ENGINEERING SPECIFICATIONS

TFT COLOR LCD MODULE
TM150XG-A01-01

-38cm (15.0 inch) diagonal
-XGA resolution (1024 × RGB × 768 dots)
-Wide View Angle
-LVDS Interface
-Side mount
-Narrow Bezel
-With CFL backlight unit
-Nonglare surface type

(TENTATIVE)

Ver.2 Oct. 20, 2003

SANYO Electric Co., Ltd.
Display Company
Technology Engineering Business Unit
NOTICES

1. The contents stated in this document and the product may be subject to change without prior notice. When you kindly study to use this product, please ask our distributor or us for the latest information.

2. This product is developed and produced for usage onto normal electronic products (office automation equipments, communication peripherals, electric appliance products, game machines, etc.) and is not suitable for applications which need extremely high reliability and extreme safety (aero- or space-use machines, control equipments for nuclear power, life keeping equipments, etc.).

3. This document shall not grant or guarantee any right to adapt intellectual property or any other patents of third party.

4. Please use this product correctly according to operating conditions and precautions for use stated in this document.
 Please install safety proof in your designing to avoid human accident, fire accident and social damage, which may be resulted from malfunction of this product.

5. This product is not designed to withstand against radiant rays.

6. It is strictly prohibited to copy or publish a part or whole of this document without our prior written approval.

REVISION HISTORY

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION NO.</th>
<th>PAGE</th>
<th>DESCRIPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 18, 03</td>
<td>Ver.1</td>
<td>-</td>
<td>Initial Release.</td>
</tr>
<tr>
<td>Oct. 20, 03</td>
<td>Ver.2</td>
<td>2</td>
<td>MECHANICAL CHARACTERISTICS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>ELECTRICAL CHARACTERISTICS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>OPTICAL CHARACTERISTICS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>BACKLIGHT CHARACTERISTICS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INTERNAL SIGNAL TIMING PARAMETERS(DE_MODE)</td>
</tr>
</tbody>
</table>

SANYO Electric Co., Ltd. TM150XG-A01-01 Ver.2 Page 1/17
MECHANICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SPECIFICATION</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD module size</td>
<td>321(W) × 245.4(H) × 9.7 typ. (T)</td>
<td>mm</td>
</tr>
<tr>
<td>Resolution</td>
<td>1024 × RGB(W) × 768(H)</td>
<td>pixel</td>
</tr>
<tr>
<td>Sub pixel pitch</td>
<td>0.099(V) × 0.297(H)</td>
<td>mm</td>
</tr>
<tr>
<td>Pixel pitch</td>
<td>0.297(W) × 0.297(H)</td>
<td>mm</td>
</tr>
<tr>
<td>Active viewing area</td>
<td>304.1(W) × 228.1(H)</td>
<td>mm</td>
</tr>
<tr>
<td>Bezel opening area</td>
<td>307.5(W) × 231.4(H)</td>
<td>mm</td>
</tr>
<tr>
<td>Weight</td>
<td>875 typ.</td>
<td>g</td>
</tr>
</tbody>
</table>

ELECTRICAL ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>VDD-Vss</td>
<td>-0.3</td>
<td>4.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>Vi</td>
<td>Vss-0.3</td>
<td>VDD+0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>CFL lamp current</td>
<td>IL</td>
<td>-</td>
<td>8.5</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>TST</td>
<td>Storage</td>
<td>-20</td>
<td>60</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOP</td>
<td>Operation</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>-</td>
<td>Ta=40 °C max.</td>
<td>-</td>
<td>85</td>
<td>%RH</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>-</td>
<td>Storage</td>
<td>-</td>
<td>1.5</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>-</td>
<td>Storage</td>
<td>-</td>
<td>50</td>
<td>G</td>
<td>XYZ</td>
</tr>
</tbody>
</table>

[Note 1] Care should be taken so that the LCD module may not be subjected to the temperature beyond this specification.

[Note 2] Ta>40°C: Absolute humidity shall be less than that of 85%RH/40°C.

[Note 3] 10-200Hz, 30min/cycle, X/Y/Z each one cycle and except for resonant frequency.

ELECTRICAL CHARACTERISTICS

$$V_{DD}=3.3V, f_v=60Hz, f_{th}=48.4kHz, f_{CLK}=65MHz, Ta=25°C$$

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
<th>VCM=1.2V</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>VDD-Vss</td>
<td></td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS input threshold voltage</td>
<td>VTH</td>
<td>High level</td>
<td>-</td>
<td>-</td>
<td>+100</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS input common Mode voltage</td>
<td>VTL</td>
<td>Low level</td>
<td>-100</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS input termination resister</td>
<td>RT</td>
<td></td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>Ω</td>
<td>Internal</td>
<td></td>
</tr>
<tr>
<td>Power Supply current</td>
<td>IDD</td>
<td></td>
<td>-</td>
<td>(430)</td>
<td>800</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Note 1] Under the following display image:
Typ. value: Display pattern is 256 gray scale bar.

[Note 2] VCM : Common Mode Voltage of LVDS input.
OPTICAL CHARACTERISTICS

\[V_{DD}=3.3V, f_v=60Hz, f_{h}=48.4kHz, f_{CLK}=65MHz, T_a=25^\circ C \]

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>B</td>
<td>(\phi = 0^\circ)</td>
<td>(180)</td>
<td>(250)</td>
<td>-</td>
<td>cd/m(^2)</td>
<td>Note 4,8</td>
</tr>
<tr>
<td>Brightness uniformity</td>
<td>B(\delta)</td>
<td>(\phi = 0^\circ)</td>
<td>-</td>
<td>-</td>
<td>1.30</td>
<td>-</td>
<td>Note 5,6,8</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>CR</td>
<td>(\phi = 0^\circ)</td>
<td>(\theta = 0^\circ)</td>
<td>50</td>
<td>65</td>
<td>-</td>
<td>Note 2,4,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta = 90^\circ)</td>
<td>60</td>
<td>70</td>
<td>-</td>
<td>deg.</td>
<td>Note 1,2,4,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta = 180^\circ)</td>
<td>40</td>
<td>55</td>
<td>-</td>
<td>deg.</td>
<td>Note 1,2,4,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta = 270^\circ)</td>
<td>60</td>
<td>70</td>
<td>-</td>
<td>deg.</td>
<td>Note 1,2,4,8</td>
</tr>
<tr>
<td>Viewing angle range</td>
<td>\phi</td>
<td>(\theta = 0^\circ)</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td>deg.</td>
<td>Note 1,2,4,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta = 90^\circ)</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td>deg.</td>
<td>Note 1,2,4,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta = 180^\circ)</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>deg.</td>
<td>Note 1,2,4,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta = 270^\circ)</td>
<td>70</td>
<td>-</td>
<td>-</td>
<td>deg.</td>
<td>Note 1,2,4,8</td>
</tr>
<tr>
<td>Response time</td>
<td>(\phi = 0^\circ)</td>
<td>Rise</td>
<td>(tr)</td>
<td>(0.568)</td>
<td>(0.618)</td>
<td>(0.668)</td>
<td>ms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fall</td>
<td>(tf)</td>
<td>(0.297)</td>
<td>(0.347)</td>
<td>(0.397)</td>
<td>Note 4,8</td>
</tr>
<tr>
<td>Color of CIE Coordinate</td>
<td>Red</td>
<td>(\phi = 0^\circ)</td>
<td>(0.238)</td>
<td>(0.288)</td>
<td>(0.338)</td>
<td>-</td>
<td>Note 4,8</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>(\phi = 0^\circ)</td>
<td>(0.545)</td>
<td>(0.595)</td>
<td>(0.645)</td>
<td>-</td>
<td>Note 4,8</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>(\phi = 0^\circ)</td>
<td>(0.091)</td>
<td>(0.141)</td>
<td>(0.191)</td>
<td>-</td>
<td>Note 4,8</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>(\phi = 0^\circ)</td>
<td>(0.025)</td>
<td>(0.075)</td>
<td>(0.125)</td>
<td>-</td>
<td>Note 4,8</td>
</tr>
</tbody>
</table>

[Note 1] \(\phi \) and \(\theta \)

[Note 2] Contrast ratio "CR"

\[
CR = \frac{\text{Brightness at White}}{\text{Brightness at Black}}
\]

[Note 4] This shall be measured at center point No.3 of Note 7.

[Note 5] The brightness shall be the average of the following 5 points of Note 7.

[Note 6] The brightness uniformity shall be calculated by using following formula.

\[
\delta B = \frac{\text{Maximum brightness of 5 points}}{\text{Minimum brightness of 5 points}}
\]
[Note 7] Measurement points

1/6Hp 1/2Hp 5/6Hp

1/6Vp 1 2

1/2Vp 3

5/6Vp 4 5

Active area

Vp: Total Number of Vertical pixel
Hp: Total Number of horizontal pixel

[Note 8] Measurement condition

1. Measurement equipment: BM-5A (TOPCON Corp.), Field=2°
2. Ambient temperature Ta: 25 ± 2°C
3. LCD: All pixels are WHITE, VDD=3.3V, fV=60Hz, fh=48.4kHz
4. Measure after 30 minutes of CFL warm up.
5. IL=8.0 mAms

BACKLIGHT CHARACTERISTICS

This module is used the backlight with 2 CFL.
The characteristics of a single lamp are shown in the following table.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SYM. CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamp voltage</td>
<td>Vl</td>
<td>-</td>
<td>(610)</td>
<td>-</td>
<td>VRms</td>
<td>at IL=8.0mAms</td>
</tr>
<tr>
<td>Lamp current</td>
<td>Il</td>
<td>3</td>
<td>-</td>
<td>8</td>
<td>mAms</td>
<td>(Recommended value)</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>fl</td>
<td>40</td>
<td>-</td>
<td>65</td>
<td>kHz</td>
<td>(Recommended value)</td>
</tr>
<tr>
<td>Start up voltage</td>
<td>Vs</td>
<td>-</td>
<td>-</td>
<td>(1500)</td>
<td>VRms</td>
<td>at Ta=0°C</td>
</tr>
<tr>
<td>Operating life</td>
<td>tol</td>
<td>40000</td>
<td>-</td>
<td>-</td>
<td>Hours</td>
<td>at IL=8.0mAms</td>
</tr>
</tbody>
</table>

[Note 1] Backlight driving conditions (operating frequency fl, especially) may interfere with horizontal frequency fh, causing the beat or flicker on the display. Therefore the operating frequency fl shall be adjusted in relation to horizontal frequency fh to avoid interference. And please make sure that frequency, phase of Drive voltage and current of four lamps, match each other.

[Note 2] The inverter open voltage should be larger than start up voltage, otherwise backlight may blinking for a moment after turns on or not be turned on. And this voltage should be applied to lamp for more than 1 second to start up, otherwise backlight may not be turned on.

[Note 3] If driving current waveform is asymmetrical, mercury deviation inside of CFL will incline to one side and consequently abnormal lighting may occur. To prevent such unfavorable lighting, driving current waveform is asked to have unbalance rate of less than 10% and wave-height rate of less than \(\sqrt{2} \pm 10\%\).

And this driving waveform shall be confirmed in your system.

Unbalance rate = | Ip - I-p | / IL × 100 (%)

Wave-height rate = Ip (or I-p) / IL

Ip : High peak value

I-p : Low peak value

IL : Effective value

[Note 4] The inverter of ground reference type should be used. The inverter of ground floating type should not be used.
[Note 1] ASIC converts incoming RGB × 8 bits data into outgoing RGB × 6 bits data with frame rate modulation and dithering, which enables LCD to perform 'pseudo-8 bits color'.
INTERFACE PIN CONNECTIONS

LCM : CN1

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>SYMBOL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Power Supply (3.3V normal)</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>Power Supply (3.3V normal)</td>
</tr>
<tr>
<td>3</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>RIN0-</td>
<td>Receiver Signal (-)</td>
</tr>
<tr>
<td>6</td>
<td>RIN0+</td>
<td>Receiver Signal (+)</td>
</tr>
<tr>
<td>7</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>RIN1-</td>
<td>Receiver Signal (-)</td>
</tr>
<tr>
<td>9</td>
<td>RIN1+</td>
<td>Receiver Signal (+)</td>
</tr>
<tr>
<td>10</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>RIN2-</td>
<td>Receiver Signal (-)</td>
</tr>
<tr>
<td>12</td>
<td>RIN2+</td>
<td>Receiver Signal (+)</td>
</tr>
<tr>
<td>13</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>14</td>
<td>RCLK-</td>
<td>Clock Signal (-)</td>
</tr>
<tr>
<td>15</td>
<td>RCLK+</td>
<td>Clock Signal (+)</td>
</tr>
<tr>
<td>16</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>17</td>
<td>RIN3-</td>
<td>Receiver Signal (-)</td>
</tr>
<tr>
<td>18</td>
<td>RIN3+</td>
<td>Receiver Signal (+)</td>
</tr>
<tr>
<td>19</td>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>20</td>
<td>NC</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

CN1 : DF14H-20P-1.25H (HIROSE)
Suitable mating connector: DF14-20S-1.25 (HIROSE)

[Note 1] Internal termination resistors of LVDS input lines are 100 ohms.

Back Light : FLCN1,2

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>SYMBOL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H.V</td>
<td>High voltage for CFL</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>LGND</td>
<td>Low voltage for CFL</td>
</tr>
</tbody>
</table>

FLCN1,2: BHR-03VS-1 (JST) or equivalent
Suitable mating connector: SM02(8.0)B-BHS-1-TB (JST)
INTERFACE (LVDS) DATA ASSIGNMENT

<table>
<thead>
<tr>
<th>Rin0 +/-</th>
<th>Rin1 +/-</th>
<th>Rin2 +/-</th>
<th>Rin3 +/-</th>
<th>RCLK +/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx 7</td>
<td>Rx 18</td>
<td>Rx 26</td>
<td>Rx 23</td>
<td>Reserved</td>
</tr>
<tr>
<td>G0 (LSB)</td>
<td>B1</td>
<td>DE</td>
<td>B7 (MSB)</td>
<td></td>
</tr>
<tr>
<td>Rx 6</td>
<td>Rx 15</td>
<td>Rx 25</td>
<td>Rx 17</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>B0 (LSB)</td>
<td>VSYNC</td>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>Rx 4</td>
<td>Rx 14</td>
<td>Rx 24</td>
<td>Rx 16</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>G5</td>
<td>HSYNC</td>
<td>G7 (MSB)</td>
<td></td>
</tr>
<tr>
<td>Rx 3</td>
<td>Rx 13</td>
<td>Rx 22</td>
<td>Rx 11</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>G4</td>
<td>B5</td>
<td>G7 (MSB)</td>
<td></td>
</tr>
<tr>
<td>Rx 2</td>
<td>Rx 12</td>
<td>Rx 21</td>
<td>Rx 10</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>G3</td>
<td>B4</td>
<td>G6</td>
<td></td>
</tr>
<tr>
<td>Rx 1</td>
<td>Rx 9</td>
<td>Rx 20</td>
<td>Rx 5</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>G2</td>
<td>B3</td>
<td>R7 (MSB)</td>
<td></td>
</tr>
<tr>
<td>Rx 0</td>
<td>Rx 8</td>
<td>Rx 19</td>
<td>Rx 27</td>
<td></td>
</tr>
<tr>
<td>R0 (LSB)</td>
<td></td>
<td></td>
<td>R6</td>
<td></td>
</tr>
</tbody>
</table>

INTERFACE SIGNALS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK</td>
<td>Data Clock</td>
</tr>
<tr>
<td>HSYNC</td>
<td>Horizontal Sync - This signal initiates a new line (negative).</td>
</tr>
<tr>
<td>VSYNC</td>
<td>Vertical Sync - This signal initiates a new frame (negative).</td>
</tr>
<tr>
<td>DE</td>
<td>Data Enable (positive)</td>
</tr>
<tr>
<td>R0</td>
<td>Red Data (LSB)</td>
</tr>
<tr>
<td>R1</td>
<td>Red Data</td>
</tr>
<tr>
<td>R2</td>
<td>Red Data</td>
</tr>
<tr>
<td>R3</td>
<td>Red Data</td>
</tr>
<tr>
<td>R4</td>
<td>Red Data</td>
</tr>
<tr>
<td>R5</td>
<td>Red Data</td>
</tr>
<tr>
<td>R6</td>
<td>Red Data</td>
</tr>
<tr>
<td>R7</td>
<td>Red Data (MSB)</td>
</tr>
<tr>
<td>G0</td>
<td>Green Data (LSB)</td>
</tr>
<tr>
<td>G1</td>
<td>Green Data</td>
</tr>
<tr>
<td>G2</td>
<td>Green Data</td>
</tr>
<tr>
<td>G3</td>
<td>Green Data</td>
</tr>
<tr>
<td>G4</td>
<td>Green Data</td>
</tr>
<tr>
<td>G5</td>
<td>Green Data</td>
</tr>
<tr>
<td>G6</td>
<td>Green Data</td>
</tr>
<tr>
<td>G7</td>
<td>Green Data (MSB)</td>
</tr>
<tr>
<td>B0</td>
<td>Blue Data (LSB)</td>
</tr>
<tr>
<td>B1</td>
<td>Blue Data</td>
</tr>
<tr>
<td>B2</td>
<td>Blue Data</td>
</tr>
<tr>
<td>B3</td>
<td>Blue Data</td>
</tr>
<tr>
<td>B4</td>
<td>Blue Data</td>
</tr>
<tr>
<td>B5</td>
<td>Blue Data</td>
</tr>
<tr>
<td>B6</td>
<td>Blue Data</td>
</tr>
<tr>
<td>B7</td>
<td>Blue Data (MSB)</td>
</tr>
</tbody>
</table>

[Note 1] The valid synchronous signals are DCLK and DE, HSYNC and VSYNC are invalid.

[Note 2] INTERFACE SIGNALS are loaded from LVDS-transmitter to TFT Timing generator with LVDS sequence. (See BLOCK DIAGRAM.)
INTERNAL SIGNAL TIMING PARAMETERS (DE_MODE)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>fCLK</td>
<td>60.0</td>
<td>65.0</td>
<td>(79.0)</td>
<td>MHz</td>
<td>tCLK=1/fCLK</td>
</tr>
<tr>
<td>Duty</td>
<td>D</td>
<td>(0.40)</td>
<td>0.50</td>
<td>(0.60)</td>
<td>-</td>
<td>D=tCLKu/fCLK</td>
</tr>
<tr>
<td>Setup Time</td>
<td>tsi</td>
<td>(3.0)</td>
<td></td>
<td></td>
<td>ns</td>
<td>for DCLK</td>
</tr>
<tr>
<td>Hold Time</td>
<td>thH</td>
<td>(3.0)</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Horiz. Period</td>
<td>thP</td>
<td>(1050)</td>
<td>1344</td>
<td>(1800)</td>
<td>tCLK</td>
<td></td>
</tr>
<tr>
<td>Horiz. DE</td>
<td>tHDE</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>tCLK</td>
<td></td>
</tr>
<tr>
<td>Horiz. Frequency</td>
<td>fh</td>
<td>-</td>
<td>48.4</td>
<td>(60)</td>
<td>kHz</td>
<td>fh=1/thP</td>
</tr>
<tr>
<td>Vert. Period</td>
<td>tvP</td>
<td>(773)</td>
<td>806</td>
<td>(1200)</td>
<td>thP</td>
<td>fv=60Hz Typ.</td>
</tr>
<tr>
<td>Vert. DE</td>
<td>tvDE</td>
<td>768</td>
<td>768</td>
<td>768</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Vert. Frequency</td>
<td>fv</td>
<td>(45)</td>
<td>60</td>
<td>(75)</td>
<td>Hz</td>
<td>fv=1/tvP</td>
</tr>
<tr>
<td>DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup Time</td>
<td>tSD</td>
<td>(3.0)</td>
<td></td>
<td></td>
<td>ns</td>
<td>for DCLK</td>
</tr>
<tr>
<td>Hold Time</td>
<td>thD</td>
<td>(3.0)</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

[Note 1] These signal timing parameters are specified at the digital input of LVDS transmitter. With respect to setup time and hold time for DE and DATA signals, please refer to input signal specification of LVDS transmitter.

Recommended LVDS transmitter: DS90C385(NS)

[Note 2] The values in this table only show the normal operating conditions of internal logic circuit, and it does not assure the conditions for appearance and display quality. The conditions for appearance and display quality are shown in the inspection standard separately.
INTERNAL SIGNAL TIMING DIAGRAM (DE_MODE)

(Data: Latched at fall edge of DCLK)

RELATIONSHIP BETWEEN INPUT DATA AND DISPLAY POSITION

<table>
<thead>
<tr>
<th></th>
<th>1-1</th>
<th>1-2</th>
<th>1-3</th>
<th>...</th>
<th>1-1023</th>
<th>1-1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-1024</td>
</tr>
<tr>
<td>3-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vp Hp
R G B

767-1
767-1024
768-1
768-2
768-1024
Relationship Between Input Data and Display Color

<table>
<thead>
<tr>
<th>Display Color</th>
<th>R Data</th>
<th>G Data</th>
<th>B Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACK</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
</tr>
<tr>
<td>RED</td>
<td>H H H H H H H H H H H H H H H H</td>
<td>H H H H H H H H H H H H H H H H</td>
<td>H H H H H H H H H H H H H H H H</td>
</tr>
<tr>
<td>GREEN</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
</tr>
<tr>
<td>BLUE</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
</tr>
<tr>
<td>CYAN</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
</tr>
<tr>
<td>MAGENTA</td>
<td>H H H H H H H H H H H H H H H H</td>
<td>H H H H H H H H H H H H H H H H</td>
<td>H H H H H H H H H H H H H H H H</td>
</tr>
<tr>
<td>YELLOW</td>
<td>H H H H H H H H H H H H H H H H</td>
<td>H H H H H H H H H H H H H H H H</td>
<td>H H H H H H H H H H H H H H H H</td>
</tr>
<tr>
<td>WHITE</td>
<td>H H H H H H H H H H H H H H H H</td>
<td>H H H H H H H H H H H H H H H H</td>
<td>H H H H H H H H H H H H H H H H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Color</th>
<th>MSB</th>
<th>LSB</th>
<th>MSB</th>
<th>LSB</th>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACK</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED(1)</td>
<td>* L L L L L L L L H H H H H H H H</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED(2)</td>
<td>* L L L L L L L L H H H H H H H H</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED(3)</td>
<td>* L L L L L L L L H H H H H H H H</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED(4)</td>
<td>L L L L L L L L H H H H H H H H</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED(251)</td>
<td>* H H H H H H L H H H H H H H H H</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RED(252)</td>
<td>* H H H H H H H H H H H H H H H H</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLACK</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREEN(1)</td>
<td>* L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREEN(2)</td>
<td>* L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREEN(3)</td>
<td>* L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREEN(4)</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREEN(251)</td>
<td>* L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREEN(252)</td>
<td>* L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLACK</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUE(1)</td>
<td>* L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUE(2)</td>
<td>* L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUE(3)</td>
<td>* L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUE(4)</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUE(251)</td>
<td>* L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUE(252)</td>
<td>* L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td>L L L L L L L L L L L L L L L L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Note 1] Color(n) --- 'n' indicates gray scale step.

[Note 2] *' Mark shows using the frame rate modulation and dithering.
POWER ON/OFF SEQUENCE REQUIREMENT

[Note1] When the power is off, LVDS input must be kept at either low level or high impedance.

[Note2] When VDD is on, please avoid floating state of LVDS input at invalid period.

[Note3] Power sequence for CFL (backlight) is not specified especially, however it is recommended to consider some timing difference between LVDS input as shown above.

If backlight lights on before LCD starts function, or if backlight is kept on after LCD stopped function, screen may look white for a moment or abnormal image may be displayed.

This is caused by variation in output signal from timing generator at LVDS input on or off. It does not cause damage to liquid crystal molecule and driving circuit.
PRECAUTIONS (INSTRUCTIONS FOR SAFE AND PROPER USE)

1. Instructions for safety

(1) Please do not disassemble or modify LCD module to avoid the possibility of electric shock, damage of electronic components, scratch at display surface and invasion of foreign particles. In addition, such activity may result in fire accident due to burning of electronic component. LCD module disassembled or modified by customer is out of warranty.

(2) Please be careful in handling of LCD module with broken glass. When the display glass breaks, please pay attention not to injure your fingers. The display surface has the plastic film attached, which prevents dispersion of glass pieces, however touching broken edge will injure your fingers. Also CFL (Cold Cathode Fluorescent Lamp) is made of glass, therefore please pay attention in the same way.

(3) Please do not touch the fluid flown out of broken display glass. If the fluid should stick to hand or clothes, wipe off with soap or alcohol immediately and then wash it with water. If the fluid should get in eyes, wash eyes immediately with washing lotion for more than 15 minutes and then consult the doctor.

(4) Please make secure connection of CFL connector. Please make sure that CFL connector from LCD module is connected with output connector on inverter circuit securely. Poor connection may cause smoke or fire accident due to high voltage in circuit. If connection may not be secure, please switch off the power supply for LCD module and CFL and then make secure connection. Please do not make connection with another connector than recommended mating connector.

(5) CFL contains mercury inside. Please follow regulations or rules established by local autonomy at its disposal.

(6) Please be careful to electric shock. Before handling LCD module, please switch off the power supply. Since high voltage is applied to CFL terminal, cable, connector and inverter circuit in operation mode, touching them will cause electric shock.

2. Instructions for designing

(1) Mounting of LCD
Please fix LCD module at all mounting flanges shown in this specification for installation onto system. The used screws should have proper dimensions. Furthermore, designing of mounting parts should be adequate so that LCD module is not warped or twisted, to achieve good display quality.

(2) Polarity of power supply for CFL
Please give careful consideration in designing so that each polar of cable should be connected correctly at assembling (i.e. high voltage side is connected to high voltage side and low voltage side is connected to low voltage side). Since longer CFL cable may cause insatiable start-up of CFL and reduction of brightness, please make cable short as much as possible.
(3) Power supply for CFL
Please design the circuit so that high voltage output can be kept for more than 1 second. The shorter time may not start up CFL. The driving inverter circuit is recommended to be the type which CFL current can be controlled. The type which voltage is controlled is not recommended, because it may cause big current under high temperature and insatiable start-up of CFL under low temperature. If LCD display turned into reddish screen or remarkable brightness decreases by the end of CFL life, please make a consideration of design that the backlight is turned off immediately.

(4) Heat radiation
CFL generates heat at lighting and causes temperature rise inside system. Therefore, designing to radiate heat like radiation slits at cabinet is recommended to meet the specified operating temperature range for LCD module.

(5) Noise on power line
Spike noise contained in power line causes abnormal operation of driving circuit and abnormal display. To avoid it, spike noise should be suppressed below VDD +/- 200mVp-p. (In any case, absolute maximum rating should be kept.)

(6) Power sequence
Before LCD module is switched on, please make sure that power supply and input signals of system, testing equipment, etc. meet the recommended power sequence.

(7) Absolute maximum rating
Absolute maximum rating specified in this specification has to be kept in any case. It shows the maximum that cannot be exceeded. Exceeding it may cause burning or non-recoverable break of electronic components in circuit. Please make system design so that absolute maximum rating is not exceeded even if ambient temperature, input signal and components are varied.

(8) Protection for power supply
Please study to adapt protection for power supply against trouble of LCD module, depending on usage condition of system. Fuse installed on LCD module should be never modified. Any modification to make the function of fuse ineffective may cause burning or break of printed wiring board or other components at circuit trouble.

(9) Protection against electric shock
High voltage is applied to CFL connector, inverter circuit and CFL at lighting. Please make design not to expose or be accessible to such high voltage parts to avoid electric shock.

(10) Protection cover and cut-off filter for ultraviolet rays
When LCD module is used under severe condition like outdoor, it is recommended to use transparent protection cover over display surface to avoid scratches and invasion of dust and water. In addition, when LCD module is exposed to direct sunlight for long time, use of cut-off filter for ultraviolet rays is also recommended. Please be careful not to get condensation.

3. Instructions for use and handling

(1) Protection against Static electricity
C-MOS LSI and semiconductors are easily damaged by static discharge. LCD module should be handled on conductive mat by person grounded with wrist strap etc. to avoid getting static electricity. Please be careful not to generate static electricity during operation.
(2) Protection against dust and stain
 LCD module should be handled in circumstance as clean as possible.
 It is recommended to wear fingerstalls or dustless and soft gloves before handling
 to avoid getting dust or stain on display surface.

(3) Protection film for display surface
 It is recommended to remove protection film at nearly final process of assembling
 to avoid getting scratch or dust. To remove film, please pick up its edge with dull-
 head tweezers or cellophane tape at first and then remove film gradually taking
 more than 3 seconds. If film is removed quickly, static electricity may be generated
 and may damage semiconductors or electronic components.

(4) Contamination of display surface
 When display surface of LCD module is contaminated, please wipe the surface
 softly with cotton swab or clean cloth. If it is not enough, please take it away with
 cellophane tape or wipe the surface with cotton swab or clean cloth containing
 benzine. In this case, please be careful so that benzine does not get in inside of
 LCD module, because it may be damaged.

(5) Water drop on LCD surface
 Please do not leave LCD module with water drop. When the display surface gets
 water drop, please wipe it off with cotton swab or soft cloth immediately, otherwise
 display surface will be deteriorated.
 If water gets in inside of LCD module, circuit may be damaged.

(6) Please make sure that LCD module is not warped or twisted at installation into
 system. Even temporary warp or twist may be the cause for failure.

(7) Mechanical stress
 Please be careful not to apply strong mechanical stress like drop or shock to LCD
 module. Such stress may cause break of display glass and Lamp or may be the
 cause for failure.

(8) Pressure to display surface
 Please be careful not to apply strong pressure to display surface. Such pressure
 may cause scratches at surface or may be the cause of failure.

(9) Protection against scratch
 Please be careful not to hit, press or rub the display surface with hard material like
 tools. In addition, please do not put heavy or hard material on display surface, and
 do not stack LCD modules. Polarizer at front surface can be easily scratched.

(10) Plugging in of connector
 Please be careful not to apply strong stress to connector part of LCD module at
 plugging in or out, because strong stress may damage the inside connection. At
 plugging in connector, place LCD module on the flat surface and hold the backside
 of connector on LCD module. Please make sure that connector is plugged in
 correctly. Insecure connection may be the cause for failure during operation.
 In addition, please be careful not to put the connecting cable between cabinet of
 system and LCD module at installing LCD module into system.

(11) Handling of CFL cable and FPC (Flexible Printed Circuit)
 Please be careful not to pull or scratch CFL cable, because CFL or soldered part of
 cable may be damaged consequently.
 Also FPC should not be pulled or scratched.

(12) Switching on before plugging in connector
 Please make sure that power is switched off before plugging in connector.
 If power is on at plugging in or out, circuit of LCD module may be damaged.
 When LCD is switched on for test or inspection, please make sure that power
 supply and input signals of driving system meet the specified power sequence.
(13) Temperature dependence of LCD display
Response speed (optical response) of LCD display is dependent on temperature.
Under low temperature, response speed is slower.
Also brightness and chromaticity change slightly depending on temperature.

(14) Slow light-up of CFL under low temperature
Under low temperature, start-up of CFL gets difficult. (The time from switch-on to
stable lighting becomes longer.)
As characteristic of CFL, operation under low temperature makes the life time
shorter. To avoid this, it is recommended to operate under normal temperature.

(15) Condensation
LCD module may get condensation on its display surface and inside in the
circumstance where temperature changes much in short time.
Condensation can cause deterioration or failure. Therefore, please be careful not
to get condensation.

(16) Remaining of image
Displaying the same pattern for long time may cause remaining of image even
after changing the pattern. This is not failure but will disappear with time.

4. Instructions for storage and transportation

(1) Storage
Please store LCD module in the dark place of room temperature and low humidity
in original packing condition, to avoid condensation that may cause failure.
Since sudden temperature change may cause condensation, please store in
circumstance of stable temperature.

(2) Stacking number
Since excessive weight causes deformation and damage of carton box, please
stack only up to the number stated on carton box for storage and transportation.

(3) Handling
Since LCD module consists of glass and precise electronic components, it will be
damaged by excessive shock and drop. Therefore, please handle the carton box
carefully to minimize shock at loading, reloading and transportation.
■ Outer Dimensions (FRONT SIDE)

- **321 (Outline)**
- **307.5 (Bezel Opening Area)**
- **304.128 (LCD Active Area)**

TENTATIVE

Note1: Unspecified dimension tolerances are ±0.5mm.

Note2: This drawing is only preliminary data and can be changed without previous notices.

Note3: This dimension is without connector.

Note4: Measuring force: 750 ± 250 (kgf-cm)