3.30	3.60	V	
Analog : Voltage		AVDD	-	11	-	٧	
Gate on	voltage	VGH	22	23	24	V	
Gate off	voltage	VGL	-	-7.00	-	V	
Commo Electrod Driving	le	VCOM	-	TBD	-	V	
Input	Low Level	V _{IL}	0	-	0.3xVCC	V	R0~R7,G0~G7,0~B7,DE,
Signal Voltage	High Level	V _{IH}	0.7xVCC	-	VCC	V	DCLK,HSYNC,VSYNC,MODE, RESET, DITH
Current supply w	of digital oltage	I _{VCC}	-	ı	-	mA	VCC=3.3V,colorbar pattern
Current supply v	of analog oltage	I _{AVDD}	1	-	-	mA	
Current on volta		I_{VGH}	-	-	-	mA	VGH=23.0V
Current of Gate off voltage		I _{VGL}	-	-	-	mA	VGL=-7.0V
Current	of Vcom	lvcom			-	mA	

Table 4.1 LCD module electrical characteristics

SHANGHAI TIANMA MICRO-ELECTRONICS

TM104SDHG30 V1.0

Note1: To test the current dissipation, using the "color bar" testing pattern shown as below:

1. White								
2. Yellow								
3. Cyan								
4. Green	1	2	3	4	5	6	7	8
5. Magenta								
6. Red								
7. Blue								
8. Black				1				

Figure 4.1.2 Current dissipation testing pattern

4.2 Driving Backlight

Ta=25

Item	Symb ol	Min	Тур	Max	Unit	Remark	
Forward Current	I _F	1	240	ı	mA	Note 1	
Forward Current Voltage	V_{F}	-	9.6	-	V	Note 1	
Backlight Power Consumption	WBL	-	2304	-	mW	Note 1	
Operating Life Time		10000	20000		hrs	Note 2	

Note 1: The figure below shows the connection of backlight LED.

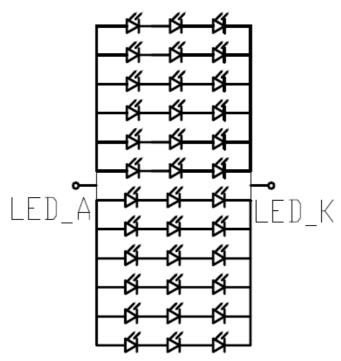


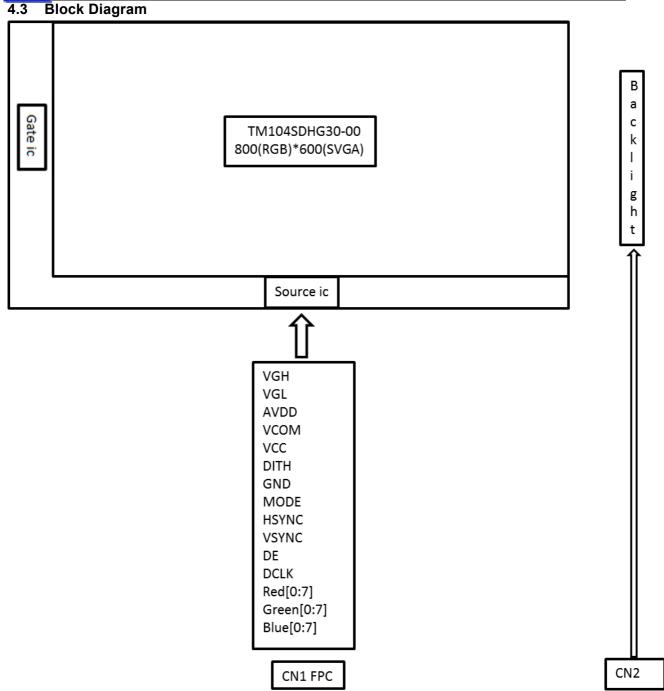
Figure 4.2 LED connection of backlight

Note 2: $I_{_{\rm F}}$ is defined for twelve channels.

Optical performance should be evaluated at Ta=25 $^{\circ}$ C only.

If LED is driven by high current, high ambient temperature & humidity condition,

The life time of LED will be reduced.

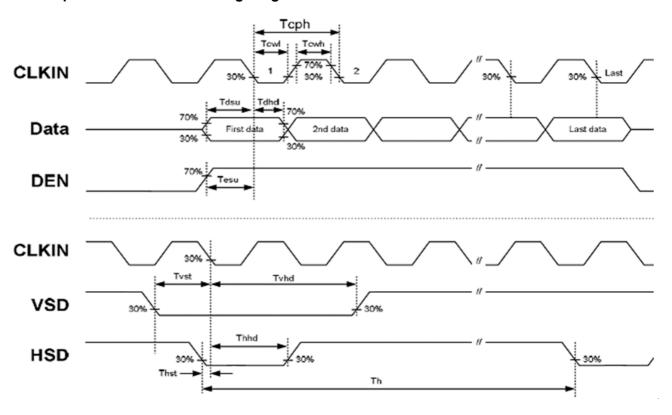

Operating life means brightness goes down to 50% of initial brightness.

Typical operating life time is estimated data.

Note3: One channel: I=20mA.

5 Timing Chart

5.1 Timing Parameter


Ta=25℃

VCC=3.3V, GND=0V,

Parameter	Symbol	Min	Тур	Max	Unit	Remark
DCLK frequency	Fclk	32.6	39.6	62.4	MHz	
DCLK cycle time	Tcph	14			ns	
DCLK pulse width	Tcw	40%	50%	60%	Tcph	
VS setup time	Tvst	5			ns	
VS hold time	Tvhd	5	-	-	ns	
HS setup time	Thst	5			ns	
HS hold time	Thhd	5	-	-	ns	
Data setup time	Tdsu	5			ns	Data to DCLK
Data hold time	Tdhd	5	-	-	ns	Data to DCLK
DE setup time	Tesu	5	-	-	ns	
DE hold time	Tehd	5	-	-	ns	

Table 5.1 timing parameter

5.2 Input Clock and Data timing Diagram:

SHANGHAI TIANMA MICRO-ELECTRONICS

Figure 5.2 Input signal data timing

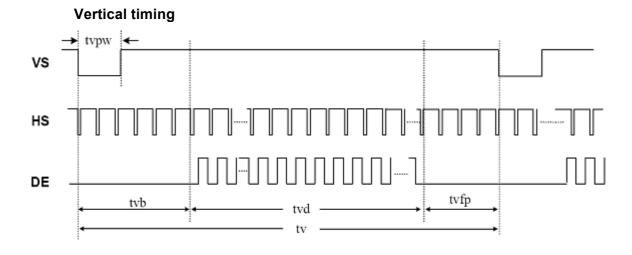
5.3 Recommended Input Timing setting of TCON

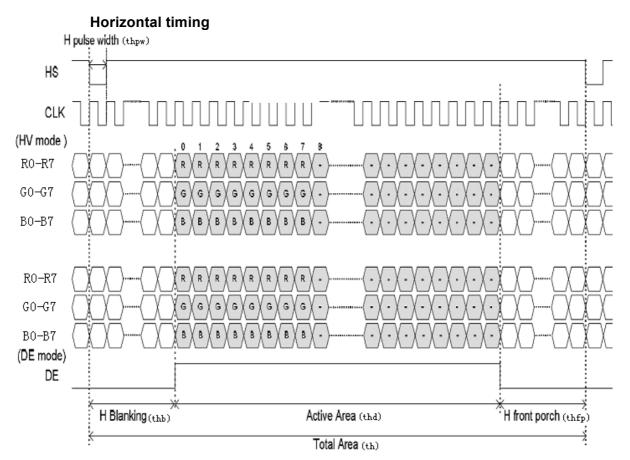
HV SYNC MODE

Parameter		Symbol	Min.	Тур.	Max.	Unit	Remarks
Dclk fi	Dclk frequency		34.5	39.6	50.4	MHz	
	Horizontal total	Th	900	1000	1200	Tclk	
	Horizontal blanking	Thb	100	200	400	Tclk	
HSD	Valid Data Width	Thd		800		Tclk	
ПОД	Pulse Width	Thpw	1	-	40	Tclk	
	Back Porch	Thb	88			Tclk	
	Front Porch	Thfp	12	112	312	Tclk	
	Frame rate	-	-	60	70	Hz	
	Vertical total	Tv	604	628	800	Th	
	Vertical blanking	Tvb	4	28	200	Th	
VSD	Valid Data Width	Tvd	600			Th	
	Pulse Width	Tvpw	1	-	20	Th	
	Back Porch	Tvb	39			Th	
	Front Porch	Tvfp	1	21	61	Th	

Note: DE signal is necessary.

● DE MODE


F	Parameter	Symbol	Min	Тур	Max	Unit	Remark
DCLK Frequency		Fclk	32.6	39.6	62.4	MHZ	
	Horizontal total	Th	890	1000	1300	tclk	
HSD	Valid Data Width	Thd	800			tclk	
	Horizontal blanking	Thb+ Thfp	90	200	500	tclk	
	Vertical total	Tv	610	660	800	th	
VSD	Valid Data Width	Tvd	600			th	
	Vertical blanking	Tvb+ Tvfp	10	60	200	th	


Note: HSD&VSD is unnecessary.

Input Timing Control Conditions

Data input timing format

5.4 Power On/Off Sequence

Item	Symbol	Min	Тур	Max	Unit	Remark
VDD 3.0V to signal starting	Tp1	0	-	50	ms	
Signal starting to backlight on	Tp2	150	-	-	ms	
Signal off to VDD 3.0V	Tp3	0	-	50	ms	
Backlight off to signal off	Tp4	150	-	-	ms	

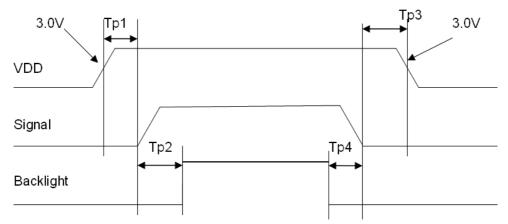
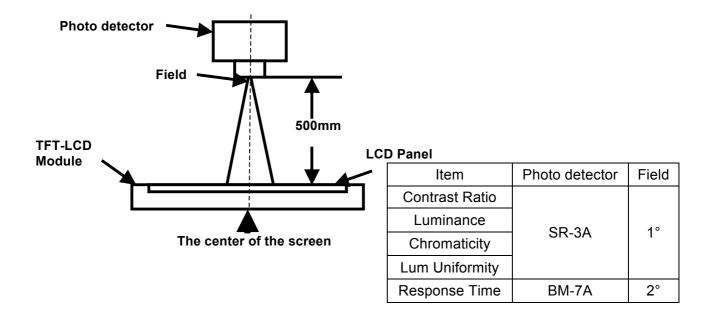


Figure 5.2 Interface power on/off sequenc

6 Optical Characteristics

6.1 Optical Specification

Ta=25


Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		θТ		50	60	-	1	
		θВ	CR 10	60	70	-		Note 2
View Angles		θL	CR 10	60	70	-	Degree	Note 2
		θR		60	70	-		
Contrast Ratio		CR	θ=0°	400	500	-	-	Note1 Note3
Doonongo Tim		T _{ON}	25℃	-	10	15	mo	Note1
Response Tim	ie	T _{OFF}	250	-	15	25	ms	Note4
	White			0.259	0.309	0.359		
	vviile	у		0.284	0.334	0.384	_	Note5 Note1
	Red	х			TBD			
Chromoticity		у	Backlight is		TBD			
Chromaticity	Green	х	on		TBD			
		у			TBD			
	Blue	х			TBD			
	blue	у			TBD			
Uniformity		U	-	75	80	-	%	Note1 Note6
NTSC		-	-	-	50	-	%	Note 5
Luminance		L		250	300	-	cd/m ²	Note1 Note7

Test Conditions:

- 1. The ambient temperature is 25±2 .humidity is 65±7%
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

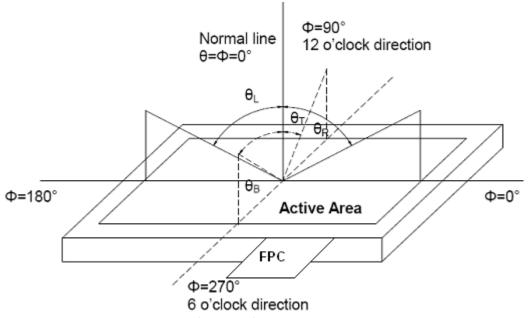
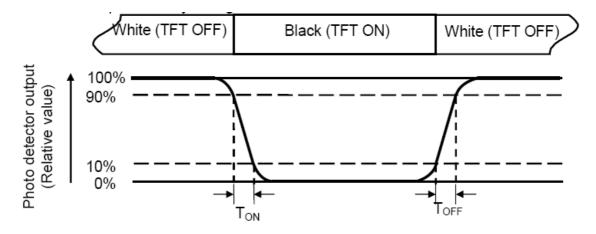


Fig. 1 Definition of viewing angle

Note 3: Definition of contrast ratio

Contrast ratio (CR) =
Luminance measured when LCD is on the "White" state

Luminance measured when LCD is on the "Black" state


"White state ": The state is that the LCD should driven by Vwhite.

"Black state": The state is that the LCD should driven by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/ Lmax

L-----Active area length W----- Active area width

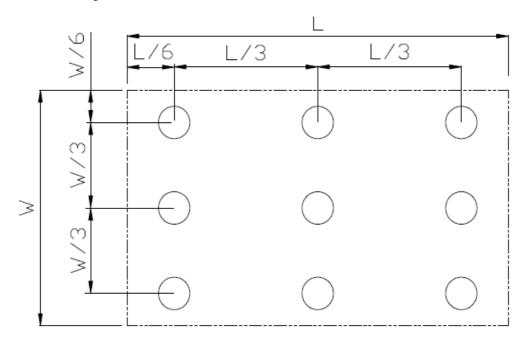


Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

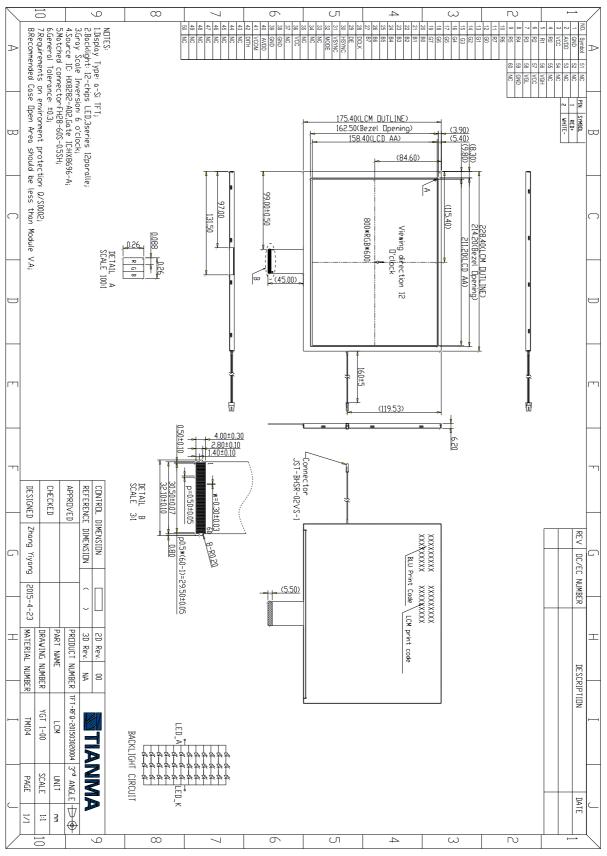
Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

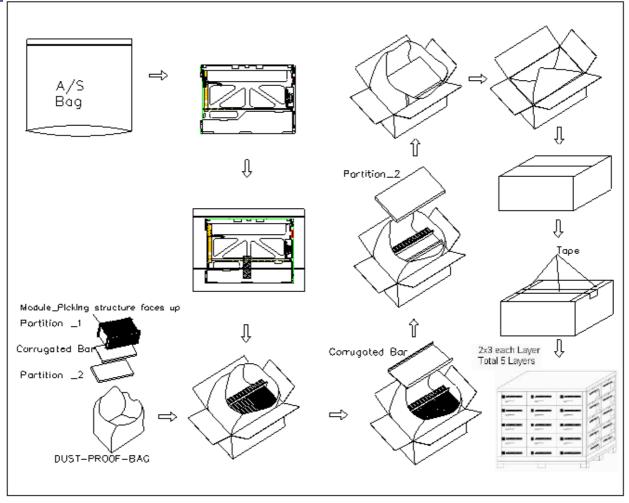
7 Environmental / Reliability Test

No	Test Item	Condition	Remark
1	High Temperature Operation	Ts=+60 , 240hrs	Note1 IEC60068-2-1:2007,GB2423.2-2008
2	Low Temperature Operation	Ta=-10 , 240hrs	IEC60068-2-1:2007 GB2423.1-2008
3	High Temperature Storage (non-operation)	Ta=+70 , 240hrs	IEC60068-2-1:2007 GB2423.2-2008
4	Low Temperature Storage (non-operation)	Ta=-20 , 240hrs	IEC60068-2-1:2007 GB2423.1-2008
5	High Temperature & High Humidity Operation	Ta = +50 , 80% RH max,240 hours	Note2 IEC60068-2-78 :2001 GB/T2423.3—2006
6	Thermal Shock (non-operation)	-10 30 min~+60 30 min, Change time:5min, 100 Cycles	Start with cold temperature, End with high temperature, IEC60068-2-14:1984,GB2423.22-2002
7	Electro Static Discharge (operation)	C=150pF,R=330Ω, Air:±8Kv, Contact:±4Kv, 10times/terminal	IEC61000-4-2:2001 GB/T17626.2-2006
8	Vibration (non-operation)	Frequency range:10 \sim 55Hz, Stroke:1.5mm Sweep:10Hz \sim 55Hz \sim 10Hz 2hours for each direction of X.Y.Z (6 hours total)	IEC60068-2-6:1982 GB/T2423 10—1995
9	Shock (non-operation)	60G 6ms, ±X,±Y,±Z 3 times for each direction	IEC60068-2-27:1987 GB/T2423.5—1995
10	Package Drop Test	Height:80 cm,1 corner, 3 edges, 6 surfaces	IEC60068-2-32:1990 GB/T2423.8—1995
11	Package Vibration Test	Random Vibration: 0.015GxG/Hz for 5-200Hz, -6dB/Octave from 200-500Hz 2 hours for each direction of X,Y,Z (6 hours total)	


Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.

8 Mechanical Drawing


SHANGHAI TIANMA MICRO-ELECTRONICS

TM104SDHG30 V1.0

9 Packing Drawing

N o	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantit y	Remark
1	LCM module	TM104SDH01	236.00x176.90x5.6 0	TBD	25	
2	Partition_1	CORRUGATED PAPER	513x333x217	1.476	1	
3	Anti-static Bag	PE	247x256x0.05	0.004	25	
4	DUST-PROOF BAG	PE	700×530	0.05	1	
5	Partition_2	CORRUGATED PAPER	505x332x4.0	0.1	2	
6	CORRUGATED	CORRUGATED PAPER	513x248	0.102	2	
7	Carton	CORRUGATED PAPER	530x350x250	1.02	1	
8	Total weight(Kg)		TBD		<u>, </u>	

10 Precautions For Use of LCD Modules

10.1 Handling Precautions

- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage Precautions

- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0 ~ 40 Relatively humidity: ≤80%

10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

10.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.