PRODUCT INFORMATION

FEATURES
(1) 11.1"WIDE-XGA+(1366x768 pixels) display size for notebook PC
(2) LED Backlight (LED 40pcs : 10 Serial & 4 Parallel connection)
(3) Glare surface

MECHANICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional Outline (typ.)</td>
<td>255.0(W) x 159.9 (H) x 2.55/2.8(D) mm</td>
</tr>
<tr>
<td>Number of Pixels</td>
<td>1366 (W) x 768(H) pixels</td>
</tr>
<tr>
<td>Active Area</td>
<td>245.88(W) x 138.24(H) mm</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>0.18(W) x 0.18(H)</td>
</tr>
<tr>
<td>Weight (approximately)</td>
<td>146 g</td>
</tr>
<tr>
<td>Backlight</td>
<td>LED</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Item</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (VDD)</td>
<td>-0.3</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Supply LED Currency (ILED)</td>
<td>0</td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>LED Voltage (VLED)</td>
<td>-</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Input Signal Voltage (Vin)</td>
<td>-0.3</td>
<td>VDD+0.3</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0</td>
<td>50</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-20</td>
<td>60</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>10</td>
<td>90</td>
<td>% (RH)</td>
</tr>
</tbody>
</table>

ELECTRICAL SPECIFICATION

<table>
<thead>
<tr>
<th>Item</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (VDD)</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply LED Current (ILED)</td>
<td>---</td>
<td>---</td>
<td>16</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Common Mode Input Voltage (VCM)</td>
<td>1.0</td>
<td>1.25</td>
<td>2.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Differential Input Amplitude (VD)</td>
<td>250</td>
<td>---</td>
<td>450</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Current Consumption</td>
<td>*1</td>
<td>---</td>
<td>295</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*2</td>
<td>---</td>
<td>16</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Power Consumption</td>
<td>---</td>
<td>3.1</td>
<td>---</td>
<td>W</td>
<td>ILED=16mA</td>
</tr>
</tbody>
</table>

*1 : 8 color bars pattern
*2 : The current value of each row should be the same value.

OPTICAL SPECIFICATION (Ta=25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast Ratio (CR)</td>
<td>300</td>
<td>600</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Response Time (tON)+ (tOFF)</td>
<td>---</td>
<td>50</td>
<td>70</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Luminance (L)</td>
<td>---</td>
<td>240</td>
<td>---</td>
<td>cd/m²</td>
<td>ILED=16mA</td>
</tr>
</tbody>
</table>

*The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Toshiba Matsushita Display technology or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Toshiba Matsushita Display technology or others.

*The information contained herein may be changed without prior notice. It is therefore advisable to contact Toshiba Matsushita Display technology before proceeding with the design of equipment incorporating this product.
Note 1) Never push LCD back side. If LCD back side was pressed, It may cause damage of the back light system.
BLOCK DIAGRAM

DC/DC converter

Gray scale manipulation voltage generation circuit

Panel controller LVDS include

Liquid Crystal Panel
1366 x 768 pixels

X-driver

Y-driver

Connector

C N 1

1, 1 2, 1 X2n-1, 1 X2n, 1 1366, 1

1, 2

1, Y X2n-1, Y X2n, Y 768 pixels

1, 768 1366, 768

1366 pixels

768 pixels
TIMING CHART

(1) Vertical Timing

(2) Horizontal Timing
TIMING SPECIFICATION 1) 2) 3) 4) 5) 6)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Scanning Term</td>
<td>fc</td>
<td>1656 x tc</td>
<td>1664 x tc</td>
<td>clock</td>
<td></td>
</tr>
<tr>
<td>H-sync Pulse Width</td>
<td>hw</td>
<td>8 x tc</td>
<td>128 x tc</td>
<td>- clock</td>
<td></td>
</tr>
<tr>
<td>Horizontal Front Porch</td>
<td>fhfp</td>
<td>8 x tc</td>
<td>64 x tc</td>
<td>- clock</td>
<td></td>
</tr>
<tr>
<td>Horizontal Back Porch</td>
<td>fhbp</td>
<td>8 x tc</td>
<td>106 x tc</td>
<td>- clock</td>
<td></td>
</tr>
<tr>
<td>Horizontal Display Term</td>
<td>fhd</td>
<td>1366 x tc</td>
<td>1366 x tc</td>
<td>1366 x tc</td>
<td>clock</td>
</tr>
<tr>
<td>Horizontal blanking</td>
<td>fhb</td>
<td>290 x tc</td>
<td>298 x tc</td>
<td>clock</td>
<td></td>
</tr>
<tr>
<td>Frame Period</td>
<td>fv</td>
<td>774 x fh</td>
<td>776 x fh</td>
<td>line</td>
<td></td>
</tr>
<tr>
<td>V-sync Pulse Width</td>
<td>tvw</td>
<td>1 x fh</td>
<td>1 x fh</td>
<td>- line</td>
<td></td>
</tr>
<tr>
<td>Vertical blanking</td>
<td>tvd</td>
<td>6 x tc</td>
<td>8 x tc</td>
<td>- line</td>
<td></td>
</tr>
<tr>
<td>Vertical Front Porch</td>
<td>tvfp</td>
<td>1 x fh</td>
<td>1 x fh</td>
<td>- line</td>
<td></td>
</tr>
<tr>
<td>Vertical Back Porch</td>
<td>tvbp</td>
<td>4 x fh</td>
<td>6 x fh</td>
<td>- line</td>
<td></td>
</tr>
<tr>
<td>Vertical Data Sync Period</td>
<td>tvds</td>
<td>2 x fh</td>
<td>27 x fh</td>
<td>- line</td>
<td></td>
</tr>
<tr>
<td>Vertical Display Term</td>
<td>tvd</td>
<td>768 x fh</td>
<td>768 x fh</td>
<td>768 x fh</td>
<td>line</td>
</tr>
<tr>
<td>Clock Period</td>
<td>tc</td>
<td>12.50</td>
<td>12.903</td>
<td>77.5</td>
<td>80 MHz</td>
</tr>
</tbody>
</table>

Note 1) Refer to “Timing Chart” and LVDS specifications in TIA/EIA-644.

Note 2) If DE is fixed to "H" or "L" level for certain period while NCLK is supplied, the panel displays black with some flicker.

Note 3) If NCLK is fixed to "H" or "L" level for certain period while DE is supplied, the panel may be damaged.

Note4) tvb = twv + tvfp + tvbp
 thb = thw + thfp + thbp

Note5) In case of using the long frame period, the deterioration of display quality, noise etc. may be occurred.

Note6) NCLK count of each Horizontal Scanning Time should be always the same.
V-Blanking period should be “n” X “Horizontal Scanning Time”. (n: integer)
Frame period should be always the same.
CONNECTOR PIN ASSIGNMENT FOR INTERFACE

CN1 INPUT SIGNAL

Connector : 20347-030E-02/I-PEX
Mating Connector : 20345-*30T##/I-PEX

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vs</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>RxIN0-</td>
<td>Negative LVDS differential data input (R0-R5,G0)</td>
</tr>
<tr>
<td>3</td>
<td>RxIN0+</td>
<td>Positive LVDS differential data input (R0-R5,G0)</td>
</tr>
<tr>
<td>4</td>
<td>RxIN1-</td>
<td>Negative LVDS differential data input (G1-G5,B0-B1)</td>
</tr>
<tr>
<td>5</td>
<td>RxIN1+</td>
<td>Positive LVDS differential data input (G1-G5,B0-B1)</td>
</tr>
<tr>
<td>6</td>
<td>RxIN2-</td>
<td>Negative LVDS differential data input (B2-B5, HSYNC, VSYNC, DE)</td>
</tr>
<tr>
<td>7</td>
<td>RxIN2+</td>
<td>Positive LVDS differential data input (B2-B5, HSYNC, VSYNC, DE)</td>
</tr>
<tr>
<td>8</td>
<td>CLK-</td>
<td>Clock Signal(-)</td>
</tr>
<tr>
<td>9</td>
<td>CLK+</td>
<td>Clock Signal(+)</td>
</tr>
<tr>
<td>10</td>
<td>NC</td>
<td>Non-Connection</td>
</tr>
<tr>
<td>11</td>
<td>Vs</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>Vs</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>Vs</td>
<td>GND</td>
</tr>
<tr>
<td>14</td>
<td>Vs</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>Vs</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>VDD</td>
<td>Power Supply : +3.3V</td>
</tr>
<tr>
<td>17</td>
<td>VDD</td>
<td>Power Supply : +3.3V</td>
</tr>
<tr>
<td>18</td>
<td>VDD</td>
<td>Power Supply : +3.3V</td>
</tr>
<tr>
<td>19</td>
<td>VDD</td>
<td>Power Supply : +3.3V</td>
</tr>
<tr>
<td>20</td>
<td>VDD</td>
<td>Power Supply : +3.3V</td>
</tr>
<tr>
<td>21</td>
<td>NC</td>
<td>Non-Connection</td>
</tr>
<tr>
<td>22</td>
<td>VDC11</td>
<td>LED Cathode (Negative)</td>
</tr>
<tr>
<td>23</td>
<td>VDC12</td>
<td>LED Cathode (Negative)</td>
</tr>
<tr>
<td>24</td>
<td>VDC21</td>
<td>LED Cathode (Negative)</td>
</tr>
<tr>
<td>25</td>
<td>VDC22</td>
<td>LED Cathode (Negative)</td>
</tr>
<tr>
<td>26</td>
<td>NC</td>
<td>Non-Connection</td>
</tr>
<tr>
<td>27</td>
<td>VAC1</td>
<td>LED Anode (Positive)</td>
</tr>
<tr>
<td>28</td>
<td>VAC1</td>
<td>LED Anode (Positive)</td>
</tr>
<tr>
<td>29</td>
<td>VAC2</td>
<td>LED Anode (Positive)</td>
</tr>
<tr>
<td>30</td>
<td>VAC2</td>
<td>LED Anode (Positive)</td>
</tr>
</tbody>
</table>

Note 1) Please connect GND pin to ground. Don't use it as no-connect nor connection with high impedance.

Note 2) Please connect NC to nothing. Don't connect it to ground nor to other signal input.
EQUIVALENT CIRCUIT OF LED

Connector (CN1)

Terminal No.27 & No.28

\[\text{Current} \quad I_{\text{LED}} \]

No.22

No.23

No.24

No.25

Terminal No.29 & No.30
256k (k=1024) COLORS COMBINATION TABLE

<table>
<thead>
<tr>
<th>Basic Color</th>
<th>Display</th>
<th>R5 R4 R3 R2 R1 R0</th>
<th>G5 G4 G3 G2 G1 G0</th>
<th>B5 B4 B3 B2 B1 B0</th>
<th>Gray Scale Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td></td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L L L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>Blue</td>
<td></td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>H H H H H H H H</td>
<td>-</td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td>L L L L L L</td>
<td>H H H H H H H H</td>
<td>L L L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>Light Blue</td>
<td></td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>H H H H H H H H</td>
<td>-</td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>L L L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>Purple</td>
<td></td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>H H H H H H H H</td>
<td>-</td>
</tr>
<tr>
<td>Yellow</td>
<td></td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>L L L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>White</td>
<td></td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>H H H H H H H H</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gray Scale of Red</th>
<th>Display</th>
<th>R5 R4 R3 R2 R1 R0</th>
<th>G5 G4 G3 G2 G1 G0</th>
<th>B5 B4 B3 B2 B1 B0</th>
<th>Gray Scale Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td></td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L L L L L L L L</td>
<td>L0</td>
</tr>
<tr>
<td>Dark</td>
<td></td>
<td>L L L L L L H</td>
<td>L L L L L L L</td>
<td>L L L L L L L L</td>
<td>L0</td>
</tr>
<tr>
<td>Light</td>
<td></td>
<td>M M M M M M</td>
<td>L L L L L L</td>
<td>L L L L L L L L</td>
<td>L60</td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>L L L L L L L L</td>
<td>Red L63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gray Scale of Green</th>
<th>Display</th>
<th>R5 R4 R3 R2 R1 R0</th>
<th>G5 G4 G3 G2 G1 G0</th>
<th>B5 B4 B3 B2 B1 B0</th>
<th>Gray Scale Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td></td>
<td>L L L L L L</td>
<td>H H H H H H</td>
<td>L L L L L L L L</td>
<td>L60</td>
</tr>
<tr>
<td>Dark</td>
<td></td>
<td>L L L L L L H</td>
<td>L L L L L L L</td>
<td>L L L L L L L L</td>
<td>L60</td>
</tr>
<tr>
<td>Light</td>
<td></td>
<td>L L L L L L</td>
<td>H H H H H H</td>
<td>L L L L L L L L</td>
<td>Green L63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gray Scale of Blue</th>
<th>Display</th>
<th>R5 R4 R3 R2 R1 R0</th>
<th>G5 G4 G3 G2 G1 G0</th>
<th>B5 B4 B3 B2 B1 B0</th>
<th>Gray Scale Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td></td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>H H H H H H H H</td>
<td>L63</td>
</tr>
<tr>
<td>Dark</td>
<td></td>
<td>L L L L L L L L</td>
<td>L L L L L L L L</td>
<td>L L L L L L H H</td>
<td>L62</td>
</tr>
<tr>
<td>Light</td>
<td></td>
<td>L L L L L L</td>
<td>H H H H H H</td>
<td>L L L L L L L L</td>
<td>Blue L63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gray Scale of White & Black</th>
<th>Display</th>
<th>R5 R4 R3 R2 R1 R0</th>
<th>G5 G4 G3 G2 G1 G0</th>
<th>B5 B4 B3 B2 B1 B0</th>
<th>Gray Scale Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td></td>
<td>H H H H H H</td>
<td>H H H H H H</td>
<td>H H H H H H H H</td>
<td>White L63</td>
</tr>
</tbody>
</table>
FOR SAFETY

LCD module is generally designed with precise parts to achieve light weighted thin mechanical dimensions. In using our Modules, make certain that you fully understand and put into practice the warnings and safety precautions detailed in Engineering Information No.EE-D-001A,"CAUTIONS AND INSTRUCTIONS FOR TOSHIBA MATSUSHITA DISPLAY TECHNOLOGY CO., LTD LCD MODULES". Refer to individual specifications and TECHNICAL DATA sheets (hereinafter called "TD") for more detailed technical information.

1) SPECIAL PURPOSES

A) Toshiba Matsushita Display technology's Standard LCD Modules have not been customized for operation in extreme environments or for use in applications where performance failures could be life-threatening or otherwise catastrophic.

B) Since Toshiba Matsushita Display technology's Standard LCD Modules have not been designed for operation in extreme environments, they must never be used in devices that will be exposed to abnormally high levels of vibration or shock which exceed Toshiba Matsushita Display technology's published specification limits.

C) In addition, since Toshiba Matsushita Display technology Standard LCD Modules have not been designed for use in applications where performance failures could be life-threatening or catastrophic, they must never be installed in aircraft navigation control systems (such as, but not limited to Traffic Collision Avoidance System and Air Traffic Indicator), in military defense or weapons systems, in critical industrial process-control systems (e.g., those involved in the production of nuclear energy), or in critical medical device or patient life-support systems.

2) DISASSEMBLING OR MODIFICATION

DO NOT DISASSEMBLE OR MODIFY the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. Toshiba Matsushita Display technology does not warrant the module, if customer disassembled or modified it.

3) BREAKAGE OF LCD PANEL

DO NOT INGEST liquid crystal material, DO NOT INHALE this material, and DO NOT CONTACT the material with skin, if LCD panel is broken and liquid crystal material spills out.
If liquid crystal material comes into mouth or eyes, rinse mouth or eyes out with water immediately.
If this material contact with skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.

4) GLASS OF LCD PANEL

BE CAREFUL WITH CHIPS OF GLASS that may cause injuring fingers or skin, when the glass is broken.

5) ELECTRIC SHOCK

DISCONNECT POWER SUPPLY before handling LCD module.
DO NOT TOUCH the parts inside LCD module and the fluorescent lamp's connector or cables in order to prevent electric shock, because high voltage is supplied to these parts from the inverter unit while power supply is turned on.

6) ABSOLUTE MAXIMUM RATINGS AND POWER PROTECTION CIRCUIT

DO NOT EXCEED the absolute maximum rating values under the worst probable conditions caused by the supply voltage variation, input voltage variation, variation in parts' constants, environmental temperature, etc., otherwise LCD module may be damaged.
Employ protection circuit for power supply, whenever the specification or TD specifies it.
Suitable protection circuit should be applied for each system design.

7) DISPOSAL

When dispose LCD module, obey to the applicable environmental regulations.