PRODUCT INFORMATION

All information is subject to change without notice. Please read bottom

FEATURES
(1) 10.4XGA(1024x768 pixels) display size for notebook PC
(2) LVDS interface system
(3) Light weight and Thinner design

MECHANICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional Outline (typ.)</td>
<td>237.7(W) x 173.2(H) x 4.9max(D) mm</td>
</tr>
<tr>
<td>Number of Pixels</td>
<td>1024(W) x 768(H) pixels</td>
</tr>
<tr>
<td>Active Area</td>
<td>210.432(W) x 157.824(H) mm</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>0.2055(W) x 0.2055(H)</td>
</tr>
<tr>
<td>Weight (approximately)</td>
<td>(195) g</td>
</tr>
<tr>
<td>Backlight</td>
<td>Single CCFL, Sidelight type</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Item</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (VDD)</td>
<td>-0.3</td>
<td>3.0</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>(VFL)</td>
<td>0</td>
<td>(600)</td>
<td>---</td>
<td>V</td>
</tr>
<tr>
<td>FL Driving Frequency (fL)</td>
<td>---</td>
<td>---</td>
<td>100</td>
<td>kHz</td>
</tr>
<tr>
<td>Input Signal Voltage (Vin)</td>
<td>-0.3</td>
<td>VDD+0.3</td>
<td>---</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0</td>
<td>50</td>
<td>---</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-20</td>
<td>60</td>
<td>---</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>10</td>
<td>90</td>
<td>---</td>
<td>% (RH)</td>
</tr>
</tbody>
</table>

ELECTRICAL SPECIFICATION

<table>
<thead>
<tr>
<th>Item</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (VDD)</td>
<td>(VDD)</td>
<td>3.0</td>
<td>3.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>FL Start Voltage (Ta=0°C)</td>
<td>1200</td>
<td>---</td>
<td>---</td>
<td>V(rms)</td>
<td></td>
</tr>
<tr>
<td>Differential Input Voltage(High)</td>
<td>(Vin)</td>
<td>(VDD)+0.1</td>
<td>---</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Differential Input Voltage(Center)</td>
<td>(Vh)</td>
<td>0.5</td>
<td>1.2</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>Differential Input Voltage(Low)</td>
<td>(Vl)</td>
<td>---</td>
<td>---</td>
<td>(Vh)-0.1</td>
<td>V</td>
</tr>
<tr>
<td>Current Consumption</td>
<td>---</td>
<td>(250)</td>
<td>---</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>*2 *3 Power Consumption</td>
<td>---</td>
<td>(3.7)</td>
<td>---</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>

OPTICAL SPECIFICATION (Ta=25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast Ratio (CR)</td>
<td>100</td>
<td>250</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Response Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(tON)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(tOFF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminance (L)</td>
<td>140</td>
<td>(180)</td>
<td>---</td>
<td>cd/m²</td>
<td></td>
</tr>
</tbody>
</table>

*1 : Excepting the FL cable width

*The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Toshiba Matsushita Display Technology or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Toshiba Matsushita Display Technology or others.

*The information contained herein may be changed without prior notice. It is therefore advisable to contact Toshiba Matsushita Display Technology before proceeding with the design of equipment incorporating this product.

(1/11) 2003-06-09 (Ver.1.5)
BLOCK DIAGRAM

DC/DC converter

Gray scale Manipulation Voltage Generation Circuit

Panel Controller LVDS include

Backlight

Liquid Crystal Panel
1024 x 768 pixels

X-driver

Y-driver

1024 pixels

<table>
<thead>
<tr>
<th></th>
<th>1,1</th>
<th>2,1</th>
<th>X2n-1</th>
<th>X2n, 1</th>
<th>1024, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,</td>
<td>2, 1</td>
<td>X2n-1, 1</td>
<td>X2n, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

768 pixels

| | 1, | Y | X2n-1, | X2n, | 1024, 1 |
|----| 1,768| 1024,768 |

(4/11) 2003-06-09 (Ver.1.5)
TIMING CHART

(1) Vertical Timing

NCLK

DE

R7-R0
G7-G0
B7-B0

(2) Horizontal Timing

NCLK

DE

R7-R0
G7-G0
B7-B0

(3) Vertical / Horizontal Sync Timing

VSYNC

HSYNC

DE

Pixel Data

NCLK

(5/11) 2003-06-09 (Ver.1.5)
TIMING SPECIFICATION 1) 2) 3) 4) 5) 6) 7)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Period</td>
<td>t1</td>
<td>778 x t4</td>
<td>-</td>
<td>860 x t4</td>
<td>- ms</td>
</tr>
<tr>
<td>Vertical Display Term</td>
<td>t2</td>
<td>768 x t4</td>
<td>768 x t4</td>
<td>768 x t4</td>
<td>-</td>
</tr>
<tr>
<td>Vertical Blanking Term</td>
<td>t3</td>
<td>10 x t4</td>
<td>-</td>
<td>92 x t4</td>
<td>-</td>
</tr>
<tr>
<td>Line Scanning Time</td>
<td>t4</td>
<td>1319 x t7</td>
<td>-</td>
<td>1600 x t7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.04</td>
<td>-</td>
<td>- us</td>
<td></td>
</tr>
<tr>
<td>Horizontal Display Term</td>
<td>t5</td>
<td>1024 x t7</td>
<td>1024 x t7</td>
<td>1024 x t7</td>
<td>-</td>
</tr>
<tr>
<td>Horizontal Blanking Term</td>
<td>t6</td>
<td>295 x t7</td>
<td>-</td>
<td>500 x t7</td>
<td>-</td>
</tr>
<tr>
<td>Clock Period</td>
<td>t7</td>
<td>15</td>
<td>15.38</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>V-Sync Pulse Width</td>
<td>tvw</td>
<td>3 x t4</td>
<td>-</td>
<td>7 x t4</td>
<td>-</td>
</tr>
<tr>
<td>V-Sync Set up Time</td>
<td>tvsu</td>
<td>8 x t7</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>V-Sync Hold Time</td>
<td>tvhd</td>
<td>thbp+16 x t7</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vertical Front Porch</td>
<td>tvfp</td>
<td>2 x t4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vertical Back Porch</td>
<td>tvbp</td>
<td>6 x t4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Horizontal Period</td>
<td>th</td>
<td>1319 x t7</td>
<td>-</td>
<td>1600 x t7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.04</td>
<td>-</td>
<td>- us</td>
<td></td>
</tr>
<tr>
<td>H-Sync Pulse Width</td>
<td>thw</td>
<td>8 x t7</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Horizontal Front Porch</td>
<td>thfp</td>
<td>4 x t7</td>
<td>-</td>
<td>500 x t7</td>
<td>-</td>
</tr>
<tr>
<td>Horizontal Back Porch</td>
<td>thbp</td>
<td>8 x t7</td>
<td>-</td>
<td>492 x t7</td>
<td>-</td>
</tr>
<tr>
<td>thw+thbp</td>
<td></td>
<td>16 X t7</td>
<td>-</td>
<td>500 X t7</td>
<td>-</td>
</tr>
<tr>
<td>DE Pulse Width</td>
<td>twde</td>
<td>1024 x t7</td>
<td>1024 x t7</td>
<td>1024 x t7</td>
<td>-</td>
</tr>
</tbody>
</table>

\[t3 = tvfp + tvw + tvbp \]
\[t4 = th \]
\[t6 = thfp + thw + thbp \]

Note 1) Refer to “Timing Chart” and LVDS (THC63LVDF64A) specifications by Thine Electronics, Inc.

Note 2) If DE is fixed to “H” or “L” level for certain period while CLK is supplied, the panel displays black with some flicker.

Note 3) If CLK is fixed to “H” or “L” level for certain period while DE is supplied, the panel may be damaged.

Note 4) Please adjust LCD operating signal timing and FL driving frequency, to optimize the display quality.

There is a possibility that flicker is observed by the interference of LCD operating signal timing and FL driving condition (especially driving frequency), even if the condition satisfies above timing specifications and recommended operating conditions shown in 3.

Note 5) Do not make tv, th, thbp and tvds fluctuate.

If tv, th, thbp and tvds are fluctuate, the panel displays black.

Note 6) In case of using the long frame period, the deterioration of display quality, noise etc. may be occurred.

Note 7) CLK count of each Horizontal Scanning Time should be always the same.

V-Blanking period should be “n” X “Horizontal Scanning Time”. (n: integer)

Frame period should be always the same.
CONNECTOR PIN ASSIGNMENT FOR INTERFACE

CN1 INPUT SIGNAL
Connector : DF19L-14P-1H / HIROSE ELECTRIC CO., LTD.
Mating Connector : DF19G-14S-1C / HIROSE ELECTRIC CO., LTD.

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Power Supply : +3.3V</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>Power Supply : +3.3V</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>IN0-</td>
<td>Transmission Data of Pixels 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Negative : -)</td>
</tr>
<tr>
<td>6</td>
<td>IN0+</td>
<td>Transmission Data of Pixels 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Positive : +)</td>
</tr>
<tr>
<td>7</td>
<td>IN1-</td>
<td>Transmission Data of Pixels 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Negative : -)</td>
</tr>
<tr>
<td>8</td>
<td>IN1+</td>
<td>Transmission Data of Pixels 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Positive : +)</td>
</tr>
<tr>
<td>9</td>
<td>IN2-</td>
<td>Transmission Data of Pixels 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Negative : -)</td>
</tr>
<tr>
<td>10</td>
<td>IN2+</td>
<td>Transmission Data of Pixels 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Positive : +)</td>
</tr>
<tr>
<td>11</td>
<td>CLK IN-</td>
<td>Sampling Clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Negative : -)</td>
</tr>
<tr>
<td>12</td>
<td>CLK IN+</td>
<td>Sampling Clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Positive : +)</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

CN2 CCFL POWER SOURCE
Connector : BHSR-02VS-1 / JAPAN SOLDERLESS TERMINAL MFG CO., LTD.
Mating Connector : SM028-BHTS-B-TB / JAPAN SOLDERLESS TERMINAL MFG CO., LTD.

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VFLH</td>
<td>CCFL Power Supply (high voltage)</td>
</tr>
<tr>
<td>2</td>
<td>VFLL</td>
<td>CCFL Power Supply (low voltage)</td>
</tr>
</tbody>
</table>

SEQUENCE OF POWER SUPPLIES AND SIGNALS

![Sequence Diagram]

(7/11) 2003-06-09 (Ver.1.5)
RECOMMENDED TRANSMITTER (DS90C363) TO LTD104EA5S INTERFACE ASSIGNMENT

Case 1: 6-bit Transmitter

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Terminal</th>
<th>Input Signal (Graphics controller output signal)</th>
<th>Output Signal Symbol</th>
<th>LTD104EA5S Interface (CN1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxIN0</td>
<td>44</td>
<td>R0 Red Pixels Display Data (LSB)</td>
<td>TxOUT0-</td>
<td>No.5 IN0+</td>
</tr>
<tr>
<td>TxIN1</td>
<td>45</td>
<td>R1 Red Pixels Display Data</td>
<td>TxOUT0+</td>
<td>No.6 IN0+</td>
</tr>
<tr>
<td>TxIN2</td>
<td>47</td>
<td>R2 Red Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN3</td>
<td>48</td>
<td>R3 Red Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN4</td>
<td>1</td>
<td>R4 Red Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN5</td>
<td>3</td>
<td>R5 Red Pixels Display Data (MSB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN6</td>
<td>4</td>
<td>G0 Green Pixels Display Data</td>
<td>TxOUT1-</td>
<td>No.7 IN1-</td>
</tr>
<tr>
<td>TxIN7</td>
<td>6</td>
<td>G1 Green Pixels Display Data</td>
<td>TxOUT1+</td>
<td>No.8 IN1+</td>
</tr>
<tr>
<td>TxIN8</td>
<td>7</td>
<td>G2 Green Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN9</td>
<td>9</td>
<td>G3 Green Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN10</td>
<td>10</td>
<td>G4 Green Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN11</td>
<td>12</td>
<td>G5 Green Pixels Display Data (MSB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN12</td>
<td>13</td>
<td>B0 Blue Pixels Display Data</td>
<td>TxOUT2-</td>
<td>No.9 IN2-</td>
</tr>
<tr>
<td>TxIN13</td>
<td>15</td>
<td>B1 Blue Pixels Display Data</td>
<td>TxOUT2+</td>
<td>No.10 IN2+</td>
</tr>
<tr>
<td>TxIN14</td>
<td>16</td>
<td>B2 Blue Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN15</td>
<td>18</td>
<td>B3 Blue Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN16</td>
<td>19</td>
<td>B4 Blue Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN17</td>
<td>20</td>
<td>B5 Blue Pixels Display Data (MSB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN18</td>
<td>22</td>
<td>Hsync Horizontal Synchronization Signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN19</td>
<td>23</td>
<td>Vsync Vertical Synchronization Signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN20</td>
<td>25</td>
<td>DE Compound Synchronization Signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxCLK IN</td>
<td>26</td>
<td>NCLK Data Sampling Clock</td>
<td>TxCLK OUT-</td>
<td>No.11 CLK-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TxCLK OUT+</td>
<td>No.12 CLK+</td>
</tr>
</tbody>
</table>

Note 1) Please connect NC pin to nothing. Don't connect it to ground nor to other signal input.
RECOMMENDED TRANSMITTER (DS90C383) TO LTD104EA5S INTERFACE ASSIGNMENT

Case2: 8bit Transmitter

DS90C383

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Terminal</th>
<th>Input Terminal No.</th>
<th>Input Signal (Graphics controller output signal)</th>
<th>Output Signal Symbol</th>
<th>LTD104EA5S Interface (CN1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxIN0</td>
<td>51</td>
<td>R0</td>
<td>Red Pixels Display Data (LSB)</td>
<td>TxOUT0-TxOUT0+</td>
<td>No.5 IN0-IN0+</td>
</tr>
<tr>
<td>TxIN1</td>
<td>52</td>
<td>R1</td>
<td>Red Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN2</td>
<td>54</td>
<td>R2</td>
<td>Red Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN3</td>
<td>55</td>
<td>R3</td>
<td>Red Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN4</td>
<td>56</td>
<td>R4</td>
<td>Red Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN6</td>
<td>3</td>
<td>R5</td>
<td>Red Pixels Display Data (MSB)</td>
<td>TxOUT1-TxOUT1+</td>
<td>No.7 IN1-IN1+</td>
</tr>
<tr>
<td>TxIN7</td>
<td>4</td>
<td>G0</td>
<td>Green Pixels Display Data (LSB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN8</td>
<td>6</td>
<td>G1</td>
<td>Green Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN9</td>
<td>7</td>
<td>G2</td>
<td>Green Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN12</td>
<td>11</td>
<td>G3</td>
<td>Green Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN13</td>
<td>12</td>
<td>G4</td>
<td>Green Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN14</td>
<td>14</td>
<td>G5</td>
<td>Green Pixels Display Data (MSB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN15</td>
<td>15</td>
<td>B0</td>
<td>Blue Pixels Display Data (LSB)</td>
<td>TxOUT2-TxOUT2+</td>
<td>No.9 IN2-IN2+</td>
</tr>
<tr>
<td>TxIN18</td>
<td>19</td>
<td>B1</td>
<td>Blue Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN19</td>
<td>20</td>
<td>B2</td>
<td>Blue Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN20</td>
<td>22</td>
<td>B3</td>
<td>Blue Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN21</td>
<td>23</td>
<td>B4</td>
<td>Blue Pixels Display Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN22</td>
<td>24</td>
<td>B5</td>
<td>Blue Pixels Display Data (MSB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN24</td>
<td>27</td>
<td>Hsync</td>
<td>Horizontal Synchronization Signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN25</td>
<td>28</td>
<td>Vsync</td>
<td>Vertical Synchronization Signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN26</td>
<td>30</td>
<td>DE</td>
<td>Compound Synchronization Signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN27</td>
<td>50</td>
<td>NC</td>
<td>Non Connection (open)</td>
<td>TxOUT3-TxOUT3+</td>
<td></td>
</tr>
<tr>
<td>TxIN5</td>
<td>2</td>
<td>NC</td>
<td>Non Connection (open)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN10</td>
<td>8</td>
<td>NC</td>
<td>Non Connection (open)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN11</td>
<td>10</td>
<td>NC</td>
<td>Non Connection (open)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN16</td>
<td>16</td>
<td>NC</td>
<td>Non Connection (open)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN17</td>
<td>18</td>
<td>NC</td>
<td>Non Connection (open)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxIN23</td>
<td>25</td>
<td>NC</td>
<td>Non Connection (open)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TxCLK IN</td>
<td>31</td>
<td>NCLK</td>
<td>Data Sampling Clock</td>
<td>TxCLK OUT-TxCLK OUT+</td>
<td>No.11 CLK-CLK+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note 1) Please connect NC pin to nothing. Don't connect it to ground nor to other signal input.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image-url)
<table>
<thead>
<tr>
<th>Basic Color</th>
<th>Display</th>
<th>Gray Scale Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>R5 R4 R3 R2 R1 R0</td>
<td>-</td>
</tr>
<tr>
<td>Blue</td>
<td>L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>Green</td>
<td>L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>Light Blue</td>
<td>L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>Red</td>
<td>H H H H H H</td>
<td>-</td>
</tr>
<tr>
<td>Purple</td>
<td>H H H H H H</td>
<td>-</td>
</tr>
<tr>
<td>Yellow</td>
<td>H H H H H H</td>
<td>-</td>
</tr>
<tr>
<td>White</td>
<td>H H H H H H</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gray Scale of Red</th>
<th>Display</th>
<th>Gray Scale Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>L L L L L L</td>
<td>L0</td>
</tr>
<tr>
<td>Dark ↑ ↓ Light</td>
<td>L L L L H L</td>
<td>L1</td>
</tr>
<tr>
<td>Light</td>
<td>H H H H H L</td>
<td>L2</td>
</tr>
<tr>
<td>Red</td>
<td>H H H H H H</td>
<td>L3...</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
<td>L60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gray Scale of Blue</th>
<th>Display</th>
<th>Gray Scale Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>L L L L L L</td>
<td>L0</td>
</tr>
<tr>
<td>Dark ↑ ↓ Light</td>
<td>L L L L H L</td>
<td>L1</td>
</tr>
<tr>
<td>Light</td>
<td>H H H H H L</td>
<td>L2</td>
</tr>
<tr>
<td>Blue</td>
<td>H H H H H H</td>
<td>L3...</td>
</tr>
<tr>
<td>Blue</td>
<td>Blue</td>
<td>L60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gray Scale of White & Black</th>
<th>Display</th>
<th>Gray Scale Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>L L L L L L</td>
<td>L0</td>
</tr>
<tr>
<td>Dark ↑ ↓ Light</td>
<td>L L L L H L</td>
<td>L1</td>
</tr>
<tr>
<td>Light</td>
<td>H H H H H L</td>
<td>L2</td>
</tr>
<tr>
<td>White</td>
<td>H H H H H H</td>
<td>L3...</td>
</tr>
<tr>
<td>White</td>
<td>White</td>
<td>L60</td>
</tr>
</tbody>
</table>

256k (k=1024) COLORS COMBINATION TABLE
FOR SAFETY

LCD module is generally designed with precise parts to achieve light weighted thin mechanical dimensions. In using our Modules, make certain that you fully understand and put into practice the warnings and safety precautions detailed in Engineering Information No.EE-N001,"CAUTIONS AND INSTRUCTIONS FOR TOSHIBA LCD MODULES". Refer to individual specifications and TECHNICAL DATA sheets (hereinafter called "TD") for more detailed technical information.

1) SPECIAL PURPOSES

A) Toshiba Matsushita Display Technology's Standard LCD Modules have not been customized for operation in extreme environments or for use in applications where performance failures could be life-threatening or otherwise catastrophic.

B) Since Toshiba Matsushita Display Technology's Standard LCD Modules have not been designed for operation in extreme environments, they must never be used in devices that will be exposed to abnormally high levels of vibration or shock which exceed Toshiba Matsushita Display Technology's published specification limits.

C) In addition, since Toshiba Matsushita Display Technology Standard LCD Modules have not been designed for use in applications where performance failures could be life-threatening or catastrophic, they must never be installed in aircraft navigation control systems (such as, but not limited to Traffic Collision Avoidance System and Air Traffic Indicator), in military defense or weapons systems, in critical industrial process-control systems (e.g., those involved in the production of nuclear energy), or in critical medical device or patient life-support systems.

2) DISASSEMBLING OR MODIFICATION

DO NOT DISASSEMBLE OR MODIFY the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. Toshiba Matsushita Display Technology does not warrant the module, if customer disassembled or modified it.

3) BREAKAGE OF LCD PANEL

DO NOT INGEST liquid crystal material, DO NOT INHALE this material, and DO NOT CONTACT the material with skin, if LCD panel is broken and liquid crystal material spills out. If liquid crystal material comes into mouth or eyes, rinse mouth or eyes out with water immediately. If this material contact with skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.

4) GLASS OF LCD PANEL

BE CAREFUL WITH CHIPS OF GLASS that may cause injuring fingers or skin, when the glass is broken.

5) ELECTRIC SHOCK

DISCONNECT POWER SUPPLY before handling LCD module. DO NOT TOUCH the parts inside LCD module and the fluorescent lamp's connector or cables in order to prevent electric shock, because high voltage is supplied to these parts from the inverter unit while power supply is turned on.

6) ABSOLUTE MAXIMUM RATINGS AND POWER PROTECTION CIRCUIT

DO NOT EXCEED the absolute maximum rating values under the worst probable conditions caused by the supply voltage variation, input voltage variation, variation in parts' constants, environmental temperature, etc., otherwise LCD module may be damaged. Employ protection circuit for power supply, whenever the specification or TD specifies it. Suitable protection circuit should be applied for each system design.

7) DISPOSAL

When dispose LCD module, obey to the applicable environmental regulations.