FEATURES
(1) 12.1 SVGA color display with Super High Luminance
(2) Built in Long Life Lamps (MTTF: 50,000 h)
 (Conditions / Ta: 25°C, I_{FL}: 6mA (rms) (continuing lighting), f_{FL}: 40kHz)
(3) Mounting Hole Compatible with LTD121C30S Series
(4) Replaceable structure of lamp units
(5) Reverse scan function

MECHANICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional Outline (typ.)</td>
<td>278.2 (W) x 215.8 (H) x 14.0 max (D) mm</td>
</tr>
<tr>
<td>Number of Pixels</td>
<td>800 (W) x 600 (H) pixels</td>
</tr>
<tr>
<td>Active Area</td>
<td>245.9 (W) x 184.56 (H) mm</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>0.3075 (W) x 0.3075 (H)</td>
</tr>
<tr>
<td>Weight (approximately)</td>
<td>815 g</td>
</tr>
<tr>
<td>Backlight</td>
<td>Sidelight (4CCFLs)</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Item</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DD})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{VS})</td>
<td>0.3</td>
<td>2.0</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>FL Driving Frequency</td>
<td>---</td>
<td>100</td>
<td></td>
<td>KHz</td>
</tr>
<tr>
<td>Input Signal Voltage</td>
<td>-0.3</td>
<td>V_{DD}+0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature *[1]</td>
<td>-20</td>
<td>70</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-30</td>
<td>80</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Storage Humidity *[Max. wet bulb temperature = 39°C]</td>
<td>10</td>
<td>90</td>
<td></td>
<td>% (RH)</td>
</tr>
</tbody>
</table>

*1: Wet bulb temperature should be 39°C Max. and no condensation of water.

ELECTRICAL SPECIFICATION (Ta=25°C) (RECOMMENDED OPERATION CONDITION)

<table>
<thead>
<tr>
<th>Item</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DD})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{VS})</td>
<td>0.3</td>
<td>2.0</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>FL Start Voltage</td>
<td>1200</td>
<td>1900</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{FL})</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>100</td>
<td>600</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Common mode Input Voltage</td>
<td>1.0</td>
<td>2.4* (V_{VS})/2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Current Consumption</td>
<td>390</td>
<td>460</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>3.0</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Power Consumption *[2-3]</td>
<td>16.4</td>
<td>18.9</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
*2: 8 color bars pattern
*3: Except the efficiency of FL inverter

OPTICAL SPECIFICATION (Ta=25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast Ratio</td>
<td>250</td>
<td>500</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Viewing Angle (CR ≥ 10)</td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(Upper+Lower)</td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(Left+Right)</td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Response Time</td>
<td></td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>(t_{ON})</td>
<td>10</td>
<td>---</td>
<td>---</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{OFF})</td>
<td>25</td>
<td>---</td>
<td>---</td>
<td>ms</td>
</tr>
<tr>
<td>Luminance</td>
<td></td>
<td></td>
<td></td>
<td>cd/m²</td>
</tr>
<tr>
<td>(L)</td>
<td>720</td>
<td>900</td>
<td>---</td>
<td>I_{FL}=6.0mA (rms)</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1000</td>
<td>---</td>
<td>I_{FL}=7.0mA (rms)</td>
</tr>
<tr>
<td>Lamp Life Time (MTBF) *[4-5]</td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td></td>
<td>50,000</td>
<td></td>
<td></td>
<td>I_{FL}=6.0mA (rms)</td>
</tr>
<tr>
<td></td>
<td>30,000</td>
<td></td>
<td></td>
<td>I_{FL}=7.0mA (rms)</td>
</tr>
</tbody>
</table>

*4: Conditions: Ta=25°C, I_{FL}=6.0 or 7.0mA (rms), continuous lighting
*5: Definitions of failure; 1) Lcd luminance becomes half of the minimum value. 2) Lamp doesn’t light normally.
DIMENSIONAL OUTLINE
(Front Side)

TENTATIVE

Unit: mm
Standard tolerance: 0.5
DIMENSIONAL OUTLINE
(Rear Side)

TENTATIVE

Unit: mm
Standard tolerance: 0.5
BLOCK DIAGRAM

SEQUENCE OF POWER SUPPLIES AND SIGNALS

V_{DD}
3.0V
0.2V
0.2V

CLK+/-
RxIN0+/-
RxIN1+/-
RxIN2+/-

10ms (Max.)
0.5ms (Min.)

40ms (Max.)
0ms (Min.)

40ms (Max.)
0ms (Min.)

250ms (Min.)

2sec (Min.)

0ms (Min.)

FL Input Voltage

10% V_{SPL}

10% V_{FL}
TIMING CHART

<H-Sync/V-Sync+DE Mode>

Vsync

Hsync

DE

Hsync

DE

RGB Data

CLK

<DE-Only Mode>

(1) Vertical Timing

(2) Horizontal Timing
TIMING SPECIFICATION

<H-Sync/V-Sync+DE Mode>

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>min.</th>
<th>typ.</th>
<th>Max.</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Period</td>
<td>tv</td>
<td>608</td>
<td>625</td>
<td>628</td>
<td>th</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.78</td>
<td>17.86</td>
<td>ms</td>
</tr>
<tr>
<td>Vertical blanking Term</td>
<td>tvblink</td>
<td>8</td>
<td>25</td>
<td>28</td>
<td>th</td>
</tr>
<tr>
<td>V-sync Pulse Width</td>
<td>tvw</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>th</td>
</tr>
<tr>
<td>Vertical Front Porch</td>
<td>tvfp</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>th</td>
</tr>
<tr>
<td>Vertical Data Sync Period</td>
<td>tvds</td>
<td>6</td>
<td>---</td>
<td>---</td>
<td>th</td>
</tr>
<tr>
<td>Vertical Display Term</td>
<td>tvde</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>th</td>
</tr>
<tr>
<td>Horizontal Period</td>
<td>th</td>
<td>850</td>
<td>1024</td>
<td>1056</td>
<td>tc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.4</td>
<td>28.44</td>
<td>us</td>
</tr>
<tr>
<td>H-sync Pulse Width</td>
<td>thw</td>
<td>8</td>
<td>---</td>
<td>---</td>
<td>th</td>
</tr>
<tr>
<td>Horizontal Front Porch</td>
<td>thfp</td>
<td>8</td>
<td>---</td>
<td>---</td>
<td>th</td>
</tr>
<tr>
<td>Horizontal Data Sync Period</td>
<td>thds</td>
<td>16</td>
<td>---</td>
<td>---</td>
<td>th</td>
</tr>
<tr>
<td>Horizontal Display Term</td>
<td>thde</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>th</td>
</tr>
<tr>
<td>Clock Period</td>
<td>tc</td>
<td>25.0</td>
<td>27.8</td>
<td>---</td>
<td>ns</td>
</tr>
</tbody>
</table>

<DE-Only Mode>

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Period</td>
<td>t1</td>
<td>608</td>
<td>625 x t3</td>
<td>628 x t3</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.78</td>
<td>17.86</td>
<td>ms</td>
</tr>
<tr>
<td>Vertical Display Term</td>
<td>t2</td>
<td>600 x t3</td>
<td>600 x t3</td>
<td>600 x t3</td>
<td>---</td>
</tr>
<tr>
<td>One Line Scanning Time</td>
<td>t3</td>
<td>850 x tc</td>
<td>1024 x tc</td>
<td>1056 x tc</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.4</td>
<td>28.44</td>
<td>us</td>
</tr>
<tr>
<td>Horizontal Display Term</td>
<td>t4</td>
<td>800 x tc</td>
<td>800 x tc</td>
<td>800 x tc</td>
<td>---</td>
</tr>
<tr>
<td>Clock Period</td>
<td>tc</td>
<td>25.0</td>
<td>27.78</td>
<td>---</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note 1) Refer to “Timing Chart” and LVDS(DS90C365*, DS90C385*) specifications by National Semiconductor Corp.
Note 2) If DE is fixed to “H” or “L” level for certain period while CLK is supplied, the panel displays black with some flicker.
Note 3) Don’t fix CLK to “H” or “L” level while the VDD(+3.3V) is supplied.
 - If CLK is fixed to “H” or “L” level for certain period while DE is supplied, the panel may be damaged.
 - When it holds on, DC voltage supplies to liquid crystal materials and it may cause damage to liquid crystal materials.
Note 4) Please adjust LCD operating signal timing and FL driving frequency, to optimize the display quality.
 - There is a possibility that flicker is observed by the interference of LCD operating signal timing and FL driving condition (especially driving frequency), even if the condition satisfies above timing specifications.
Note 5) Do not make tv, th and tvds fluctuate.
Note 6) In case of using the long frame period, the deterioration of display quality, noise etc. may be occurred.
Note 7) CLK count of each Horizontal Scanning Time should be always the same.
 - V-Blanking period should be “n” X “Horizontal Scanning Time”. (n: integer) Frame period should be always the same.
CONNECTOR PIN ASSIGNMENT FOR INTERFACE

CN1 INPUT SIGNAL

Connector: DF19L-20P-1H(56) / HIROSE ELECTRIC CO., LTD.

Mating Connector: DF19G-20S-1F(FPC), DF19G-20S-1C(Cable)

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Power Supply : +3.3V</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>Power Supply : +3.3V</td>
</tr>
<tr>
<td>3</td>
<td>VSS</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>VSS</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>RxIN0-</td>
<td>Negative LVDS differential data input (R0-R5, G0)</td>
</tr>
<tr>
<td>6</td>
<td>RxIN0+</td>
<td>Positive LVDS differential data input (R0-R5, G0)</td>
</tr>
<tr>
<td>7</td>
<td>VSS</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>RxIN1-</td>
<td>Negative LVDS differential data input (G1-G5, B0-B1)</td>
</tr>
<tr>
<td>9</td>
<td>RxIN1+</td>
<td>Positive LVDS differential data input (G1-G5, B0-B1)</td>
</tr>
<tr>
<td>10</td>
<td>VSS</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>RxIN2-</td>
<td>Negative LVDS differential data input (B2-B5, HS, VS, DE)</td>
</tr>
<tr>
<td>12</td>
<td>RxIN2+</td>
<td>Positive LVDS differential data input (B2-B5, HS, VS, DE)</td>
</tr>
<tr>
<td>13</td>
<td>VSS</td>
<td>GND</td>
</tr>
<tr>
<td>14</td>
<td>CLK-</td>
<td>Clock Signal(-)</td>
</tr>
<tr>
<td>15</td>
<td>CLK+</td>
<td>Clock Signal(+)</td>
</tr>
<tr>
<td>16</td>
<td>VSS</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>U/D</td>
<td>Vertical Reverse("L" level or Open : Normal, "H" level : Reverse)</td>
</tr>
<tr>
<td>18</td>
<td>L/R</td>
<td>Horizontal Reverse("L" level or Open : Normal, "H" level : Reverse)</td>
</tr>
<tr>
<td>19</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>20</td>
<td>VSS</td>
<td>GND</td>
</tr>
</tbody>
</table>

Note 1) Please connect GND pin to ground. Don’t use it as no-connect nor connection with high impedance.

CN2 / 3 CCFL POWER SOURCE

Connector: BHR-04VS-1 / JAPAN SOLDERLESS TERMINAL MFG CO., LTD.

Mating Connector: SM04(4.0)B-BHS-1 / JAPAN SOLDERLESS TERMINAL MFG CO., LTD.

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VFLH1/2</td>
<td>CCFL Power Supply (high voltage)</td>
</tr>
<tr>
<td>2</td>
<td>VFLH2/4</td>
<td>CCFL Power Supply (high voltage)</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>Non Connection (open)</td>
</tr>
<tr>
<td>4</td>
<td>VFLL1/2</td>
<td>CCFL Power Supply (low voltage)</td>
</tr>
</tbody>
</table>

Note 2) NC terminal should be open.

Note 3) Take away terminal No.3 of the mating connector. If does not take away, it may cause smoke burn of electrical parts by high voltage.
Case 1: 6bit Transmitter

<table>
<thead>
<tr>
<th>Input Terminal No.</th>
<th>Symbol</th>
<th>Terminal</th>
<th>Input Signal (Graphics controller output signal)</th>
<th>Output Signal Symbol</th>
<th>LTD121C35S Interface Symbol</th>
<th>LTD121C35S Interface Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIN0</td>
<td>44</td>
<td>TIN0</td>
<td>Red Pixels Display Data (LSB)</td>
<td>TOUT0-</td>
<td>No.5</td>
<td>RxIN0-</td>
</tr>
<tr>
<td>TIN1</td>
<td>45</td>
<td>TIN1</td>
<td>Red Pixels Display Data</td>
<td>TOUT0+</td>
<td>No.6</td>
<td>RxIN0+</td>
</tr>
<tr>
<td>TIN2</td>
<td>47</td>
<td>TIN2</td>
<td>Red Pixels Display Data</td>
<td>TOUT1-</td>
<td>No.8</td>
<td>RxIN1-</td>
</tr>
<tr>
<td>TIN3</td>
<td>48</td>
<td>TIN3</td>
<td>Red Pixels Display Data</td>
<td>TOUT1+</td>
<td>No.9</td>
<td>RxIN1+</td>
</tr>
<tr>
<td>TIN4</td>
<td>1</td>
<td>TIN4</td>
<td>Red Pixels Display Data</td>
<td>TOUT2-</td>
<td>No.11</td>
<td>RxIN2-</td>
</tr>
<tr>
<td>TIN5</td>
<td>3</td>
<td>TIN5</td>
<td>Red Pixels Display Data (MSB)</td>
<td>TOUT2+</td>
<td>No.12</td>
<td>RxIN2+</td>
</tr>
<tr>
<td>TIN6</td>
<td>4</td>
<td>TIN6</td>
<td>Green Pixels Display Data (LSB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN7</td>
<td>6</td>
<td>TIN7</td>
<td>Green Pixels Display Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN8</td>
<td>7</td>
<td>TIN8</td>
<td>Green Pixels Display Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN9</td>
<td>9</td>
<td>TIN9</td>
<td>Green Pixels Display Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN10</td>
<td>10</td>
<td>TIN10</td>
<td>Green Pixels Display Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN11</td>
<td>12</td>
<td>TIN11</td>
<td>Green Pixels Display Data (MSB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN12</td>
<td>13</td>
<td>TIN12</td>
<td>Blue Pixels Display Data (LSB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN13</td>
<td>15</td>
<td>TIN13</td>
<td>Blue Pixels Display Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN14</td>
<td>16</td>
<td>TIN14</td>
<td>Blue Pixels Display Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN15</td>
<td>18</td>
<td>TIN15</td>
<td>Blue Pixels Display Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN16</td>
<td>19</td>
<td>TIN16</td>
<td>Blue Pixels Display Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN17</td>
<td>20</td>
<td>TIN17</td>
<td>Blue Pixels Display Data (MSB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN18</td>
<td>22</td>
<td>TIN18</td>
<td>HSYNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN19</td>
<td>23</td>
<td>TIN19</td>
<td>VSYNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIN20</td>
<td>25</td>
<td>TIN20</td>
<td>DE Compound Synchronization Signal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLK IN</td>
<td>26</td>
<td>CLK</td>
<td>Data Sampling Clock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note 1) Please connect NC pin to nothing. Don't connect it to ground nor to other signal input.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of terminal connections]
Case2: 8bit Transmitter

<table>
<thead>
<tr>
<th>Input Terminal No.</th>
<th>Input Signal</th>
<th>Output Signal Symbol</th>
<th>LTD121C35S Interface (CN1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Terminal</td>
<td>Symbol</td>
<td>Function</td>
</tr>
<tr>
<td>TIN0</td>
<td>51</td>
<td>R0</td>
<td>Red Pixels Display Data (LSB)</td>
</tr>
<tr>
<td>TIN1</td>
<td>52</td>
<td>R1</td>
<td>Red Pixels Display Data</td>
</tr>
<tr>
<td>TIN2</td>
<td>54</td>
<td>R2</td>
<td>Red Pixels Display Data</td>
</tr>
<tr>
<td>TIN3</td>
<td>55</td>
<td>R3</td>
<td>Red Pixels Display Data</td>
</tr>
<tr>
<td>TIN4</td>
<td>56</td>
<td>R4</td>
<td>Red Pixels Display Data</td>
</tr>
<tr>
<td>TIN6</td>
<td>3</td>
<td>R5</td>
<td>Red Pixels Display Data (MSB)</td>
</tr>
<tr>
<td>TIN7</td>
<td>4</td>
<td>G0</td>
<td>Green Pixels Display Data(LSB)</td>
</tr>
<tr>
<td>TIN8</td>
<td>6</td>
<td>G1</td>
<td>Green Pixels Display Data</td>
</tr>
<tr>
<td>TIN9</td>
<td>7</td>
<td>G2</td>
<td>Green Pixels Display Data</td>
</tr>
<tr>
<td>TIN12</td>
<td>11</td>
<td>G3</td>
<td>Green Pixels Display Data</td>
</tr>
<tr>
<td>TIN13</td>
<td>12</td>
<td>G4</td>
<td>Green Pixels Display Data</td>
</tr>
<tr>
<td>TIN14</td>
<td>14</td>
<td>G5</td>
<td>Green Pixels Display Data(MSB)</td>
</tr>
<tr>
<td>TIN15</td>
<td>15</td>
<td>B0</td>
<td>Blue Pixels Display Data (LSB)</td>
</tr>
<tr>
<td>TIN18</td>
<td>19</td>
<td>B1</td>
<td>Blue Pixels Display Data</td>
</tr>
<tr>
<td>TIN19</td>
<td>20</td>
<td>B2</td>
<td>Blue Pixels Display Data</td>
</tr>
<tr>
<td>TIN20</td>
<td>22</td>
<td>B3</td>
<td>Blue Pixels Display Data</td>
</tr>
<tr>
<td>TIN21</td>
<td>23</td>
<td>B4</td>
<td>Blue Pixels Display Data</td>
</tr>
<tr>
<td>TIN22</td>
<td>24</td>
<td>B5</td>
<td>Blue Pixels Display Data (MSB)</td>
</tr>
<tr>
<td>TIN24</td>
<td>27</td>
<td>HSYNC</td>
<td>H-Sync</td>
</tr>
<tr>
<td>TIN25</td>
<td>28</td>
<td>VSYNC</td>
<td>V-Sync</td>
</tr>
<tr>
<td>TIN26</td>
<td>30</td>
<td>DE</td>
<td>Compound Synchronization Signal</td>
</tr>
<tr>
<td>TIN27</td>
<td>50</td>
<td>NC</td>
<td>Non Connection (open)</td>
</tr>
<tr>
<td>TIN5</td>
<td>2</td>
<td>NC</td>
<td>Non Connection (open)</td>
</tr>
<tr>
<td>TIN6</td>
<td>16</td>
<td>NC</td>
<td>Non Connection (open)</td>
</tr>
<tr>
<td>TIN10</td>
<td>8</td>
<td>NC</td>
<td>Non Connection (open)</td>
</tr>
<tr>
<td>TIN11</td>
<td>10</td>
<td>NC</td>
<td>Non Connection (open)</td>
</tr>
<tr>
<td>TIN12</td>
<td>18</td>
<td>NC</td>
<td>Non Connection (open)</td>
</tr>
<tr>
<td>TIN23</td>
<td>25</td>
<td>NC</td>
<td>Non Connection (open)</td>
</tr>
<tr>
<td>CLK IN</td>
<td>31</td>
<td>CLK</td>
<td>Data Sampling Clock</td>
</tr>
</tbody>
</table>

Note 1) Please connect NC pin to nothing. Don't connect it to ground nor to other signal input.

![Diagram of input and output signals]
256k (k=1024) COLORS COMBINATION TABLE

<table>
<thead>
<tr>
<th>Display</th>
<th>R5 R4 R3 R2 R1 R0</th>
<th>G5 G4 G3 G2 G1 G0</th>
<th>B5 B4 B3 B2 B1 B0</th>
<th>Gray Scale Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>Blue</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>H H H H H H</td>
<td>-</td>
</tr>
<tr>
<td>Green</td>
<td>L L L L L L</td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>Light Blue</td>
<td>L L L L L L</td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>Red</td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>Purple</td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>H H H H H H</td>
<td>-</td>
</tr>
<tr>
<td>Yellow</td>
<td>H H H H H H</td>
<td>H H H H H H</td>
<td>L L L L L L</td>
<td>-</td>
</tr>
<tr>
<td>White</td>
<td>H H H H H H</td>
<td>H H H H H H</td>
<td>H H H H H H</td>
<td>-</td>
</tr>
<tr>
<td>Gray Scale of Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L 0</td>
</tr>
<tr>
<td>Dark</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>H L L L L L</td>
<td>L 1</td>
</tr>
<tr>
<td>Light</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L H L L L L</td>
<td>L 2</td>
</tr>
<tr>
<td>Red</td>
<td>H H H H L H</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L61</td>
</tr>
<tr>
<td>Gray Scale of Green</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L 0</td>
</tr>
<tr>
<td>Dark</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>H L L L L L</td>
<td>L 1</td>
</tr>
<tr>
<td>Light</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L H L L L L</td>
<td>L 2</td>
</tr>
<tr>
<td>Green</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>H H H H L H</td>
<td>L61</td>
</tr>
<tr>
<td>Gray Scale of Blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L 0</td>
</tr>
<tr>
<td>Dark</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>H L L L L L</td>
<td>L 1</td>
</tr>
<tr>
<td>Light</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L H L L L L</td>
<td>L 2</td>
</tr>
<tr>
<td>Blue</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>H H H H H H</td>
<td>L61</td>
</tr>
<tr>
<td>Gray Scale of White & Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L 0</td>
</tr>
<tr>
<td>Dark</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>H L L L L L</td>
<td>L 1</td>
</tr>
<tr>
<td>Light</td>
<td>L L L L L L</td>
<td>L L L L L L</td>
<td>L H L L L L</td>
<td>L 2</td>
</tr>
<tr>
<td>White</td>
<td>H H H H L H</td>
<td>H H H H L H</td>
<td>H H H H L H</td>
<td>L61</td>
</tr>
</tbody>
</table>
FOR SAFETY

LCD module is generally designed with precise parts to achieve light weighted thin mechanical dimensions. In using our Modules, make certain that you fully understand and put into practice the warnings and safety precautions detailed in Engineering Information No.EE-N001,"CAUTIONS AND INSTRUCTIONS FOR TOSHIBA LCD MODULES". Refer to individual specifications and TECHNICAL DATA sheets (hereinafter called "TD") for more detailed technical information.

1) SPECIAL PURPOSES
A) Toshiba Matsushita Display Technology's Standard LCD Modules have not been customized for operation in extreme environments or for use in applications where performance failures could be life-threatening or otherwise catastrophic.

B) Since Toshiba Matsushita Display Technology's Standard LCD Modules have not been designed for operation in extreme environments, they must never be used in devices that will be exposed to abnormally high levels of vibration or shock which exceed Toshiba Matsushita Display Technology's published specification limits.

C) In addition, since Toshiba Matsushita Display Technology Standard LCD Modules have not been designed for use in applications where performance failures could be life-threatening or catastrophic, they must never be installed in aircraft navigation control systems (such as, but not limited to Traffic Collision Avoidance System and Air Traffic Indicator), in military defense or weapons systems, in critical industrial process-control systems (e.g., those involved in the production of nuclear energy), or in critical medical device or patient life-support systems.

2) DISASSEMBLING OR MODIFICATION
DO NOT DISASSEMBLE OR MODIFY the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display.
Toshiba Matsushita Display Technology does not warrant the module, if customer disassembled or modified it.

3) BREAKAGE OF LCD PANEL
DO NOT INGEST liquid crystal material, DO NOT INHALE this material, and DO NOT CONTACT the material with skin, if LCD panel is broken and liquid crystal material spills out.
If liquid crystal material comes into mouth or eyes, rinse mouth or eyes out with water immediately.
If this material contact with skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.

4) GLASS OF LCD PANEL
BE CAREFUL WITH CHIPS OF GLASS that may cause injuring fingers or skin, when the glass is broken.

5) ELECTRIC SHOCK
DISCONNECT POWER SUPPLY before handling LCD module.
DO NOT TOUCH the parts inside LCD module and the fluorescent lamp's connector or cables in order to prevent electric shock, because high voltage is supplied to these parts from the inverter unit while power supply is turned on.

6) ABSOLUTE MAXIMUM RATINGS AND POWER PROTECTION CIRCUIT
DO NOT EXCEED the absolute maximum rating values under the worst probable conditions caused by the supply voltage variation, input voltage variation, variation in parts' constants, environmental temperature, etc., otherwise LCD module may be damaged.
Employ protection circuit for power supply, whenever the specification or TD specifies it.
Suitable protection circuit should be applied for each system design.

7) RECOMMENDED OPERATION CONDITIONS
The performance and quality of the LCD panel are warranted only when the LCD panel is used within "the recommended operation conditions". Toshiba Matsushita Display Technology Co., Ltd. never warrants the performance and quality of the LCD panel when you use the LCD panel over "the recommended operation conditions", although within "the absolute maximum rating".
To use the LCD panel over "the recommended operation conditions" may have bad influence on the characteristics and reliability of the LCD panel and may shorten the life of the LCD panel.
Therefore, when designing the whole set, not to be over "the recommended operation conditions", you should fully take care of supply voltage change, characteristic of connection parts, surge of input-and-output line, and surrounding temperature.

8) DISPOSAL
When dispose LCD module, obey to the applicable environmental regulations.