TORISAN

ENGINEERING SPECIFICATIONS

TFT COLOR LCD MODULE

TM150XG-26L10

- -38cm (15.0 inch) diagonal
- -XGA resolution ($1024 \times RGB \times 768 dots$)
- -Wide View Angle
- -LVDS Interface
- -Ear mount
- -With CFL backlight unit
- -Nonglare surface type

(TENTATIVE)

Ver.1

Jun. 3, 2002

Tottori SANYO Electric Co., Ltd. LCD Division

3-201, Minami-yoshikata, Tottori, 680-8634 Japan TEL: 81-857-21-2941, 1958 FAX: 81-857-21-2265

Department General Manager

M. OMOTE

aku

Section Manager

J. HAKUSHI

NOTICES

- 1. The contents stated in this document and the product may be subject to change without prior notice. When you kindly study to use this product, please ask us or our distributor for the latest information.
- 2. This product is developed and produced for usage onto normal electronic products (office automation equipments, communication peripherals, electric appliance products, game machines, etc.) and is not suitable for applications which need extremely high reliability and extreme safety (aero- or space-use machines, control equipments for nuclear power, life keeping equipments, etc.).
- 3. This document shall not grant or guarantee any right to adapt intellectual property or any other patents of third party.
- 4. Please use this product correctly according to operating conditions and precautions for use stated in this document. Please install safety proof in your designing to avoid human accident, fire accident and social damage, which may be resulted from malfunction of this product.
- 5. This product is not designed to withstand against radiant rays.
- 6. It is strictly prohibited to copy or publish a part or whole of this document without our prior written approval.

REVISIO	N HISTORY		
DATE	REVISION NO.	PAGE	DESCRIPTIONS
Jun.3, 02	Ver.1	-	Initial Release.
Tottori SA	ANYO Electr	ic Co., Ltd.	. TM150XG-26L10 Ver.1 Page 1/17

MECHANICAL CHARACTERISTICS

ITEM	SPECIFICATION	UNIT
LCD module size	331.6(W) ×254.75(H) ×13.55(T)	mm
Resolution	1024 × RGB(W) × 768(H)	pixel
Sub pixel pitch	0.099(W) × 0.297(H)	mm
Pixel pitch	0.297(W) × 0.297(H)	mm
Active viewing area	304.1(W) × 228.1(H)	mm
Bezel opening area	307.2(W) × 231.1(H)	mm
Weight	1220 TYP.	g

ELECTRICAL ABSOLUTE MAXIMUM RATINGS

					Ta=25 °C
ITEM	SYMBOL	MIN	MAX	UNIT	NOTE
Power supply voltage	VDD-VSS	-0.3	4.0	V	
Input voltage	VI	Vss-0.3	VDD+0.3	V	
CFL lamp current	IL IL	-	6.5	mA	

ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

Ta=25 °C

ITEM	SYMBOL	CONDITIONS	MIN	MAX	UNIT	NOTE
Ambient	Tst	Storage	-20	60	С°	Note 1
temperature	TOP	Operation	0	50		
Humidity	-	Ta=40 °C max.	-	85	%RH	No condensation
						Note 2
Vibration	-	Storage	-	1.5	G	Note 3
Shock	-	Storage	-	50	G	XYZ
						11ms/direction

[Note 1] Care should be taken so that the LCD module may not be subjected to the temperature beyond this specification.

[Note 2] Ta>40°C: Absolute humidity shall be less than that of 85%RH/40°C.

[Note 3] 10-200Hz, 30min/cycle, X/Y/Z each one cycle and except for resonant frequency.

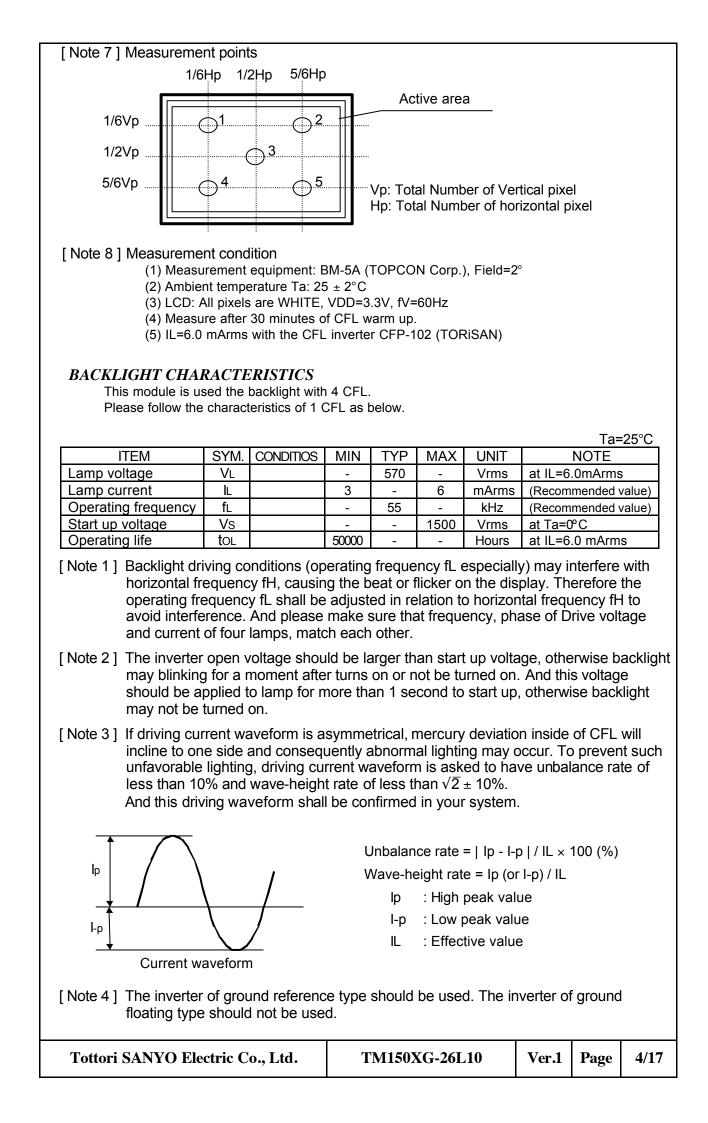
ELECTRICAL CHARACTERISTICS

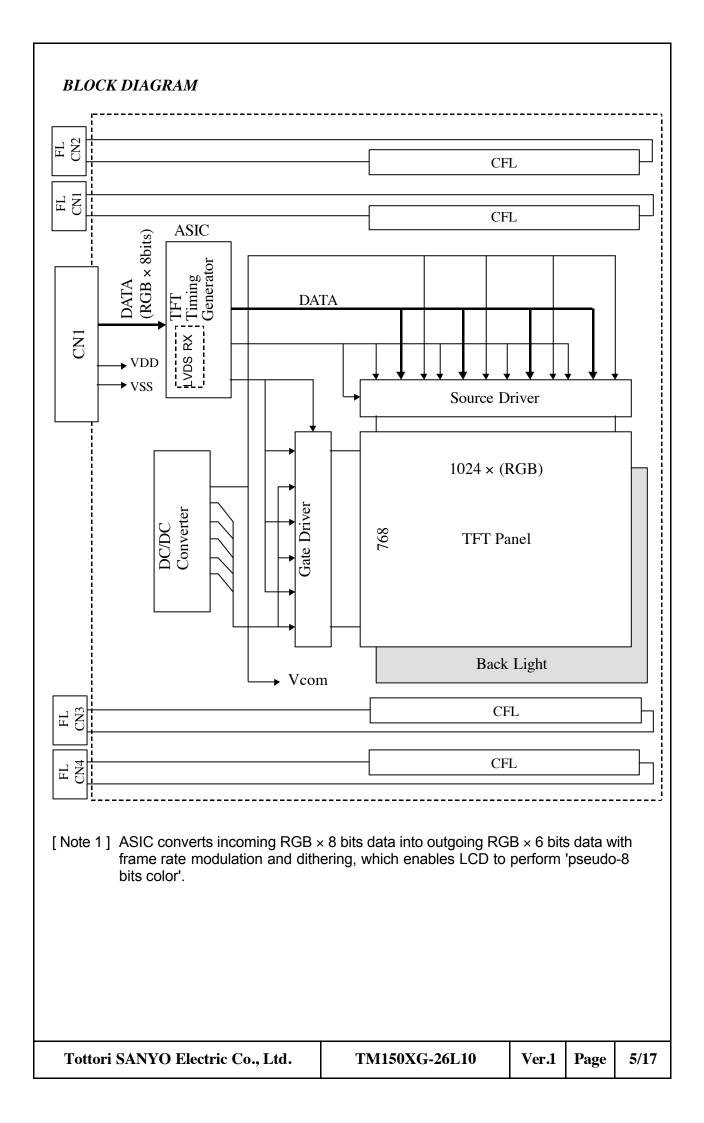
			VDD=3.	3V ,f∨=6	0Hz ,fcL	к=65Mł	Hz ,Ta=25°C
ITEM	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	NOTE
Power supply voltage	VDD-VSS		3.0	3.3	3.6	V	
LVDS input	Vih	High level	-	-	+100	mV	Vcm=1.2V
threshold voltage	V⊾	Low level	-100	-	1	IIIV	
LVDS input common Mode voltage			1.0	1.2	1.4	V	
LVDS input termination resister	R⊤			100		Ω	Internal
Power Supply current	IDD	Note 1	-	470	800	mA	

[Note 1] Under the following display image :

Typ. value : Display pattern is 256 gray scale bar.

[Note 2] VCM : Common Mode Voltage of LVDS input.


OPTICAL CHARACTERISTICS


Tottori SANYO Electric Co., Ltd.

Brightness uniformity $\phi = 0^{\circ}$ - - 1.30 - No Contrast ratio CR $\phi = 0^{\circ}$ 300 500 - - No Viewing angle range ϕ CR>10 $\frac{\theta = 0^{\circ}}{\theta = 90^{\circ}}$ 60 70 - ϕ No Viewing angle range ϕ CR>10 $\frac{\theta = 0^{\circ}}{\theta = 90^{\circ}}$ 60 70 - ϕ ϕ No Response Rise tr $\phi = 0^{\circ}$ - 20 - ms. No Color of CIE Red χ $\phi = 0^{\circ}$ - 50 0.623 0.623 0.653 Green χ $\phi = 0^{\circ}$ - 0.507 0.597 0.627 - No Blue χ $\phi = 0^{\circ}$ 0.264 0.294 0.324 - No 0.264 0.294 0.324 0.281 0.311 0.341 - No	/, f∨=60H NOTE
Brightness uniformity $\phi = 0^{\circ}$ $ 1.30$ $-$ No Contrast ratio CR $\phi = 0^{\circ}$ 300 500 $ -$ No Viewing angle range ϕ CR>10 $\theta = 90^{\circ}$ 60 70 $-$ No Response Rise tr $\phi = 0^{\circ}$ $ 200$ $ 00^{\circ}$ Response Rise tr $\phi = 0^{\circ}$ $ 200^{\circ}$ $ 200^{\circ}$ $ 0.593$ 0.623 0.653 $-$ No Color of CIE Green x 0.567 0.597 0.627 $-$ N 0.0567 0.597 0.627 0.112 0.142 0.172 $-$ N 0.264 0.294 0.324 0.324 0.224 0.324 0.224 0.324 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.294 0.224 0.221 0.667 <	Note 5,8
Viewing angle range ϕ $CR>10$ $\frac{\theta = 0^{\circ}}{\theta = 90^{\circ}}$ $\frac{60}{60}$ $\frac{70}{70}$ - $\frac{1}{\theta = 180^{\circ}}$ $\frac{40}{40}$ $\frac{55}{55}$ - $\frac{1}{\theta = 270^{\circ}}$ $\frac{60}{60}$ $\frac{70}{70}$ - $\frac{20}{20}$ - $\frac{1}{20}$ $\frac{100}{\theta = 270^{\circ}}$ $\frac{100}{0.621}$ $\frac{100}{0.623}$ $\frac{100}{0.623}$ $\frac{100}{0.623}$ $\frac{100}{0.623}$ $\frac{100}{0.623}$ $\frac{100}{0.627}$ - $\frac{100}{0.627}$	lote 5,6,8
Viewing angle range ϕ CR>10 $\frac{\theta = 90^{\circ}}{\theta = 180^{\circ}} \frac{60}{40} \frac{70}{50} \frac{1}{-0} \frac{1}{\theta = 270^{\circ}} \frac{1}{60} \frac{70}{70} \frac{1}{-0} \frac{1}{\theta = 270^{\circ}} \frac{1}{60} \frac{70}{70} \frac{1}{-0} \frac{1}{\theta = 270^{\circ}} \frac{1}{60} \frac{1}{70} \frac{1}{-0} \frac{1}{10} \frac{1}{\theta = 270^{\circ}} \frac{1}{60} \frac{1}{70} \frac{1}{-0} \frac{1}{10} \frac{1}{\theta = 270^{\circ}} \frac{1}{0} \frac{1}$	lote 2,4,8
Viewing angle range φ CHS10 $\frac{\theta = 180^{\circ}}{\theta = 270^{\circ}} \frac{40}{60} \frac{55}{70} \frac{1}{20} \frac{1}{200^{\circ}} \frac{1}{200} \frac{1}{200^{\circ}} \frac$	
Response Rise tr ime Fall tf $\varphi = 0^{\circ}$ - 20 - ms. No $\varphi = 0^{\circ}$ - 5 - ms. No $\varphi = 0^{\circ}$ - 0.593 - 0.623 - 0.653 $\varphi = 0^{\circ}$ - 0.597 - 0.627 $\varphi = 0^{\circ}$ - 0.112 - 0.142 - 0.172 $\varphi = 0.264 - 0.294 - 0.324$ $\varphi = 0^{\circ}$ - 0.445 - 0.075 - 0.105 $\varphi = 0.264 - 0.294 - 0.324$ $\varphi = 0^{\circ}$ - 0.445 - 0.075 - 0.105 $\varphi = 0.264 - 0.294 - 0.324$ $\varphi = 0^{\circ}$ - 0.445 - 0.075 - 0.105 $\varphi = 0.264 - 0.294 - 0.324$ $\varphi = 0^{\circ}$ - 0.445 - 0.075 - 0.105 $\varphi = 0.264 - 0.294 - 0.324$ $\varphi = 0^{\circ}$ - 0.445 - 0.075 - 0.105 $\varphi = 0.264 - 0.294 - 0.324$ $\varphi = 0^{\circ}$ - 0.445 - 0.075 - 0.105 $\varphi = 0.264 - 0.294 - 0.324$ $\varphi = 0^{\circ}$ - 0.445 - 0.075 - 0.105 $\varphi = 0.264 - 0.294 - 0.324$ $\varphi = 0^{\circ}$ - 0.445 - 0.075 - 0.105 $\varphi = 0.264 - 0.294 - 0.324$ $\varphi = 0^{\circ}$ - 0.445 - 0.075 - 0.105 $\varphi = 0^{\circ}$ - 0.445 - 0.075 - 0.105 - 0.445 - 0.075 - 0.105 Note 1] φ and φ [Note 3] Response time Note 2] Contrast ratio "CR" $CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Maximum brightness of 5 points Brightness uniformity = -0.445 - 0.455 - 0.4	Note 1,2,
Response timeRise Falltr tf $\phi = 0^{\circ}$ $-$ 20 $-$ 5 $-$ 5ms.NoColor of CIE CoordinateRed W Blue White White White White White White T $\phi = 0^{\circ}$ 0.593 0.627 0.112 	4,8
time Fall tf $\varphi = 0^{\circ}$ Red x Color of CIE Coordinate Q Q Q Q Q Q Q Q	
$\frac{\text{Intre}}{\text{Color of CIE}} \begin{array}{ c c } \hline \text{Red} & \frac{1}{Y} & \frac{1}{2} & \frac{1}{$	lote 3,4,8
Color of CIE Coordinate $ \begin{array}{c c} \hline Red & y \\ \hline Green & x \\ \hline Green & y \\ \hline Hue & y \\ \hline Blue & y \\ \hline White & x \\ \hline White & y \\ $	
Color of CIE Coordinate $ \begin{array}{c} 0.311 & 0.341 & 0.371 \\ 0.264 & 0.294 & 0.324 \\ 0.567 & 0.597 & 0.627 \\ 0.112 & 0.142 & 0.172 \\ 0.045 & 0.075 & 0.105 \\ 0.264 & 0.294 & 0.324 \\ 0.281 & 0.311 & 0.341 \\ \end{array} $ $ \begin{array}{c} \theta = 180^{\circ} & \varphi \\ \theta = 270^{\circ} & \varphi \\ \theta = 0^{\circ} & \varphi \\ \theta = 0^$	
Color of CIE Coordinate $\begin{array}{ c c c c } \hline Creen & \hline y \\ \hline Blue & \hline x \\ \hline White & \hline y \\ \hline \hline \hline White & \hline y \\ \hline \hline \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	
Coordinate $\boxed{\text{Blue } \frac{x}{y}}{\text{White } \frac{y}{y}} \stackrel{\varphi = 0^{\circ}}{\text{White } \frac{y}{y}} \varphi = 0^{\circ$	
Coordinate Blue $\frac{1}{x}$ $\frac{1}{y}$	Note 4,8
Whitex 0.264 0.294 0.324 0.281 0.311 0.341 0.281 0.291 0.321 0.900 <td></td>	
while y 0.281 0.311 0.341 $\theta = 180^{\circ}$ φ $\theta = 90^{\circ}$ $\theta = 0^{\circ}$ $\theta = 0^{$	
$\theta = 180^{\circ} \qquad \qquad$	
$\theta = 270^{\circ} \qquad \qquad$	
$\theta = 270^{\circ}$ $\theta = 90^{\circ}$ $\theta = 90^{\circ}$ $\theta = 90^{\circ}$ $\theta = 0^{\circ}$ Note 1] ϕ and θ [Note 3] Response time Note 2] Contrast ratio "CR" $CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Brightness uniformity = $\frac{Maximum brightness of 5 points}{2}$	Black
$\theta = 270^{\circ}$ $\theta = 90^{\circ}$ $\theta = 90^{\circ}$ $\theta = 90^{\circ}$ $\theta = 0^{\circ}$ Note 1] ϕ and θ [Note 3] Response time Note 2] Contrast ratio "CR" $CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Brightness uniformity = $\frac{Maximum brightness of 5 points}{Maximum brightness of 5 points}$	
$e^{=270^{\circ}} \qquad \qquad e^{=90^{\circ}} \qquad e^{=90^{\circ}}$	
Note 1] ϕ and θ [Note 3] Response time Note 2] Contrast ratio "CR" $CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Brightness uniformity = $\frac{Maximum brightness of 5 points}{Maximum brightness of 5 points}$	
Note 1] ϕ and θ [Note 3] Response time Note 2] Contrast ratio "CR" $CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Brightness uniformity = <u>Maximum brightness of 5 points</u>	k-
Note 1] ϕ and θ [Note 3] Response time Note 2] Contrast ratio "CR" $CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Brightness uniformity = $\frac{Maximum brightness of 5 points}{2}$	
Note 1] ϕ and θ [Note 3] Response time Note 2] Contrast ratio "CR" $CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Brightness uniformity = $\frac{Maximum brightness of 5 points}{2}$	
Note 1] ϕ and θ [Note 3] Response time Note 2] Contrast ratio "CR" $CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Brightness uniformity = <u>Maximum brightness of 5 points</u>	←
Note 2] Contrast ratio "CR" $CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Brightness uniformity = $\frac{Maximum brightness of 5 points}{Maximum brightness of 5 points}$	
$CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. $\frac{Maximum brightness of 5 points}{Brightness uniformity} = \frac{Maximum brightness of 5 points}{Brightness} = \frac{Maximum brightness of 5 points}{Brightness} = \frac{Maximum brightness of 5 points}{Brightness} = \frac{Maximum brightness}{Brightness} = \frac{Maximum brightness}{Brightness$	
$CR = \frac{Brightness at White}{Brightness at Black}$ Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. $\frac{Maximum brightness of 5 points}{Brightness uniformity} = \frac{Maximum brightness of 5 points}{Brightness} = \frac{Maximum brightness of 5 points}{Brightness} = \frac{Maximum brightness of 5 points}{Brightness} = \frac{Maximum brightness}{Brightness} = \frac{Maximum brightness}{Brightness$	
CR = Brightness at Black Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Brightness uniformity = Maximum brightness of 5 points	
Note 4] This shall be measured at center point No.3 of Note 7. Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. <u>Maximum brightness of 5 points</u>	
Note 5] The brightness shall be the average of the following 5 points of Note 7. Note 6] The brightness uniformity shall be calculated by using following formula. Brightness uniformity =	
Note 6] The brightness uniformity shall be calculated by using following formula. Maximum brightness of 5 points	
Note 6] The brightness uniformity shall be calculated by using following formula. Maximum brightness of 5 points	
Brightness uniformity =	
Brightness uniformity =	
Minimum brightness of 5 points	

TM150XG-26L10

Ver.1 | Page | 3/17

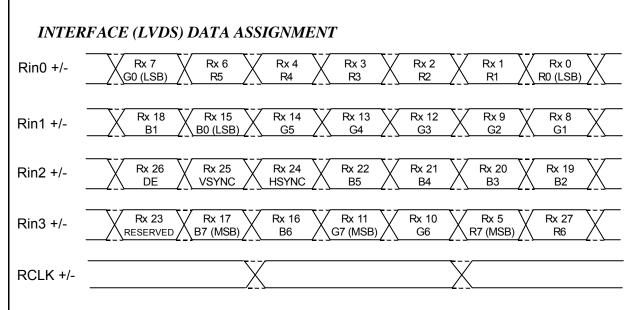
INTERFACE PIN CONNECTIONS

LCM : CN1

SYMBOL	FUNCTION
Vdd	Power Supply (3.3V normal)
Vdd	Power Supply (3.3V normal)
Vss	Ground
Vss	Ground
Rin0-	Receiver Signal (-)
Rin0+	Receiver Signal (+)
Vss	Ground
Rin1-	Receiver Signal (-)
Rin1+	Receiver Signal (+)
Vss	Ground
Rin2-	Receiver Signal (-)
Rin2+	Receiver Signal (+)
Vss	Ground
RCLK-	Clock Signal (-)
RCLK+	Clock Signal (+)
Vss	Ground
Rin3-	Receiver Signal (-)
Rin3+	Receiver Signal (+)
Vss	Ground
NC	Reserved
	VDD VDD VSS VSS Rin0- Rin0+ VSS Rin1- Rin1+ VSS Rin2- Rin2+ VSS RCLK- RCLK- RCLK+ VSS Rin3- Rin3+ VSS

CN1 : DF14H-20P-1.25H (HIROSE)

Suitable mating connector: DF14-20S-1.25 (HIROSE)


[Note 1] Internal termination resistors of LVDS input lines are 100 ohms.

Back Light : FLCN1,2,3,4

PIN NO.	SYMBOL	FUNCTION
1	H.V	High voltage for CFL
2	LGND	Low voltage for CFL

FLCN1,2,3,4 : BHSR-02VS-1 (JST) Suitable mating connector: SM02B-BHSS-1-TB (JST)

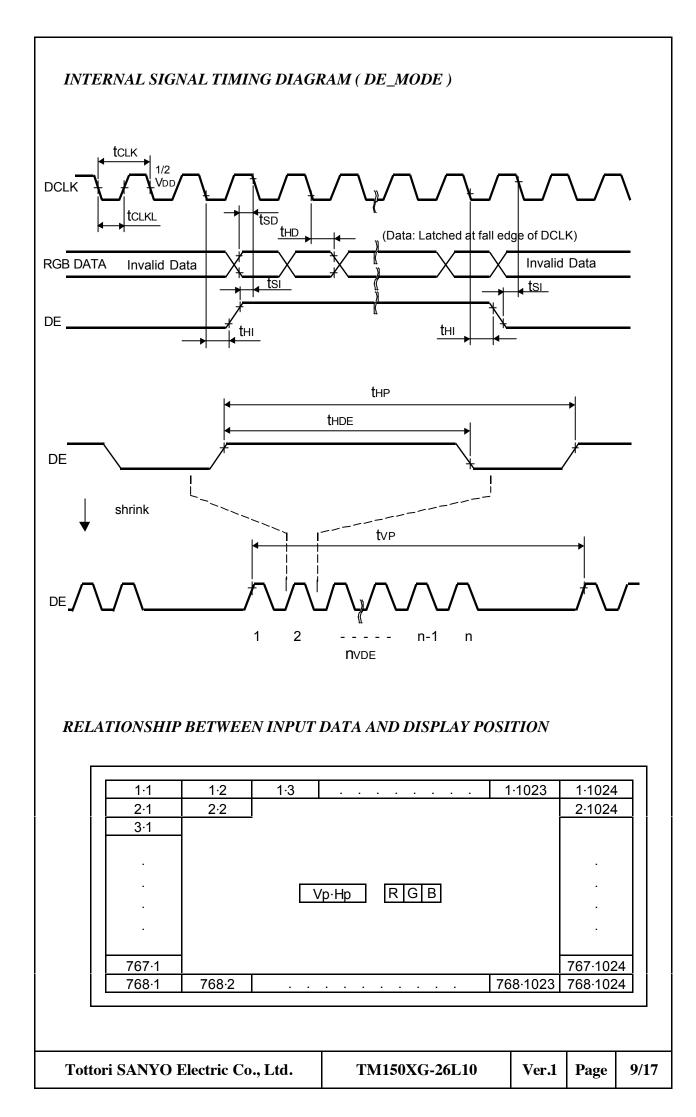
Tottori SANYO Electric Co., Ltd.	TM150XG-26L10	Ver.1	Page	6/17
· · · · · · · · · · · · · · · · · · ·			0	

INTERFACE SIGNALS

SYMBOL		FUNCTION						
DCLK	Data Clock							
HSYNC	Horizontal Sync - This sig	gnal initiates a new line(negative).					
VSYNC	Vertical Sync - This signa	al initiates a new frame(negative)).					
DE	Data Enable (positi	ve)						
R0	Red Data (LSB)							
R1	Red Data							
R2	Red Data							
R3	Red Data							
R4	Red Data							
R5	Red Data							
R6	Red Data							
R7	Red Data (MSB)							
G0	Green Data (LSB)							
G1	Green Data							
G2	Green Data							
G3	Green Data							
G4	Green Data							
G5	Green Data							
G6	Green Data							
G7	Green Data (MSB)							
B0	Blue Data (LSB)							
B1	Blue Data							
B2	Blue Data							
B3	Blue Data							
B4	Blue Data							
B5	Blue Data							
B6	Blue Data							
B7	Blue Data (MSB)							
	[Note 1] The valid synchronous signals are DCLK and DE, HSYNC and VSYNC are invalid.							
[Note 2] INTE with L	[Note 2] INTERFACE SIGNALS are loaded from LVDS-transmitter to TFT Timing generator with LVDS sequence. (See BLOCK DIAGRAM.)							
Tottori SAN	YO Electric Co., Ltd.	TM150XG-26L10	Ver.1	Page	7/17			

INTERNAL SIGNAL TIMING PARAMETERS (DE_MODE)

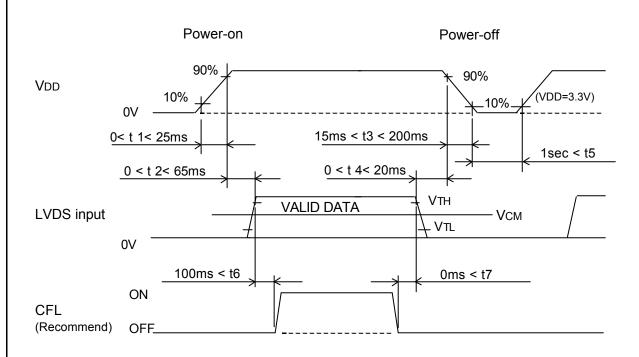
PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT	NOTE
DCLK	Frequency	fclk	60.0	65.0	79.0	MHz	tclk=1/fclk
DOLK	Duty	D	(0.35)	0.50	(0.65)	-	D=tCLKL/tCLK
	Setup Time	tsi	(2.5)	-	-	ns	for DCLK
DE	Hold Time	tнı	(0)	-	-	ns	
	Horiz. Period	tHP	1050	1344	1800	tc∟ĸ	
DE	Horiz. DE	tHDE	1024	1024	1024	tc∟ĸ	
	Vert. Period	tvp	780	806	860	tHP	f∨=60Hz Typ.
	Vert. DE	N VDE	768	768	768	n	
DATA	Setup Time	tsD	(2.5)	-	-	ns	for DCLK
DATA	Hold Time	tHD	(0)	-	-	ns	


[Note 1] Definition of Vertical Frequency fv and Horizontal Frequency fH:

fH (Horizontal Frequency) = $1/t_{HP}$ fv (Vertical Frequency) = $1/t_{VP}$

[Note 2] These signal timing parameters are specified at the digital input of LVDS transmitter. With respect to setup time and hold time for DE and DATA signals, please refer to input signal specification of LVDS transmitter.

Recommended LVDS transmitter : DS90C385(NS)


Tottori SANYO Electric Co., Ltd.TM150XG-26L10Ver.1Page8/12	Tottori SANYO Electric Co., Ltd.	TM150XG-26L10	Ver.1	Page	8/17
--	----------------------------------	---------------	-------	------	------

RELATIONSHIP BETWEEN INPUT DATA AND DISPLAY COLOR

					G DATA								140	B DATA											
			MSB LSB M G7 G6 G5 G4 G3 G2 G1 G0 E						MSI B7																
	BLACK	R/ L	R0 L	кэ L	R4 L	К3 L	R∠ L	L	RU L	L	Go L	GO	G4 L	63	L		L	в/ L	B6 L	1 80	B4 L	БЗ	B2 L	B1	B
	RED(255)	L H	L H	L H	L H	L H	L H	L	L H		L		L		L			L			L				
	GREEN(255)	L	L	L	L	L	L	L		H	H	H	H	H	H	H	H	L					L		
5	BLUE(255)	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	
	CYAN	L	L	L	L	L	L	L	L	н	Н	H	H	Н	н	Н	н	Н	н	Н	н	H	Н	н	ŀ
\mathbf{n}	MAGENTA	н	Н	H	н	H	H	H	Н	L	L	L	L	L	L	L	L	Н	н	Н	Н	H	Н	Н	
'n	YELLOW	Н	Н	H	H	Н	Н	H	Н	H	Н	H	H	H	Н	H	H	L	L		L	L	L	L	
	WHITE	H	н	Н	н	Н	Н	Н	н	н	н	Н	Н	н	н	н	Н	H	H	H	H	H	H	Н	ŀ
-	BLACK	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Ĺ
	RED(1) *	-	-	-	-	L	-	-	H	-	-	-	-	-	-	1	-	-	-	1	-	-	-	-	1
	RED(2) *	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	l
	RED(3) *	L	L	L	L	L	L	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Ī
	RED(4)	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	1
ב שנו שנו	:													:								:			
	RED(251) *	Н	Н	Н	Н	Н	L	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
	RED(252)	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
	RED(253)	Н	Н	Н	Н	Н	Н	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	l
	RED(254)	Н	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
	, RED(255)	Н	Н	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	l
	BLACK	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	l
	GREEN(1) *	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	l
	GREEN(2) *	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	l
	GREEN(3) *	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	Н	L	L	L	L	L	L	L	
; l	GREEN(4)	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L
	:																					:			
5	GREEN(251) *	L	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	L	L	L	L	L	L	L	l
	GREEN(252)	L	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	I
	GREEN(253)	L	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	L	Н	L	L	L	L	L	L	L	Ĺ
	GREEN(254)	L	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L	l
-	GREEN(255)	L	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	l
	BLACK	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	l
	BLUE(1) *	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	ł
	BLUE(2) *	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	Ľ
	BLUE(3) *	L	L	L	L	L	L	L	L	L	L	L	L		L	L	L	L	L	L	L	L	L	Н	ŀ
ł	BLUE(4)	L	L	L	L	L	L	L	L		L	L	L	L	L	L	L	L	L	L	L	L	Н	L	
		, ,	,			. 1																			.
	BLUE(251) *	L	L		L	L	L	L	L									Н	н	Н	н	Н		Н	Ι.
	BLUE(252)	L	L	L	L	L	L	L					L					Н	н	н	н	Н	Н		
	BLUE(253)	L	L	L	L	L	L				L				L			Н	Н	Н	н	Н	Н		
	BLUE(254) BLUE(255)	L	L		L	L	L	L										H H	H H	H H	H H	H H	H H	H H	
	lote 1] Cole lote 2] '*' M							-	•			-		atio	n a	nd	dith	erir	ıg.						
-	Fottori SANY		Ele	etr	ic (I.t	d.			r	ГM	15(3-2	6L 1	10		v	/er.	1	Pa	JР	1	0/

POWER ON/OFF SEQUENCE REQUIREMENT

When the power is off, LVDS input must be kept at either low level or high impedance.

Power sequence for CFL (backlight) is not specified especially, however it is recommended to consider some timing difference between LVDS input as shown above.

If backlight lights on before LCD starts function, or if backlight is kept on after LCD stopped function, screen may look white for a moment or abnormal image may be displayed.

This is caused by variation in output signal from timing generator at LVDS input on or off. It does not cause damage to liquid crystal molecule and driving circuit.

Tottori SANYO Electric Co., Ltd.	TM150XG-26L10	Ver.1	Page	11/17

PRECAUTIONS (INSTRUCTIONS FOR SAFE AND PROPER USE)

1. Instructions for safety

(1) Please do not disassemble or modify LCD module to avoid the possibility of electric shock, damage of electronic components, scratch at display surface and invasion of foreign particles. In addition, such activity may result in fire accident due to burning of electronic component.

LCD module disassembled or modified by customer is out of warranty.

- (2) Please be careful in handling of LCD module with broken glass. When the display glass breaks, please pay attention not to injure your fingers. The display surface has the plastic film attached, which prevents dispersion of glass pieces, however touching broken edge will injure your fingers. Also CFL (Cold Cathode Fluorescent Lamp) is made of glass, therefore please pay attention in the same way.
- (3) Please do not touch the fluid flown out of broken display glass. If the fluid should stick to hand or clothes, wipe off with soap or alcohol immediately and then wash it with water. If the fluid should get in eyes, wash eyes immediately with washing lotion for more than 15 minutes and then consult the doctor.
- (4) Please make secure connection of CFL connector.

Please make sure that CFL connector from LCD module is connected with output connector on inverter circuit securely. Poor connection may cause smoke or fire accident due to high voltage in circuit. If connection may not be secure, please switch off the power supply for LCD module and CFL and then make secure connection.

Please do not make connection with another connector than recommended mating connector.

- (5) CFL contains mercury inside. Please follow regulations or rules established by local autonomy at its disposal.
- Please be careful to electric shock.
 Before handling LCD module, please switch off the power supply.
 Since high voltage is applied to CFL terminal, cable, connector and inverter circuit in operation mode, touching them will cause electric shock.

2. Instructions for designing

(1) Mounting of LCD

Please fix LCD module at all mounting flanges shown in this specification for installation onto system. The used screws should have proper dimensions. Furthermore, designing of mounting parts should be adequate so that LCD module is not warped or twisted, to achieve good display quality.

(2) Polarity of power supply for CFL

Please give careful consideration in designing so that each polar of cable should be connected correctly at assembling (i.e. high voltage side is connected to high voltage side and low voltage side is connected to low voltage side). Since longer CFL cable may cause insatiable start-up of CFL and reduction of brightness, please make cable short as much as possible.

- Protection against dust and stain LCD module should be handled in circumstance as clean as possible.
 It is recommended to wear fingerstalls or ductless and soft gloves before handling to avoid getting dust or stain on display surface.
- (3) Protection film for display surface It is recommended to remove protection film at nearly final process of assembling to avoid getting scratch or dust. To remove film, please pick up its edge with dullhead tweezers or cellophane tape at first and then remove film gradually taking more than 3 seconds. If film is removed quickly, static electricity may be generated and may damage semiconductors or electronic components.
- (4) Contamination of display surface When display surface of LCD module is contaminated, please wipe the surface softly with cotton swab or clean cloth. If it is not enough, please take it away with cellophane tape or wipe the surface with cotton swab or clean cloth containing benzine. In this case, please be careful so that benzine does not get in inside of LCD module, because it may be damaged.
- (5) Water drop on LCD surface Please do not leave LCD module with water drop. When the display surface gets water drop, please wipe it off with cotton swab or soft cloth immediately, otherwise display surface will be deteriorated. If water gets in inside of LCD module, circuit may be damaged.
- (6) Please make sure that LCD module is not warped or twisted at installation into system. Even temporary warp or twist may be the cause for failure.
- (7) Mechanical stress Please be careful not to apply strong mechanical stress like drop or shock to LCD module. Such stress may cause break of display glass and Lamp or may be the cause for failure.
- (8) Pressure to display surface Please be careful not to apply strong pressure to display surface. Such pressure may cause scratches at surface or may be the cause of failure.
- (9) Protection against scratch Please be careful not to hit, press or rub the display surface with hard material like tools. In addition, please do not put heavy or hard material on display surface, and do not stack LCD modules. Polarizer at front surface can be easily scratched.
- (10) Plugging in of connector Please be careful not to apply strong stress to connector part of LCD module at plugging in or out, because strong stress may damage the inside connection. At plugging in connector, place LCD module on the flat surface and hold the backside of connector on LCD module. Please make sure that connector is plugged in correctly. Insecure connection may be the cause for failure during operation. In addition, please be careful not to put the connecting cable between cabinet of system and LCD module at installing LCD module into system.
- (11) Handling of CFL cable and FPC (Flexible Printed Circuit) Please be careful not to pull or scratch CFL cable, because CFL or soldered part of cable may be damaged consequently. Also FPC should not be pulled or scratched.
- (12) Switching off before plugging in connector
 Please make sure that power is switched off before plugging in connector.
 If power is on at plugging in or out, circuit of LCD module may be damaged.
 When LCD is switched on for test or inspection, please make sure that power supply and input signals of driving system meet the specified power sequence.

Tottori SANYO Electric Co., Ltd.	TM150XG-26L10	Ver.1	Page	14/17

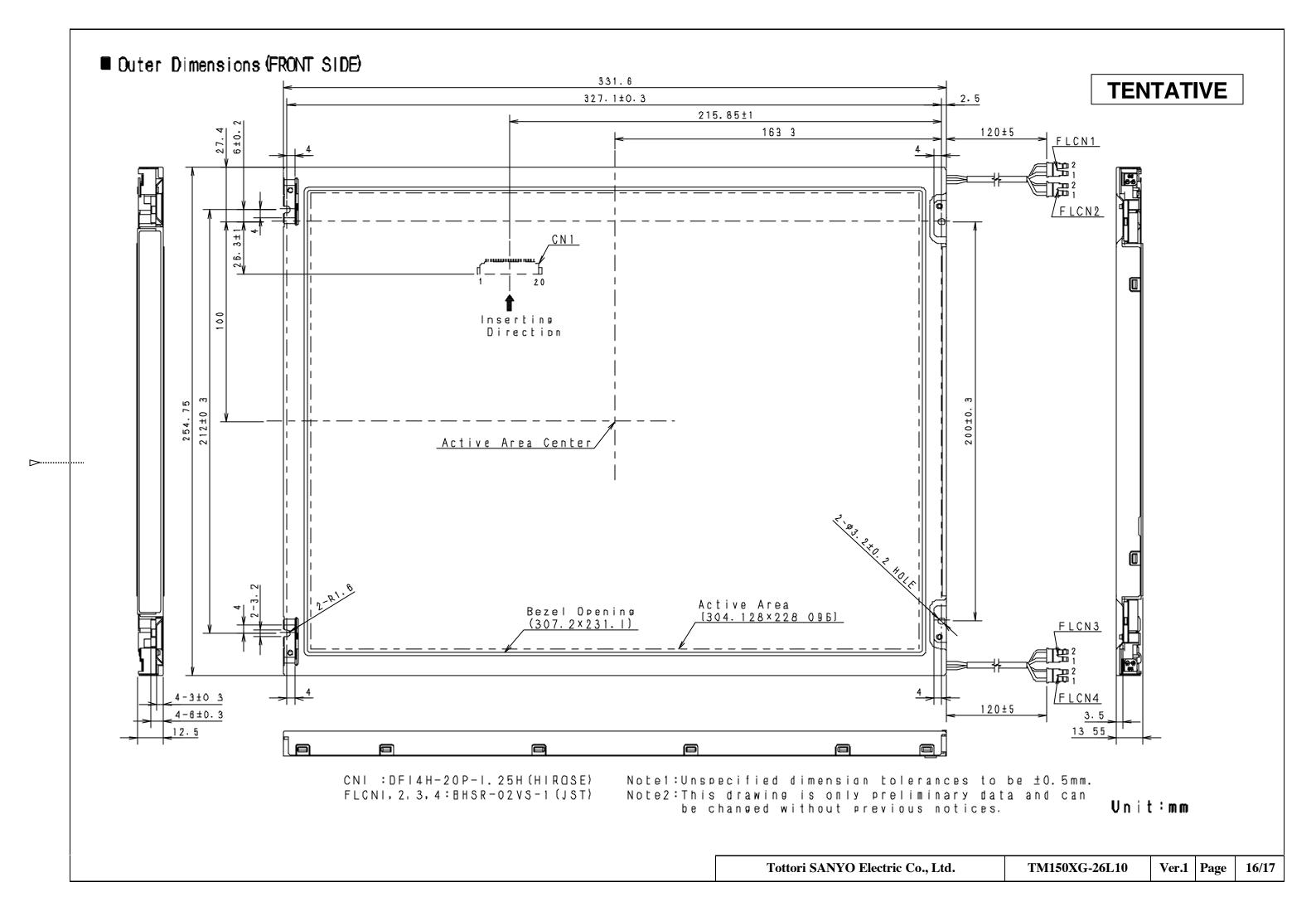
- (13) Temperature dependence of LCD display Response speed (optical response) of LCD display is dependent on temperature. Under low temperature, response speed is slower. Also brightness and chromaticity change slightly depending on temperature.
- (14) Slow light-up of CFL under low temperature Under low temperature, start-up of CFL gets difficult. (The time from switch-on to stable lighting becomes longer.) As characteristic of CFL, operation under low temperature makes the life time shorter. To avoid this, it is recommended to operate under normal temperature.
- (15) Condensation

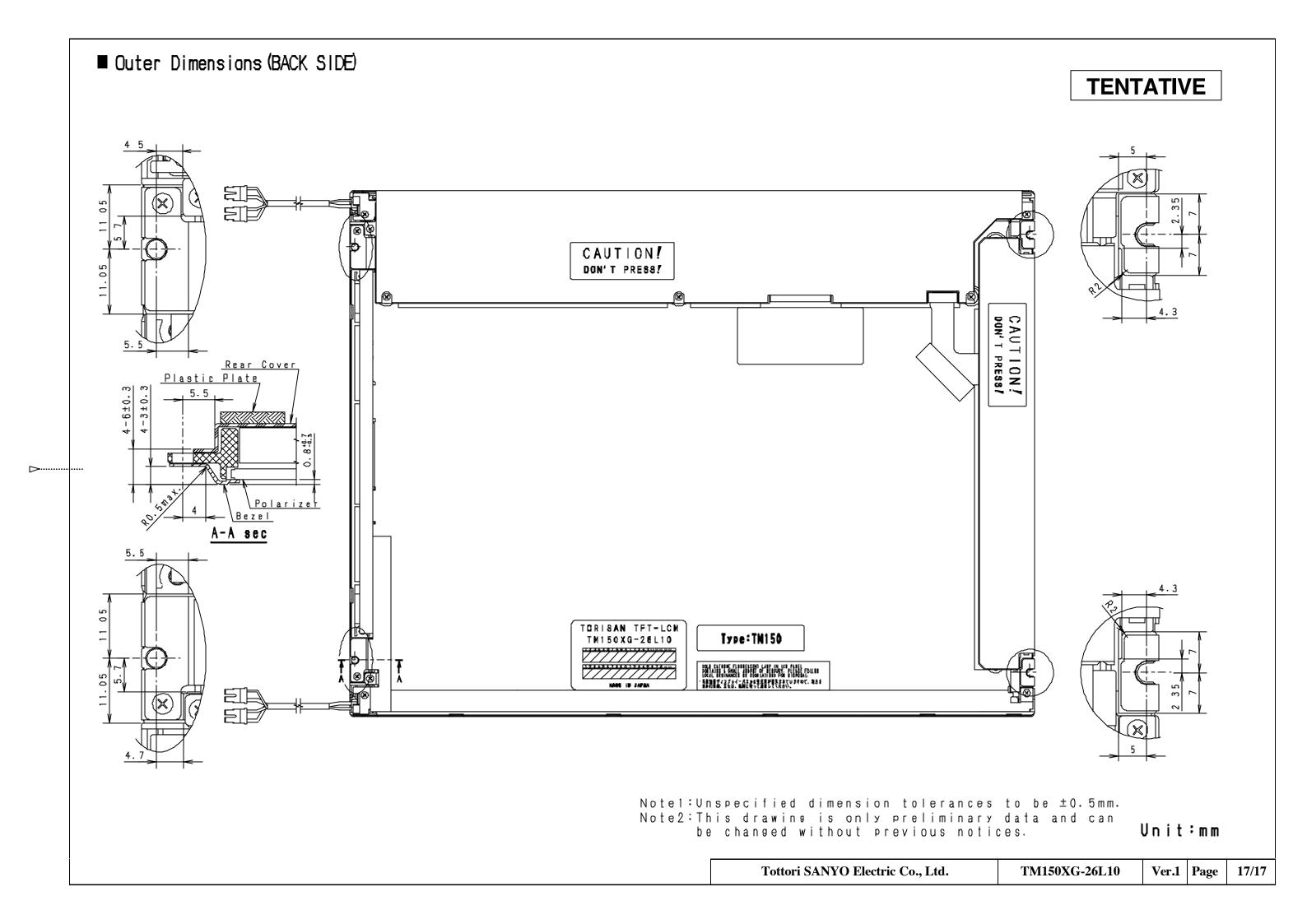
LCD module may get condensation on its display surface and inside in the circumstance where temperature changes much in short time.

Condensation can cause deterioration or failure. Therefore, please be careful not to get condensation.

(16) Remaining of image Displaying the same pattern for long time may cause remaining of image even after changing the pattern. This is not failure but will disappear with time.

4. Instructions for storage and transportation


(1) Storage


Please store LCD module in the dark place of room temperature and low humidity in original packing condition, to avoid condensation that may cause failure. Since sudden temperature change may cause condensation, please store in circumstance of stable temperature.

- (2) Stacking number Since excessive weight causes deformation and damage of carton box, please stack only up to the number stated on carton box for storage and transportation.
- (3) Handling

Since LCD module consists of glass and precise electronic components, it will be damaged by excessive shock and drop. Therefore, please handle the carton box carefully to minimize shock at loading, reloading and transportation.

Tottori SANYO Electric Co., Ltd.	TM150XG-26L10	Ver.1	Page	15/17

